1
|
Wei T, Chen H, Wu D, Gao D, Cai Y, Cao X, Xu H, Yang J, Guo P. Response surface methodology for the mixed fungal fermentation of Codonopsis pilosula straw using Trichoderma reesei and Coprinus comatus. PeerJ 2023; 11:e15757. [PMID: 37601264 PMCID: PMC10434135 DOI: 10.7717/peerj.15757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
The objective of this study was to investigate the cellulose degradation rate (CDR) and lignin degradation rate (LDR) of Codonopsis pilosula straw (CPS) and the optimal fermentation parameters for mixed fungal fermentation. Single-factor tests were used to study the effects of the fungal ratio (Trichoderma reesei: Coprinus comatus), fungal inoculum, corn flour content, and fermentation time on the degradation rate of cellulose and lignin. Based on the results of this experiment, the optimal fermentation factors were identified, and the effects of various factors and their interactions on the degradation rates of cellulose and lignin were further evaluated using the response surface method. The quadratic polynomial mathematical model of degradation rates of the cellulose and lignin in CPS by mixed fungus fermentation was established using Design Expert software v8.0.6. Under the optimal parameters for fungal fermentation of CPS straw (fungal ratio 4:6, fungal inoculum 8%, corn flour content 10%, fermentation time of 15 d), the CDR and LDR reached 13.65% and 10.73%, respectively. Collectively, the mixed fungal fermentation of CPS resulted in decreased lignin and cellulose content, better retention of nutrients, and enhanced fermentation quality. The results of this study indicate that fermentation using Trichoderma reesei and Coprinus comatus is a productive method for straw degradation, providing a theoretical basis for the development of CPS as feed.
Collapse
Affiliation(s)
- Ti Wei
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Ecological Industry Development Research Institute of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
| | - Hongfu Chen
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Ecological Industry Development Research Institute of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
| | - Dengyu Wu
- Ecological Industry Development Research Institute of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, Gansu, China
| | - Dandan Gao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, Gansu, China
- Institute of Livestock and Poultry Genetic Resources Conservation and Utilization of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yong Cai
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Ecological Industry Development Research Institute of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xin Cao
- Ecological Industry Development Research Institute of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
- Institute of Livestock and Poultry Genetic Resources Conservation and Utilization of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
| | - Hongwei Xu
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Institute of Livestock and Poultry Genetic Resources Conservation and Utilization of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jutian Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Ecological Industry Development Research Institute of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
- Institute of Livestock and Poultry Genetic Resources Conservation and Utilization of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
| | - Penghui Guo
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Ecological Industry Development Research Institute of the Upper Yellow River, Northwest Minzu University, Lanzhou, Gansu, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
|
3
|
Yamagishi K, Ike M, Gau M, Tokuyasu K. Evaluation of the Enzymatic Saccharification Efficiency of an Energy Crop, Erianthus arundinaceus, Pretreated with Ca(OH) 2 Using both Countercurrent Washing System and pH Adjustment by Nonpressurized CO 2. J Appl Glycosci (1999) 2021; 68:63-67. [PMID: 34759770 PMCID: PMC8575653 DOI: 10.5458/jag.jag.jag-2021_0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022] Open
Abstract
Erianthus arundinaceus (ER) is greatly appreciated among domestic energy crops in Japan for the production of fermentable sugars from lignocellulosic polysaccharides. In this study, we developed an efficient Ca(OH)2-based pretreatment of both stems and leaves of ER at ambient temperature with the addition of a washing step for enzymatic saccharification. The recoveries of glucans and xylans in the pretreated ER after four countercurrent washing cycles were 91 and 76 %, respectively, the former being considerably higher than that of rice straw (RS) (72 %). Their saccharification ratios in the washed sample under the pressure of 1 atm CO2 were 80 and 92.5 %, respectively. The application of this simple sugar production process from ER would further support the domestic bioprocess development. ER is also foreseen to provide the additional feedstock favorable for harvesting from winter to spring in Japan, preventing a risk for feedstock shortage generated by single harvesting such as RS.
Collapse
Affiliation(s)
- Kenji Yamagishi
- Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | - Masakazu Ike
- Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | | | - Ken Tokuyasu
- Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
4
|
Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. BIORESOUR BIOPROCESS 2021; 8:95. [PMID: 38650192 PMCID: PMC10992179 DOI: 10.1186/s40643-021-00447-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The potential of cellulolytic enzymes has been widely studied and explored for bioconversion processes and plays a key role in various industrial applications. Cellulase, a key enzyme for cellulose-rich waste feedstock-based biorefinery, has increasing demand in various industries, e.g., paper and pulp, juice clarification, etc. Also, there has been constant progress in developing new strategies to enhance its production, such as the application of waste feedstock as the substrate for the production of individual or enzyme cocktails, process parameters control, and genetic manipulations for enzyme production with enhanced yield, efficiency, and specificity. Further, an insight into immobilization techniques has also been presented for improved reusability of cellulase, a critical factor that controls the cost of the enzyme at an industrial scale. In addition, the review also gives an insight into the status of the significant application of cellulase in the industrial sector, with its techno-economic analysis for future applications. The present review gives a complete overview of current perspectives on the production of microbial cellulases as a promising tool to develop a sustainable and greener concept for industrial applications.
Collapse
Affiliation(s)
- Nisha Bhardwaj
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
5
|
Shibata N, Kakeshita H, Igarashi K, Takimura Y, Shida Y, Ogasawara W, Koda T, Hasunuma T, Kondo A. Disruption of alpha-tubulin releases carbon catabolite repression and enhances enzyme production in Trichoderma reesei even in the presence of glucose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:39. [PMID: 33557925 PMCID: PMC7869464 DOI: 10.1186/s13068-021-01887-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Trichoderma reesei is a filamentous fungus that is important as an industrial producer of cellulases and hemicellulases due to its high secretion of these enzymes and outstanding performance in industrial fermenters. However, the reduction of enzyme production caused by carbon catabolite repression (CCR) has long been a problem. Disruption of a typical transcriptional regulator, Cre1, does not sufficiently suppress this reduction in the presence of glucose. RESULTS We found that deletion of an α-tubulin (tubB) in T. reesei enhanced both the amount and rate of secretory protein production. Also, the tubulin-disrupted (ΔtubB) strain had high enzyme production and the same enzyme profile even if the strain was cultured in a glucose-containing medium. From transcriptome analysis, the ΔtubB strain exhibited upregulation of both cellulase and hemicellulase genes including some that were not originally induced by cellulose. Moreover, cellobiose transporter genes and the other sugar transporter genes were highly upregulated, and simultaneous uptake of glucose and cellobiose was also observed in the ΔtubB strain. These results suggested that the ΔtubB strain was released from CCR. CONCLUSION Trichoderma reesei α-tubulin is involved in the transcription of cellulase and hemicellulase genes, as well as in CCR. This is the first report of overcoming CCR by disrupting α-tubulin gene in T. reesei. The disruption of α-tubulin is a promising approach for creating next-generation enzyme-producing strains of T. reesei.
Collapse
Affiliation(s)
- Nozomu Shibata
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hiroshi Kakeshita
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Kazuaki Igarashi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Yasushi Takimura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Tohru Koda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
6
|
Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from Penicillium funiculosum in Cellulose Saccharification under High-Level Substrate Loading. Appl Environ Microbiol 2020; 86:AEM.01769-20. [PMID: 32978122 DOI: 10.1128/aem.01769-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are crucial industrial enzymes required in the biorefinery industry as well as in the natural carbon cycle. These enzymes, known to catalyze the oxidative cleavage of glycosidic bonds, are produced by numerous bacterial and fungal species to assist in the degradation of cellulosic biomass. In this study, we annotated and performed structural analysis of an uncharacterized LPMO from Penicillium funiculosum (PfLPMO9) based on computational methods in an attempt to understand the behavior of this enzyme in biomass degradation. PfLPMO9 exhibited 75% and 36% sequence identities with LPMOs from Thermoascus aurantiacus (TaLPMO9A) and Lentinus similis (LsLPMO9A), respectively. Furthermore, multiple fungal genetic manipulation tools were employed to simultaneously overexpress LPMO and cellobiohydrolase I (CBH1) in a catabolite-derepressed strain of Penicillium funiculosum, PfMig188 (an engineered variant of P. funiculosum), to improve its saccharification performance toward acid-pretreated wheat straw (PWS) at 20% substrate loading. The resulting transformants showed improved LPMO and CBH1 expression at both the transcriptional and translational levels, with ∼200% and ∼66% increases in ascorbate-induced LPMO and Avicelase activities, respectively. While the secretome of PfMig88 overexpressing LPMO or CBH1 increased the saccharification of PWS by 6% or 13%, respectively, over the secretome of PfMig188 at the same protein concentration, the simultaneous overexpression of these two genes led to a 20% increase in saccharification efficiency over that observed with PfMig188, which accounted for 82% saccharification of PWS under 20% substrate loading.IMPORTANCE The enzymatic hydrolysis of cellulosic biomass by cellulases continues to be a significant bottleneck in the development of second-generation biobased industries. While increasing efforts are being made to obtain indigenous cellulases for biomass hydrolysis, the high production cost of this enzyme remains a crucial challenge affecting its wide availability for the efficient utilization of cellulosic materials. This is because it is challenging to obtain an enzymatic cocktail with balanced activity from a single host. This report describes the annotation and structural analysis of an uncharacterized lytic polysaccharide monooxygenase (LPMO) gene in Penicillium funiculosum and its impact on biomass deconstruction upon overexpression in a catabolite-derepressed strain of P. funiculosum Cellobiohydrolase I (CBH1), which is the most important enzyme produced by many cellulolytic fungi for the saccharification of crystalline cellulose, was further overexpressed simultaneously with LPMO. The resulting secretome was analyzed for enhanced LPMO and exocellulase activities and the corresponding improvement in saccharification performance (by ∼20%) under high-level substrate loading using a minimal amount of protein.
Collapse
|
7
|
Mutturi S, Ike M, Yamagishi K, Tokuyasu K. Isolation, characterization, and application of thermotolerant Streptomyces sp. K5 for efficient conversion of cellobiose to chitinase using pulse- feeding strategy. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ike M, Tokuyasu K. Control of pH by CO 2 Pressurization for Enzymatic Saccharification of Ca(OH) 2 -Pretreated Rice Straw in the Presence of CaCO 3. J Appl Glycosci (1999) 2020; 67:59-62. [PMID: 34354529 PMCID: PMC8294032 DOI: 10.5458/jag.jag.jag-2019_0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 10/31/2022] Open
Abstract
The aim of this study was to investigate the effect of pH control by CO 2 pressurization on the enzymatic hydrolysis of herbaceous feedstock in the calcium capturing by carbonation (CaCCO) process for fermentable sugar production. The pH of the slurry of 5 % (w/w) Ca(OH) 2 -pretreated/CO 2 -neutralized rice straw could be controlled between 5.70 and 6.38 at 50 °C by changing the CO 2 partial pressure ( p CO 2 ) from 0.1 to 1.0 MPa. A mixture of fungal enzyme preparations, namely, Trichoderma reesei cellulases/hemicellulases and Aspergillus niger β-glucosidase, indicated that pH 5.5-6.0 is optimal for solubilizing sugars from Ca(OH) 2 -pretreated rice straw. Enzymatic saccharification of pretreated rice straw under various p CO 2 conditions revealed that the highest soluble sugar yields were obtained at p CO 2 0.4 MPa and over, which is consistent with the expected pH at the p CO 2 without enzymes and demonstrates the effectiveness of pH control by CO 2 pressurization.
Collapse
Affiliation(s)
- Masakazu Ike
- 1 Food Resource Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Ken Tokuyasu
- 1 Food Resource Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
9
|
Yamagishi K, Ike M, Guan D, Tokuyasu K. Washing Lime-Pretreated Rice Straw with Carbonated Water Facilitates Calcium Removal and Sugar Recovery in Subsequent Enzymatic Saccharification. J Appl Glycosci (1999) 2019; 66:11-19. [PMID: 34354515 PMCID: PMC8056894 DOI: 10.5458/jag.jag.jag-2018_0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 11/26/2022] Open
Abstract
Generally, Ca(OH)2 pretreatment of lignocellulosics for fermentable sugar recovery requires a subsequent washing step for calcium removal and pH control for optimized saccharification. However, washing Ca(OH)2-pretreated feedstock with water is considered problematic because of the low solubility of Ca(OH)2 and its adsorption to biomass. In this study, we estimated the availability of carbonated water for calcium removal from the slurry of Ca(OH)2-pretreated rice straw (RS). We tested two kinds of countercurrent washing sequences, four washings exclusively with water (W4) and two washings with water and subsequent two washings with carbonated water (W2C2). The ratios of calcium removal from pretreatment slurry after washing were 64.2 % for the W4 process and 92.1 % for the W2C2 process. In the W2C2 process, 49 % of the initially added calcium was recovered as CaO by calcination. In enzymatic saccharification tests under a CO2 atmosphere at 1.5 atm, in terms of recovery of both glucose and xylose, pretreated, feedstock washed through the W2C2 process surpassed that washed through the W4 process, which could be attributed to the pH difference during saccharification: 5.6 in the W2C2 process versus 6.3 in the W4 process. Additionally, under an unpressurized CO2 atmosphere at 1 atm, the feedstock washed through the W2C2 process released 78.5 % of total glucose residues and 90.0 % of total xylose residues. Thus, efficient removal of calcium from pretreatment slurry would lead to not only the recovery of added calcium but also the proposal of a new, simple saccharification system to be used under an unpressurized CO2 atmosphere condition.
Collapse
Affiliation(s)
- Kenji Yamagishi
- 1 Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | - Masakazu Ike
- 1 Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | - Di Guan
- 1 Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| | - Ken Tokuyasu
- 1 Bioresource Conversion Unit, Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
10
|
Ike M, Tokuyasu K. Cellulase Production of Trichoderma reesei ( Hypocrea jecorina) by Continuously Fed Cultivation Using Sucrose as Primary Carbon Source. J Appl Glycosci (1999) 2018; 65:51-56. [PMID: 34354513 PMCID: PMC8056898 DOI: 10.5458/jag.jag.jag-2018_0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/29/2018] [Indexed: 10/31/2022] Open
Abstract
To expand the range of soluble carbon sources for our enzyme production system, we investigated the properties of sucrose utilization and its effect on cellulase production by Trichoderma reesei M2-1. We performed batch cultivation of T. reesei M2-1 on sucrose and related sugars along with cellobiose, which was used as a cellulase inducer. The results clearly revealed that the hydrolysis products of sucrose, i.e. glucose and fructose, but not sucrose, can be used as a carbon source for enzyme production. In a 10-day continuous feeding experiment using invertase-treated sucrose/cellobiose, the fungal strain produced cellulases with a filter paper-degrading activity of 20.3 U/mL and production efficiency of 254 U/g-carbon sources. These values were comparable with those of glucose/cellobiose feeding (21.2 U/mL and 265 U/g-carbon sources, respectively). Furthermore, the comparison of the specific activities clearly indicated that the compositions of both produced enzymes were similar. Therefore, enzymatically hydrolyzed sucrose can be utilized as an alternative carbon source to glucose in our enzyme production system with T. reesei M2-1.
Collapse
Affiliation(s)
- Masakazu Ike
- 1 Food Biotechnology Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Ken Tokuyasu
- 1 Food Biotechnology Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
11
|
Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, Kasumi T. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. BIORESOURCE TECHNOLOGY 2017; 233:67-73. [PMID: 28258998 DOI: 10.1016/j.biortech.2017.01.075] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Rice straw was evaluated as a carbon source for the fungi, Trichoderma reesei and Humicola insolens, to produce enzymes for rice straw hydrolysis. The enzyme activity of T. reesei and H. insolens cultivated in medium containing non-treated rice straw were almost equivalent to the enzyme of T. reesei cultivated in Avicel medium, a form of refined cellulose. The enzyme activity of T. reesei cultivated in medium containing NH4OH-treated rice straw was 4-fold higher than enzyme from cultures grown in Avicel medium. In contrast, H. insolens enzyme from cultures grown in NH4OH-treated rice straw had significantly lower activity compared with non-treated rice straw or Avicel. The combined use of T. reesei and H. insolens enzymes resulted in a significant synergistic enhancement in enzymatic activity. Our data suggest that rice straw is a promising low-cost carbon source for fungal enzyme production for rice straw hydrolysis.
Collapse
Affiliation(s)
- Takashi Kogo
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuki Yoshida
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Keisuke Koganei
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hitoshi Matsumoto
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Taisuke Watanabe
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Jun Ogihara
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Takafumi Kasumi
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
12
|
Jin HX, OuYang XK, Hu ZC. Enhancement of epoxide hydrolase production by 60
Co gamma and UV irradiation mutagenesis of Aspergillus niger
ZJB-09103. Biotechnol Appl Biochem 2016; 64:392-399. [DOI: 10.1002/bab.1502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/14/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Huo-Xi Jin
- Institute of Food and Medicine; Zhejiang Ocean University; Zhoushan People's Republic of China
| | - Xiao-Kun OuYang
- Institute of Food and Medicine; Zhejiang Ocean University; Zhoushan People's Republic of China
| | - Zhong-Ce Hu
- Institute of Bioengineering; Zhejiang University of Technology; Hangzhou People's Republic of China
| |
Collapse
|
13
|
Iwakuma H, Koyama Y, Miyachi A, Nasukawa M, Matsumoto H, Yano S, Ogihara J, Kasumi T. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. Biosci Biotechnol Biochem 2015; 80:486-92. [PMID: 26540299 DOI: 10.1080/09168451.2015.1104236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.
Collapse
Affiliation(s)
- Hidekazu Iwakuma
- a Applied Microbiology and Biotechnology Laboratory , College of Bioresource Sciences, Nihon University , Fujisawa , Japan
| | - Yoshiyuki Koyama
- a Applied Microbiology and Biotechnology Laboratory , College of Bioresource Sciences, Nihon University , Fujisawa , Japan
| | - Ayako Miyachi
- a Applied Microbiology and Biotechnology Laboratory , College of Bioresource Sciences, Nihon University , Fujisawa , Japan
| | - Masashi Nasukawa
- a Applied Microbiology and Biotechnology Laboratory , College of Bioresource Sciences, Nihon University , Fujisawa , Japan
| | - Hitoshi Matsumoto
- a Applied Microbiology and Biotechnology Laboratory , College of Bioresource Sciences, Nihon University , Fujisawa , Japan
| | - Shuntaro Yano
- b Neo-Morgan Laboratory Incorporated , Kawasaki , Japan
| | - Jun Ogihara
- a Applied Microbiology and Biotechnology Laboratory , College of Bioresource Sciences, Nihon University , Fujisawa , Japan
| | - Takafumi Kasumi
- a Applied Microbiology and Biotechnology Laboratory , College of Bioresource Sciences, Nihon University , Fujisawa , Japan
| |
Collapse
|
14
|
Koyama Y, Zhao R, Ike M, Tokuyasu K. Candida utilis assimilates oligomeric sugars in rice straw hydrolysate via the Calcium-Capturing-by-Carbonation (CaCCO) process for glutathione- and cell-biomass production. BIORESOURCE TECHNOLOGY 2014; 172:413-417. [PMID: 25241674 DOI: 10.1016/j.biortech.2014.08.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Rice-straw hydrolysate (RSH) prepared via the CaCCO (Calcium Capturing by Carbonation) process contains not only monosaccharides but also significant amounts of oligosaccharides. In this study, a glutathione-producing yeast, Candida utilis NBRC 0626, was found to assimilate those oligosaccharides. The yields of reduced glutathione (GSH) and dry cell weight (DCW) per consumed sugars in a medium with RSH after 72h incubation were 10.1mg/g-sugars and 0.49g/g-sugars, respectively. The yields were comparative to those in a medium containing a model monosaccharide mix, suggesting that the assimilated oligosaccharides contribute to additional GSH and DCW production. Glycosyl linkage analysis indicated that the yeast could cleave xylose-, galactose-, and arabinose residues as well as glucose residues at the non-reducing ends. After 72h incubation, 99.1% of the total glucose residues and 84.2% of the total xylose residues in RSH were depleted. Thus the yeast could be applied for efficient utilization of lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Yoshiyuki Koyama
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Rui Zhao
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Masakazu Ike
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Ken Tokuyasu
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
15
|
Xu S, Zhou Z, Du G, Zhou J, Chen J. Efficient transformation of Rhizopus delemar by electroporation of germinated spores. J Microbiol Methods 2014; 103:58-63. [DOI: 10.1016/j.mimet.2014.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 11/17/2022]
|
16
|
Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics 2013; 14:541. [PMID: 24060058 PMCID: PMC3750697 DOI: 10.1186/1471-2164-14-541] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A major part of second generation biofuel production is the enzymatic saccharification of lignocellulosic biomass into fermentable sugars. Many fungi produce enzymes that can saccarify lignocellulose and cocktails from several fungi, including well-studied species such as Trichoderma reesei and Aspergillus niger, are available commercially for this process. Such commercially-available enzyme cocktails are not necessarily representative of the array of enzymes used by the fungi themselves when faced with a complex lignocellulosic material. The global induction of genes in response to exposure of T. reesei to wheat straw was explored using RNA-seq and compared to published RNA-seq data and model of how A. niger senses and responds to wheat straw. RESULTS In T. reesei, levels of transcript that encode known and predicted cell-wall degrading enzymes were very high after 24h exposure to straw (approximately 13% of the total mRNA) but were less than recorded in A. niger (approximately 19% of the total mRNA). Closer analysis revealed that enzymes from the same glycoside hydrolase families but different carbohydrate esterase and polysaccharide lyase families were up-regulated in both organisms. Accessory proteins which have been hypothesised to possibly have a role in enhancing carbohydrate deconstruction in A. niger were also uncovered in T. reesei and categories of enzymes induced were in general similar to those in A. niger. Similarly to A. niger, antisense transcripts are present in T. reesei and their expression is regulated by the growth condition. CONCLUSIONS T. reesei uses a similar array of enzymes, for the deconstruction of a solid lignocellulosic substrate, to A. niger. This suggests a conserved strategy towards lignocellulose degradation in both saprobic fungi. This study provides a basis for further analysis and characterisation of genes shown to be highly induced in the presence of a lignocellulosic substrate. The data will help to elucidate the mechanism of solid substrate recognition and subsequent degradation by T. reesei and provide information which could prove useful for efficient production of second generation biofuels.
Collapse
Affiliation(s)
- Laure Ries
- School of Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Steven T Pullan
- School of Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stéphane Delmas
- School of Biology, University of Nottingham, Nottingham NG7 2RD, UK
- Université Pierre et Marie Curie (UPMC, Université Paris 06), Sorbonne Universités, UMR 7138, Systématique Adapation et Évolution, 75005 Paris, France
| | - Sunir Malla
- Deep Seq, Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Martin J Blythe
- Deep Seq, Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - David B Archer
- School of Biology, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
17
|
Wang X, Ike M, Shiroma R, Tokuyasu K, Sakakibara Y. Expression of neutral β-glucosidase from Scytalidium thermophilum in Candida glabrata for ethanol production from alkaline-pretreated rice straw. J Biosci Bioeng 2013; 116:362-5. [PMID: 23597919 DOI: 10.1016/j.jbiosc.2013.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/22/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
We successfully expressed the neutral β-glucosidase (BGL4) from Scytalidium thermophilum in the thermotolerant yeast Candida glabrata. Compared to the strain expressing Aspergillus acidic β-glucosidase (BGL1), the BGL4-expressing strain showed a higher cellobiose fermentation ability at pH 6.0 and 40°C, leading to a higher ethanol production from alkaline-pretreated rice straw.
Collapse
Affiliation(s)
- Xiaohui Wang
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|
18
|
Hideno A, Inoue H, Fujii T, Yano S, Tsukahara K, Murakami K, Yunokawa H, Sawayama S. High-coverage gene expression profiling analysis of the cellulase-producing fungus Acremonium cellulolyticus cultured using different carbon sources. Appl Microbiol Biotechnol 2013; 97:5483-92. [DOI: 10.1007/s00253-013-4689-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
|
19
|
Controlled preparation of cellulases with xylanolytic enzymes from Trichoderma reesei (Hypocrea jecorina) by continuous-feed cultivation using soluble sugars. Biosci Biotechnol Biochem 2013; 77:161-6. [PMID: 23291768 DOI: 10.1271/bbb.120696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to develop an efficient production system for cellulase preparation with a high level of xylanolytic enzymes using soluble carbon sources. When xylose and arabinose were simultaneously fed with glucose and cellobiose, a mutant of Trichoderma reesei, M3-1, showed sufficient levels of cellulolytic and xylanolytic activities, indicating that xylose and arabinose are good inducers for the production of xylanolytic enzymes. In a continuous feeding experiment using glucose/cellobiose and glucose/xylose/cellobiose, cellulase preparations with various levels of xylanolytic enzymes were obtained by altering the feeding solutions and the timing of their addition. The volumetric production rates for xylanolytic activities at the glucose/xylose/cellobiose-feeding phase were significantly higher than at the glucose/cellobiose-feeding phase, while those for cellulolytic activities were comparable under the two conditions. Thus the composition of the enzyme preparation produced by the mutant was readily controlled by varying the inducers and the pattern of their addition, facilitating the tailored production of enzymes in a diversity of bioconversion processes.
Collapse
|
20
|
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012; 109:1083-7. [PMID: 22095526 DOI: 10.1002/bit.24370] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/18/2011] [Accepted: 10/31/2011] [Indexed: 11/11/2022]
Abstract
With the aim of understanding the contribution of enzymes to the cost of lignocellulosic biofuels, we constructed a techno-economic model for the production of fungal cellulases. We found that the cost of producing enzymes was much higher than that commonly assumed in the literature. For example, the cost contribution of enzymes to ethanol produced by the conversion of corn stover was found to be $0.68/gal if the sugars in the biomass could be converted at maximum theoretical yields, and $1.47/gal if the yields were based on saccharification and fermentation yields that have been previously reported in the scientific literature. We performed a sensitivity analysis to study the effect of feedstock prices and fermentation times on the cost contribution of enzymes to ethanol price. We conclude that a significant effort is still required to lower the contribution of enzymes to biofuel production costs.
Collapse
|
21
|
Biochemical and Proteomic Characterization of a Novel Extracellular β-Glucosidase from Trichoderma citrinoviride. Mol Biotechnol 2012; 53:289-99. [DOI: 10.1007/s12033-012-9526-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Jung YR, Shin HY, Yoo HY, Um Y, Kim SW. Production of cellulases and β-glucosidase in Trichoderma reesei mutated by proton beam irradiation. KOREAN J CHEM ENG 2012. [DOI: 10.1007/s11814-011-0272-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|