1
|
Saxena A, Hussain A, Parveen F, Ashfaque M. Current status of metabolic engineering of microorganisms for bioethanol production by effective utilization of pentose sugars of lignocellulosic biomass. Microbiol Res 2023; 276:127478. [PMID: 37625339 DOI: 10.1016/j.micres.2023.127478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Lignocellulosic biomass, consisting of homo- and heteropolymeric sugars, acts as a substrate for the generation of valuable biochemicals and biomaterials. The readily available hexoses are easily utilized by microbes due to the presence of transporters and native metabolic pathways. But, utilization of pentose sugar viz., xylose and arabinose are still challenging due to several reasons including (i) the absence of the particular native pathways and transporters, (ii) the presence of inhibitors, and (iii) lower uptake of pentose sugars. These challenges can be overcome by manipulating metabolic pathways/glycosidic enzymes cascade by using genetic engineering tools involving inverse-metabolic engineering, ex-vivo isomerization, Adaptive Laboratory Evolution, Directed Metabolic Engineering, etc. Metabolic engineering of bacteria and fungi for the utilization of pentose sugars for bioethanol production is the focus area of research in the current decade. This review outlines current approaches to biofuel development and strategies involved in the metabolic engineering of different microbes that can uptake pentose for bioethanol production.
Collapse
Affiliation(s)
- Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
2
|
Yu F, Zhao X, Zhou J, Lu W, Li J, Chen J, Du G. Biosynthesis of High-Active Hemoproteins by the Efficient Heme-Supply Pichia Pastoris Chassis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302826. [PMID: 37649147 PMCID: PMC10602571 DOI: 10.1002/advs.202302826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Indexed: 09/01/2023]
Abstract
Microbial synthesis of valuable hemoproteins has become a popular research topic, and Pichia pastoris is a versatile platform for the industrial production of recombinant proteins. However, the inadequate supply of heme limits the synthesis of high-active hemoproteins. Here a strategy for enhancing intracellular heme biosynthesis to improve the titers and functional activities of hemoproteins is reported. After selecting a suitable expressional strategy for globins, the efficient heme-supply P. pastoris chassis is established by removing the spatial segregation during heme biosynthesis, optimizing precursor synthesis, assembling rate-limiting enzymes using protein scaffolds, and inhibiting heme degradation. This robust chassis produces several highly active hemoproteins, including porcine myoglobin, soy hemoglobin, Vitreoscilla hemoglobin, and P450-BM3, which can be used in the development of artificial meat, high-cell-density fermentation, and whole-cell catalytic synthesis of high-value-added compounds. Furthermore, the engineered chassis strain has great potential for producing and applying other hemoproteins with high activities in various fields.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Xinrui Zhao
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jingwen Zhou
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Wei Lu
- Dongsheng Biotech Co., Ltd.91–92 Junmin RoadTaixingJiangsu225432China
| | - Jianghua Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jian Chen
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Guocheng Du
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| |
Collapse
|
3
|
Guo Y, Liu G, Ning Y, Li X, Hu S, Zhao J, Qu Y. Production of cellulosic ethanol and value-added products from corn fiber. BIORESOUR BIOPROCESS 2022; 9:81. [PMID: 38647596 PMCID: PMC10991675 DOI: 10.1186/s40643-022-00573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Corn fiber, a by-product from the corn processing industry, mainly composed of residual starch, cellulose, and hemicelluloses, is a promising raw material for producing cellulosic ethanol and value-added products due to its abundant reserves and low costs of collection and transportation. Now, several technologies for the production of cellulosic ethanol from corn fiber have been reported, such as the D3MAX process, Cellerate™ process, etc., and part of the technologies have also been used in industrial production in the United States. The ethanol yields range from 64 to 91% of the theoretical maximum, depending on different production processes. Because of the multicomponent of corn fiber and the complex structures highly substituted by a variety of side chains in hemicelluloses of corn fiber, however, there are many challenges in cellulosic ethanol production from corn fiber, such as the low conversion of hemicelluloses to fermentable sugars in enzymatic hydrolysis, high production of inhibitors during pretreatment, etc. Some technologies, including an effective pretreatment process for minimizing inhibitors production and maximizing fermentable sugars recovery, production of enzyme preparations with suitable protein compositions, and the engineering of microorganisms capable of fermenting hexose and pentose in hydrolysates and inhibitors tolerance, etc., need to be further developed. The process integration of cellulosic ethanol and value-added products also needs to be developed to improve the economic benefits of the whole process. This review summarizes the status and progresses of cellulosic ethanol production and potential value-added products from corn fiber and presents some challenges in this field at present.
Collapse
Affiliation(s)
- Yingjie Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Yanchun Ning
- Research Institute of Jilin Petrochemical Company, PetroChina, No. 27, Zunyidong Road, Jilin City, 132021, Jilin, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Shiyang Hu
- Research Institute of Jilin Petrochemical Company, PetroChina, No. 27, Zunyidong Road, Jilin City, 132021, Jilin, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| |
Collapse
|
4
|
Webster DA, Dikshit KL, Pagilla KR, Stark BC. The Discovery of Vitreoscilla Hemoglobin and Early Studies on Its Biochemical Functions, the Control of Its Expression, and Its Use in Practical Applications. Microorganisms 2021; 9:1637. [PMID: 34442716 PMCID: PMC8398370 DOI: 10.3390/microorganisms9081637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
In 1986, the surprising identification of a hemoglobin (VHb) in the bacterium Vitreoscilla greatly extended the range of taxa in which this oxygen binding protein functions. Elucidation of many of its biochemical properties and relation to overall cell physiology, as well as the sequence of the gene encoding it and aspects of control of its expression were determined in the following years. In addition, during the early years following its discovery, strategies were developed to use its expression in heterologous microbial hosts to enhance processes of practical usefulness. The VHb discovery also served as the foundation for what has become the fascinatingly rich field of bacterial hemoglobins. VHb's position as the first known bacterial hemoglobin and its extensive use in biotechnological applications, which continue today, make a review of the early studies of its properties and uses an appropriate and interesting topic thirty-five years after its discovery.
Collapse
Affiliation(s)
- Dale A. Webster
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Kanak L. Dikshit
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Krishna R. Pagilla
- Department of Civil and Environmental Engineering, University of Nevada at Reno, Reno, NV 89557, USA;
| | - Benjamin C. Stark
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA;
| |
Collapse
|
5
|
Yu F, Zhao X, Wang Z, Liu L, Yi L, Zhou J, Li J, Chen J, Du G. Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin. Microorganisms 2021; 9:microorganisms9071455. [PMID: 34361891 PMCID: PMC8306070 DOI: 10.3390/microorganisms9071455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vitreoscilla hemoglobin (VHb), the first discovered bacterial hemoglobin, is a soluble heme-binding protein with a faster rate of oxygen dissociation. Since it can enhance cell growth, product synthesis and stress tolerance, VHb has been widely applied in the field of metabolic engineering for microorganisms, plants, and animals. Especially under oxygen-limited conditions, VHb can interact with terminal oxidase to deliver enough oxygen to achieve high-cell-density fermentation. In recent years, with the development of bioinformatics and synthetic biology, several novel physicochemical properties and metabolic regulatory effects of VHb have been discovered and numerous strategies have been utilized to enhance the expression level of VHb in various hosts, which greatly promotes its applications in biotechnology. Thus, in this review, the new information regarding structure, function and expressional tactics for VHb is summarized to understand its latest applications and pave a new way for the future improvement of biosynthesis for other products.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (X.Z.); (G.D.)
| | - Ziwei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Luyao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Lingfeng Yi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (X.Z.); (G.D.)
| |
Collapse
|
6
|
Zhao X, Zhou J, Du G, Chen J. Recent Advances in the Microbial Synthesis of Hemoglobin. Trends Biotechnol 2020; 39:286-297. [PMID: 32912649 DOI: 10.1016/j.tibtech.2020.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023]
Abstract
Hemoglobin is a cofactor-containing protein with heme that plays important roles in transporting and storing oxygen. Hemoglobins have been widely applied as acellular oxygen carriers, bioavailable iron-supplying agents, and food-grade coloring and flavoring agents. To meet increasing demands and overcome the drawbacks of chemical extraction, the biosynthesis of hemoglobin has become an attractive alternative. Several hemoglobins have recently been synthesized by various microorganisms through metabolic engineering and synthetic biology. In this review, we summarize the novel strategies that have been used to biosynthesize hemoglobin. These strategies can also serve as references for producing other heme-binding proteins.
Collapse
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Pasotti L, De Marchi D, Casanova M, Massaiu I, Bellato M, Cusella De Angelis MG, Calvio C, Magni P. Engineering endogenous fermentative routes in ethanologenic Escherichia coli W for bioethanol production from concentrated whey permeate. N Biotechnol 2020; 57:55-66. [DOI: 10.1016/j.nbt.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 12/01/2022]
|
8
|
Banerjee S, Mishra G, Roy A. Metabolic Engineering of Bacteria for Renewable Bioethanol Production from Cellulosic Biomass. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis-muconic acid by oxygen-sensitive enoate reductase. J Biotechnol 2018; 280:49-54. [DOI: 10.1016/j.jbiotec.2018.06.304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022]
|
10
|
Sar T, Seker G, Erman AG, Stark BC, Yesilcimen Akbas M. Repeated batch fermentation of immobilized E. coli expressing Vitreoscilla hemoglobin for long-term use. Bioengineered 2017; 8:651-660. [PMID: 28394725 PMCID: PMC5639835 DOI: 10.1080/21655979.2017.1303024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 10/19/2022] Open
Abstract
This study describes an efficient and reusable process for ethanol production from medium containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing (TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains were investigated regarding their ethanol production capacities over the course of 15 successive 96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production, with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15 or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8 successive batch fermentations; again strain TS3 maintained a substantial advantage over strain FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long periods of time and large numbers of repeated batch fermentations, including, as in this case, using media with food processing wastes as the carbon source.
Collapse
Affiliation(s)
- Taner Sar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Gamze Seker
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ayse Gokce Erman
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Benjamin C. Stark
- Biology Department, Illinois Institute of Technology, Chicago, IL, USA
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
- Institute of Biotechnology, Gebze Technical University, Gebze-Kocaeli, Turkey
| |
Collapse
|
11
|
Sar T, Stark BC, Yesilcimen Akbas M. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered 2017; 8:171-181. [PMID: 27579556 PMCID: PMC5398575 DOI: 10.1080/21655979.2016.1218581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022] Open
Abstract
Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48-96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli.
Collapse
Affiliation(s)
- Taner Sar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Benjamin C. Stark
- Biology Department, Illinois Institute of Technology, Chicago, IL, USA
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| |
Collapse
|
12
|
Akbas MY, Stark BC. Recent trends in bioethanol production from food processing byproducts. J Ind Microbiol Biotechnol 2016; 43:1593-1609. [PMID: 27565674 DOI: 10.1007/s10295-016-1821-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/30/2016] [Indexed: 12/19/2022]
Abstract
The widespread use of corn starch and sugarcane as sources of sugar for the production of ethanol via fermentation may negatively impact the use of farmland for production of food. Thus, alternative sources of fermentable sugars, particularly from lignocellulosic sources, have been extensively investigated. Another source of fermentable sugars with substantial potential for ethanol production is the waste from the food growing and processing industry. Reviewed here is the use of waste from potato processing, molasses from processing of sugar beets into sugar, whey from cheese production, byproducts of rice and coffee bean processing, and other food processing wastes as sugar sources for fermentation to ethanol. Specific topics discussed include the organisms used for fermentation, strategies, such as co-culturing and cell immobilization, used to improve the fermentation process, and the use of genetic engineering to improve the performance of ethanol producing fermenters.
Collapse
Affiliation(s)
- Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Kocaeli, 41400, Turkey. .,Institute of Biotechnology, Gebze Technical University, Gebze-Kocaeli, Kocaeli, 41400, Turkey.
| | - Benjamin C Stark
- Biology Department, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
13
|
Sumer F, Stark BC, Yesilcimen Akbas M. Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin. ENVIRONMENTAL TECHNOLOGY 2015; 36:2319-2327. [PMID: 25766084 DOI: 10.1080/09593330.2015.1026846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Engineering of ethanologenic E. coli to express the haemoglobin (VHb) from the bacterium Vitreoscilla has been shown to enhance ethanol production by fermentation of pure sugars, sugars from hydrolysis of lignocellulose, components of whey, and sugars from wastewater produced during potato processing. Here, these studies were extended to see whether the same effect could be seen when a mixture of waste materials from processing of potatoes and corn into potato and corn chips were used as sugar sources. Consistent increases in ethanol production coincident with VHb expression were seen in shake flasks at both low aeration and high aeration conditions. The ethanol increases were due almost entirely to increases in the amount of ethanol produced per unit of cell mass. The VHb strategy for increasing fermentation to ethanol (and perhaps other valuable fermentation products) may be of general use, particularly regarding conversion of otherwise discarded materials into valuable commodities.
Collapse
Affiliation(s)
- Fatma Sumer
- a Department of Molecular Biology and Genetics , Gebze Technical University , Gebze , Kocaeli 41400 , Turkey
| | | | | |
Collapse
|
14
|
Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 2015; 99:1627-36. [PMID: 25575886 DOI: 10.1007/s00253-014-6350-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Since its first use in 1990 to enhance production of α-amylase in E. coli, engineering of heterologous hosts to express the hemoglobin from the bacterium Vitreoscilla (VHb) has become a widely used strategy to enhance production of a variety of bioproducts, stimulate bioremediation, and increase growth and survival of engineered organisms. The hosts have included a variety of bacteria, yeast, fungi, higher plants, and even animals. The beneficial effects of VHb expression are presumably the result of one or more of its activities. The available evidence indicates that these include oxygen binding and delivery to the respiratory chain and oxygenases, protection against reactive oxygen species, and control of gene expression. In the past 4 to 5 years, the use of this "VHb technology" has continued in a variety of biotechnological applications in a wide range of organisms. These include enhancement of production of an ever wider array of bioproducts, new applications in bioremediation, a possible role in enhancing aerobic waste water treatment, and the potential to enhance growth and survival of both plants and animals of economic importance.
Collapse
|
15
|
Suen YL, Tang H, Huang J, Chen F. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12392-12398. [PMID: 25420960 DOI: 10.1021/jf5048578] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dissolved oxygen is a critical factor for heterotrophic cell growth and metabolite production. The aim of this study was to investigate the effects of an oxygen-involved protein on cell growth and fatty acid and astaxanthin production in the biologically important thraustochytrid Aurantiochytrium sp. The hemoglobin of the Vitreoscilla stercoraria (VHb) gene was fused upstream with a zeocin resistance gene (ble) and driven by the Aurantiochytrium tubulin promoter. The expression construct was introduced into two strains of Aurantiochytrium sp. by electroporation. Transgenic Aurantiochytrium sp. strains MP4 and SK4 expressing the heterologous VHb achieved significantly higher maximum biomass than their corresponding controls in microaerobic conditions. Furthermore, the transformants of Aurantiochytrium sp. SK4 produced 44% higher total fatty acid and 9-fold higher astaxanthin contents than the wild type control in aerobic conditions. The present study highlights the biotechnological application of VHb in high-cell density fermentation for enhanced biomass production as well as high-value metabolites.
Collapse
Affiliation(s)
- Yung Lee Suen
- School of Biological Sciences, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|
16
|
Hillmann F, Linde J, Beckmann N, Cyrulies M, Strassburger M, Heinekamp T, Haas H, Guthke R, Kniemeyer O, Brakhage AA. The novel globin protein fungoglobin is involved in low oxygen adaptation of Aspergillus fumigatus. Mol Microbiol 2014; 93:539-53. [PMID: 24948085 DOI: 10.1111/mmi.12679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 12/29/2022]
Abstract
The human pathogenic fungus Aspergillus fumigatus normally lives as a soil saprophyte. Its environment includes poorly oxygenated substrates that also occur during tissue invasive growth of the fungus in the human host. Up to now, few cellular factors have been identified that allow the fungus to efficiently adapt its energy metabolism to hypoxia. Here, we cultivated A. fumigatus in an O2 -controlled fermenter and analysed its responses to O2 limitation on a minute timescale. Transcriptome sequencing revealed several genes displaying a rapid and highly dynamic regulation. One of these genes was analysed in detail and found to encode fungoglobin, a previously uncharacterized member of the sensor globin protein family widely conserved in filamentous fungi. Besides low O2 , iron limitation also induced transcription, but regulation was not entirely dependent on the two major transcription factors involved in adaptation to iron starvation and hypoxia, HapX and SrbA respectively. The protein was identified as a functional haemoglobin, as binding of this cofactor was detected for the recombinant protein. Gene deletion in A. fumigatus confirmed that haem-binding fungoglobins are important for growth in microaerobic environments with O2 levels far lower than in hypoxic human tissue.
Collapse
Affiliation(s)
- Falk Hillmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Akbas MY, Sar T, Ozcelik B. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by "Vitreoscilla hemoglobin expressing" Escherichia coli. Biosci Biotechnol Biochem 2014; 78:687-94. [PMID: 25036968 DOI: 10.1080/09168451.2014.896734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This work investigated the improvement of ethanol production by engineered ethanologenic Escherichia coli to express the hemoglobin from the bacterium Vitreoscilla (VHb). Ethanologenic E. coli strain FBR5 and FBR5 transformed with the VHb gene in two constructs (strains TS3 and TS4) were grown in cheese whey (CW) medium at small and large scales, at both high and low aeration, or with whey powder (WP) or sugar beet molasses hydrolysate (SBMH) media at large scale and low aeration. Culture pH, cell growth, VHb levels, and ethanol production were evaluated after 48 h. VHb expression in TS3 and TS4 enhanced their ethanol production in CW (21-419%), in WP (17-362%), or in SBMH (48-118%) media. This work extends the findings that "VHb technology" may be useful for improving the production of ethanol from waste and byproducts of various sources.
Collapse
Affiliation(s)
- Meltem Yesilcimen Akbas
- a Department of Molecular Biology and Genetics , Gebze Institute of Technology , Gebze , Turkey
| | | | | |
Collapse
|
18
|
Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z. Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production. Biotechnol Adv 2013; 31:1200-23. [DOI: 10.1016/j.biotechadv.2013.02.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/04/2013] [Accepted: 02/25/2013] [Indexed: 12/20/2022]
|
19
|
Umber BJ, Shin HW, Meinardi S, Leu SY, Zaldivar F, Cooper DM, Blake DR. Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood. Clin Transl Med 2013; 2:13. [PMID: 23842518 PMCID: PMC3716923 DOI: 10.1186/2001-1326-2-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The gaseous headspace above naïve Escherichia Coli (E. coli) cultures and whole human blood inoculated with E. coli were collected and analyzed for the presence of trace gases that may have the potential to be used as novel, non-invasive markers of infectious disease. METHODS The naïve E. coli culture, LB broth, and human whole blood or E. coli inoculated whole blood were incubated in hermetically sealable glass bioreactors at 37°C for 24 hrs. LB broth and whole human blood were used as controls for background volatile organic compounds (VOCs). The headspace gases were collected after incubation and analyzed using a gas chromatographic system with multiple column/detector combinations. RESULTS Six VOCs were observed to be produced by E. coli-infected whole blood while there existed nearly zero to relatively negligible amounts of these gases in the whole blood alone, LB broth, or E. coli-inoculated LB broth. These VOCs included dimethyl sulfide (DMS), carbon disulfide (CS2), ethanol, acetaldehyde, methyl butanoate, and an unidentified gas S. In contrast, there were several VOCs significantly elevated in the headspace above the E. coli in LB broth, but not present in the E. coli/blood mixture. These VOCs included dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), methyl propanoate, 1-propanol, methylcyclohexane, and unidentified gases R2 and Q. CONCLUSIONS This study demonstrates 1) that cultivated E. coli in LB broth produce distinct gas profiles, 2) for the first time, the ability to modify E. coli-specific gas profiles by the addition of whole human blood, and 3) that E. coli-human whole blood interactions present different gas emission profiles that have the potential to be used as non-invasive volatile biomarkers of E. coli infection.
Collapse
Affiliation(s)
- Brandon J Umber
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Hye-Won Shin
- Department of Pediatrics, University of California, Irvine, CA 92697, USA ; Institute for Clinical and Translational Sciences, University of California, Irvine, CA 92697, USA
| | - Simone Meinardi
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Szu-Yun Leu
- Department of Pediatrics, University of California, Irvine, CA 92697, USA ; Institute for Clinical and Translational Sciences, University of California, Irvine, CA 92697, USA
| | - Frank Zaldivar
- Department of Pediatrics, University of California, Irvine, CA 92697, USA ; Institute for Clinical and Translational Sciences, University of California, Irvine, CA 92697, USA
| | - Dan M Cooper
- Department of Pediatrics, University of California, Irvine, CA 92697, USA ; Institute for Clinical and Translational Sciences, University of California, Irvine, CA 92697, USA
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
21
|
Stark BC, Dikshit KL, Pagilla KR. The Biochemistry of Vitreoscilla hemoglobin. Comput Struct Biotechnol J 2012; 3:e201210002. [PMID: 24688662 PMCID: PMC3962134 DOI: 10.5936/csbj.201210002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/17/2012] [Indexed: 01/17/2023] Open
Abstract
The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery) in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated.
Collapse
Affiliation(s)
- Benjamin C Stark
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago IL 60616, USA
| | - Kanak L Dikshit
- Institute of Microbial Technology, Sec-39a, Chandigarh, 160036, India
| | - Krishna R Pagilla
- Department of Civil and Architectural Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| |
Collapse
|
22
|
Abanoz K, Stark B, Akbas M. Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli
using Vitreoscilla
haemoglobin. Lett Appl Microbiol 2012; 55:436-43. [DOI: 10.1111/lam.12000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Affiliation(s)
- K. Abanoz
- Department of Molecular Biology and Genetics; Gebze Institute of Technology; Gebze-Kocaeli Turkey
| | - B.C. Stark
- Biology Division, Department of Biological and Chemical Sciences; Illinois Institute of Technology; Chicago IL USA
| | - M.Y. Akbas
- Department of Molecular Biology and Genetics; Gebze Institute of Technology; Gebze-Kocaeli Turkey
| |
Collapse
|
23
|
Saha B, Cotta MA. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5. Bioengineered 2012; 3:197-202. [PMID: 22705843 DOI: 10.4161/bioe.19874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lignocellulosic biomass, upon pretreatment and enzymatic hydrolysis, generates a mixture of hexose and pentose sugars such as glucose, xylose, arabinose and galactose. While Escherichia coli utilizes all these sugars it lacks the ability to produce ethanol from them. Recombinant ethanologenic E. coli strains have been created with a goal to produce ethanol from both hexose and pentose sugars. Herein, we review the current state of the art on the production of ethanol from lignocellulosic hydrolyzates by an ethanologenic recombinant E. coli strain (FBR5). The bacterium is stable without antibiotics and can tolerate ethanol up to 50 gL(-1). It produces up to 45 g ethanol per L and has the potential to be used for industrial production of ethanol from lignocellulosic hydrolyzates.
Collapse
Affiliation(s)
- Badal Saha
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, USA.
| | | |
Collapse
|
24
|
Nieves IU, Geddes CC, Mullinnix MT, Hoffman RW, Tong Z, Castro E, Shanmugam KT, Ingram LO. Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. BIORESOURCE TECHNOLOGY 2011; 102:6959-65. [PMID: 21531547 DOI: 10.1016/j.biortech.2011.04.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 05/23/2023]
Abstract
Microaeration (injecting air into the headspace) improved the fermentation of hemicellulose hydrolysates obtained from the phosphoric acid pretreatment of sugarcane bagasse at 170°C for 10 min. In addition, with 10% slurries of phosphoric acid pretreated bagasse (180°C, 10 min), air injection into the headspace promoted xylose utilization and increased ethanol yields from 0.16 to 0.20 g ethanol/g bagasse dry weight using a liquefaction plus simultaneous saccharification and co-fermentation process (L+SScF). This process was scaled up to 80 L using slurries of acid pretreated bagasse (96 h incubation; 0.6L of air/min into the headspace) with ethanol yields of 312-347 L (82-92 gal) per tone (dry matter), corresponding to 0.25 and 0.27 g/g bagasse (dry weight). Injection of small amounts of air into the headspace may provide a convenient alternative to subsurface sparging that avoids problems of foaming, sparger hygiene, flotation of particulates, and phase separation.
Collapse
Affiliation(s)
- I U Nieves
- Department of Microbiology & Cell Science, University of Florida, Box 110700, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Stark BC, Dikshit KL, Pagilla KR. Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla. Biotechnol Lett 2011; 33:1705-14. [DOI: 10.1007/s10529-011-0621-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/08/2011] [Indexed: 11/24/2022]
|
26
|
Horng YT, Chien CC, Wei YH, Chen SY, Lan JW, Sun YM, Soo PC. Functional cis-expression of phaCAB genes for poly(3-hydroxybutyrate) production by Escherichia coli. Lett Appl Microbiol 2011; 52:475-83. [DOI: 10.1111/j.1472-765x.2011.03029.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Frey AD, Shepherd M, Jokipii-Lukkari S, Häggman H, Kallio PT. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 2011; 58:81-139. [PMID: 21722792 DOI: 10.1016/b978-0-12-381043-4.00003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive studies have revealed that large-scale, high-cell density bioreactor cultivations have significant impact on metabolic networks of oxygen-requiring production organisms. Oxygen transfer problems associated with fluid dynamics and inefficient mixing efficiencies result in oxygen gradients, which lead to reduced performance of the bioprocess, decreased product yields, and increased production costs. These problems can be partially alleviated by improving bioreactor configuration and setting, but significant improvements have been achieved by metabolic engineering methods, especially by heterologously expressing Vitreoscilla hemoglobin (VHb). Vast numbers of studies have been accumulating during the past 20 years showing the applicability of VHb to improve growth and product yields in a variety of industrially significant prokaryotic and eukaryotic hosts. The global view on the metabolism of globin-expressing Escherichia coli cells depicts increased energy generation, higher oxygen uptake rates, and a decrease in fermentative by-product excretion. Transcriptome and metabolic flux analysis clearly demonstrate the multidimensional influence of heterologous VHb on the expression of stationary phase-specific genes and on the regulation of cellular metabolic networks. The exact biochemical mechanisms by which VHb is able to improve the oxygen-limited growth remain poorly understood. The suggested mechanisms propose either the delivery of oxygen to the respiratory chain or the detoxification of reactive nitrogen species for the protection of cytochrome activity. The expression of VHb in E. coli bioreactor cultures is likely to assist bacterial growth through providing an increase in available intracellular oxygen, although to fully understand the exact role of VHb in vivo, further analysis will be required.
Collapse
|
28
|
Zhu H, Sun S, Zhang S. Enhanced production of total flavones and exopolysaccharides viaVitreoscilla hemoglobin biosynthesis in Phellinus igniarius. BIORESOURCE TECHNOLOGY 2011; 102:1747-1751. [PMID: 20855202 DOI: 10.1016/j.biortech.2010.08.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
The Vitreoscilla hemoglobin gene (vgb) was expressed by chromosomal integration in Phellinus igniarius to alleviate oxygen limitation and improve metabolites yields during submerged fermentation. Firstly, an expression vector containing vgb was constructed, and transformed into protoplast from P. igniarius. Carbon monoxide difference spectrum absorbance assay showed that vgb was successfully expressed and had biological activity. In shake flasks, the vgb expression enhanced dry mycelial weight 1.32-fold and increased total flavones and exopolysaccharides production 1.78- and 1.33-fold, respectively. When P. igniarius (vgb+) and P. igniarius (vgb-) strains were cultured in bioreactor, Vitreoscilla hemoglobin in P. igniarius promoted the mycelia growth from 5.40 to 10.90 g/L and stimulated total flavones and exopolysaccharides synthesis; their maximum productions reached to 11.43 and 1.33 g/L. Furthermore, compared to P. igniarius (vgb-), the acetic acid accumulation in P. igniarius (vgb+) cultures decreased from 1.54 and 1.78 to 1.19 and 1.27 g/L in flask and bioreactor, respectively.
Collapse
Affiliation(s)
- Hu Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Dongying 257061, PR China.
| | | | | |
Collapse
|