1
|
Nurkolis F, Wiyarta E, Taslim NA, Kurniawan R, Thibault R, Fernandez ML, Yang Y, Han J, Tsopmo A, Mayulu N, Tjandrawinata RR, Tallei TE, Hardinsyah H. Unraveling diabetes complexity through natural products, miRNAs modulation, and future paradigms in precision medicine and global health. Clin Nutr ESPEN 2024; 63:283-293. [PMID: 38972039 DOI: 10.1016/j.clnesp.2024.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND AIMS The challenge posed by diabetes necessitates a paradigm shift from conventional diagnostic approaches focusing on glucose and lipid levels to the transformative realm of precision medicine. This approach, leveraging advancements in genomics and proteomics, acknowledges the individualistic genetic variations, dietary preferences, and environmental exposures in diabetes management. The study comprehensively analyzes the evolving diabetes landscape, emphasizing the pivotal role of genomics, proteomics, microRNAs (miRNAs), metabolomics, and bioinformatics. RESULTS Precision medicine revolutionizes diabetes research and treatment by diverging from traditional diagnostic methods, recognizing the heterogeneous nature of the condition. MiRNAs, crucial post-transcriptional gene regulators, emerge as promising therapeutic targets, influencing key facets such as insulin signaling and glucose homeostasis. Metabolomics, an integral component of omics sciences, contributes significantly to diabetes research, elucidating metabolic disruptions, and offering potential biomarkers for early diagnosis and personalized therapies. Bioinformatics unveils dynamic connections between natural substances, miRNAs, and cellular pathways, aiding in the exploration of the intricate molecular terrain in diabetes. The study underscores the imperative for experimental validation in natural product-based diabetes therapy, emphasizing the need for in vitro and in vivo studies leading to clinical trials for assessing effectiveness, safety, and tolerability in real-world applications. Global cooperation and ethical considerations play a pivotal role in addressing diabetes challenges worldwide, necessitating a multifaceted approach that integrates traditional knowledge, cultural competence, and environmental awareness. CONCLUSIONS The key components of diabetes treatment, including precision medicine, metabolomics, bioinformatics, and experimental validation, converge in future strategies, embodying a holistic paradigm for diabetes care anchored in cutting-edge research and global healthcare accessibility.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia.
| | - Elvan Wiyarta
- Department of Neurology, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo National 13 Hospital, Jakarta 10430, Indonesia
| | | | - Rudy Kurniawan
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Ronan Thibault
- Department of Endocrinology Diabetology and Nutrition, CHU Rennes, Nutrition-Metabolisms-Cancer (NuMeCan) Institute, INSERM, INRAE, Univ Rennes, Rennes, France
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; School of Nutrition and Wellness, University of Arizona, Tucson, AZ 85721, USA
| | - Yuexin Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Chinese Nutrition Society, Beijing 100022, China
| | - Junhua Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, Canada; Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado 95249, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Hardinsyah Hardinsyah
- Division of Applied Nutrition, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, West Java 16680, Indonesia
| |
Collapse
|
2
|
Oaikhena AO, Coker ME, Cyril-Okoh D, Wicaksono WA, Olimi E, Berg G, Okeke IN. The phyllosphere of Nigerian medicinal plants, Euphorbia lateriflora and Ficus thonningii is inhabited by a specific microbiota. Sci Rep 2024; 14:22806. [PMID: 39354019 PMCID: PMC11448504 DOI: 10.1038/s41598-024-68001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/18/2024] [Indexed: 10/03/2024] Open
Abstract
The microbiota of medicinal plants is known to be highly specific and can contribute to medicinal activity. However, the majority of plant species have not yet been studied. Here, we investigated the phyllosphere composition of two common Nigerian medicinal plants, Euphorbia lateriflora and Ficus thonningii, by a polyphasic approach combining analyses of metagenomic DNA and isolates. Microbial abundance estimated via qPCR using specific marker gene primers showed that all leaf samples were densely colonized, with up to 108 per gram of leaf, with higher bacterial and fungal abundance than Archaea. While no statistically significant differences between both plant species were found for abundance, amplicon sequencing of 16S rRNA and ITS genes revealed distinct microbiota compositions. Only seven of the 27 genera isolated were represented on both plants, e.g. dominant Sphingomonas spp., and numerous members of Xanthomonadaceae and Enterobacteriaceae. The most dominant fungal families on both plants were Cladosporiaceae, Mycosphaerellaceae and Trichosphaeriaceae. In addition, 225 plant-specific isolates were identified, with Pseudomonadota and Enterobacteriaceae being dominant. Interestingly, 29 isolates are likely species previously unknown, and 14 of these belong to Burkholderiales. However, a high proportion, 56% and 40% of the isolates from E. lateriflora and F. thonningii, respectively, were characterized as various Escherichia coli. The growth of most of the bacterial isolates was not influenced by extractable secondary metabolites of plants. Our results suggest that a specific and diverse microbial community inhabits the leaves of both E. lateriflora and F. thonningii, including potentially new species and producers of antimicrobials.
Collapse
Affiliation(s)
- Anderson O Oaikhena
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria.
- Department of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Morenike E Coker
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Dorothy Cyril-Okoh
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Wisnu A Wicaksono
- Department of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Expedito Olimi
- Department of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Gabriele Berg
- Department of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Moussa AY. Streptomyces Endophytes in Edible Plants: New Insights into their Chemistry and Health Benefits. Chem Biodivers 2024; 21:e202400888. [PMID: 38884446 DOI: 10.1002/cbdv.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Streptomyces is the largest source of microbial antibiotics with about 50 % of marketed antimicrobial drugs originating from this genus. Endophytic streptomyces are the link between medicinal plants and the microbial world. Endophytic Streptomyces in edible plants were not targeted before despite their uniqueness and importance. In this review, we analyzed the chemical diversity of more than 150 compounds belonging to endophytic Streptomyces chemical classes such as alkaloids, polyketides, peptides, macrolides and terpenes and their biological activities. This analysis showed a dominant antimicrobial effect for most of the isolated compounds and highlighted an underestimated diversity to be studied or repurposed for other biological activities. Return to edible plants use and conducting toxicity studies to rationalize their nutraceutical potential based on their beneficial endophytes is urged. Although there are many studies for non-vertebrates, the nutraceutical potential of these plants is expected to improve the gut microbiota since they are enriched with bioactive compounds from streptomyces species. This is the first review to discuss edible plants associated streptomyces, and we prospect that many studies will follow to unravel the mysterious health benefits of streptomyces in the human microbiome and encourage the revival of a correct lifestyle for the sake of a healthier microbiome.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Postal address, 11566, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
4
|
Nowak A, Majewska M, Marzec-Grządziel A, Ozimek E, Przybyś M, Słomka A, Kutyrieva-Nowak N, Gałązka A, Jaroszuk-Ściseł J. Effect of long-term radish (Raphanus sativus var. sativus) monoculture practice on physiological variability of microorganisms in cultivated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122007. [PMID: 39074428 DOI: 10.1016/j.jenvman.2024.122007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Long-term monoculture may affect soil environment biodiversity. An example of such a plant is radish (Raphanus sativus var. sativus), an economically important crop in Poland, a quick-growing vegetable with intensified harvest throughout the season. The aim of this study was to determine changes in biodiversity of soil under radish cultivation and to compare the research methods applied. The monoculture practice affected soil pH, but the organic carbon content remained stable. 16S RNA-seq analysis revealed changes in soil microbial population, with the dominant phyla Proteobacteria (37.3%), Acidobacteria (19%), and Actinobacteria (16%), and the dominant taxa Gaiella (1.59%), Devosia (1.51%) and Nocardioides (1.43%). These changes have not fully expressed in the number of culturable microorganisms, where only fungal abundance changed significantly. However, the physiological state of microbial cells (λ) indicated that oligotrophs and copiotrophs were in a vegetative (λ > 3.0) state at the beginning of the season and fungi at the end of the year. Changes in the biodiversity of soil microorganisms were visualised using Community Level Physiological Profiling, where an oscillation in Average Well Colour Development (OD560 = 0.78-1.48) was observed in successive months of radish culture, with biodiversity indices (Shannon and Substance richness) remaining similar. The greatest variation in the influence of monoculture practice on soil factors was observed for the soil enzymes activities (for dehydrogenase and peroxidase activities - 0.5 μg TPF/h/g DW and 1.5 μmolPYGL/h/g DW respectively). Alkaline phosphatases predominated among this group of enzymes, and the activity of carbon metabolism enzymes decreased over the season, except for invertases, where an increase in activity of up to 50 μg Glc/h/g DW was observed. All the parameters studied indicated changes in the soil environment. Nevertheless the microbial community remains stable during the whole experiment returning to equilibrium in a quite short time after changing conditions.
Collapse
Affiliation(s)
- Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, 24-100, Puławy, Poland.
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Marcin Przybyś
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research Institute, 24-100, Puławy, Poland.
| | - Anna Słomka
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | | | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, 24-100, Puławy, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
5
|
Qin YY, Gong Y, Kong SY, Wan ZY, Liu JQ, Xing K, Qin S. Aerial signaling by plant-associated Streptomyces setonii WY228 regulates plant growth and enhances salt stress tolerance. Microbiol Res 2024; 286:127823. [PMID: 38959523 DOI: 10.1016/j.micres.2024.127823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.
Collapse
Affiliation(s)
- Yue-Ying Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Su-Yun Kong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhi-Yuan Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jia-Qi Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
6
|
El-Sapagh SH, El-Zawawy NA, Elshobary ME, Alquraishi M, Zabed HM, Nouh HS. Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration. Microb Cell Fact 2024; 23:220. [PMID: 39107838 PMCID: PMC11304630 DOI: 10.1186/s12934-024-02484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shimaa H El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hoda S Nouh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
7
|
Rodríguez M, Cuervo L, Prado‐Alonso L, González‐Moreno MS, Olano C, Méndez C. The role of Streptomyces to achieve the United Nations sustainable development goals. Burning questions in searching for new compounds. Microb Biotechnol 2024; 17:e14541. [PMID: 39096299 PMCID: PMC11297445 DOI: 10.1111/1751-7915.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Affiliation(s)
- Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Lorena Cuervo
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Laura Prado‐Alonso
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - María Soledad González‐Moreno
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
- Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| |
Collapse
|
8
|
Khomampai J, Jeeatid N, Kaeomuangmoon T, Pathom-aree W, Rangseekaew P, Yosen T, Khongdee N, Chromkaew Y. Endophytic actinomycetes promote growth and fruits quality of tomato ( Solanum lycopersicum): an approach for sustainable tomato production. PeerJ 2024; 12:e17725. [PMID: 39006027 PMCID: PMC11246020 DOI: 10.7717/peerj.17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Background Tomato, a fruit with a high vitamin content, is popular for consumption and economically important in Thailand. However, in the past year, the extensive usage of chemicals has significantly decreased tomato yields. Plant Growth-Promoting Rhizobacteria (PGPR) is an alternative that can help improve tomato production system growth and yield quality while using fewer chemicals. The present study aimed to determine whether endophytic actinomycetes promote growth and fruit quality of tomato (Solanum lycopersicum). Methods The experiment was conducted in a net-houses at the Center for Agricultural Resource System Research, Faculty of Agriculture, Chiang Mai University, Chiang Mai province, Thailand. The randomized completely block design (RCBD) was carried out for four treatments with three replications, which was control, inoculation with TGsR-03-04, TGsL-02-05 and TGsR-03-04 with TGsL-02-05 in tomato plant. Isolated Actinomycetes spp. of each treatment was then inoculated into the root zone of tomato seedlings and analyzed by Scanning Electron Microscopy (SEM). The height of tomato plants was measured at 14, 28, 56, and 112 days after transplanting. Final yield and yield quality of tomato was assessed at the maturity phase. Results The SEM result illustrated that the roots of tomato seedlings from all treatments were colonized by endophytic actinomycetes species. This contributed to a significant increase in plant height at 14 days after transplanting (DAT), as found in the TGsR-03-04 treatment (19.40 cm) compared to the control. Besides, all inoculated treatments enhanced tomato yield and yield quality. The highest weight per fruit (47.38 g), fruit length (52.37 mm), vitamin C content (23.30 mg 100 g-1), and lycopene content (145.92 µg g-1) were obtained by inoculation with TGsR-03-04. Moreover, the highest yield (1.47 kg plant-1) was obtained by inoculation with TGsL-02-05. There was no statistically significant difference in the number of fruits per plant, fruit width, brix, and antioxidant activity when various inoculations of endophytic actinomycetes were applied. Therefore, the use of endophytic actinomycetes in tomato cultivation may be an alternative to increase tomato yield and yield quality.
Collapse
Affiliation(s)
- Jeeranan Khomampai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Jeeatid
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Thewin Kaeomuangmoon
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Thanchanok Yosen
- Central Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapon Khongdee
- Department of Highland Agriculture and Natural Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
El Sharkawy M, AL-Huqail AA, Aljuaid AM, Kamal N, Mahmoud E, Omara AED, El-Kader NA, Li J, Mahmoud NN, El Baroudy AA, Ghoneim AM, Ismail SM. Nano-Bioremediation of Arsenic and Its Effect on the Biological Activity and Growth of Maize Plants Grown in Highly Arsenic-Contaminated Soil. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1164. [PMID: 38998769 PMCID: PMC11242945 DOI: 10.3390/nano14131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Arsenic (As)-contaminated soil reduces soil quality and leads to soil degradation, and traditional remediation strategies are expensive or typically produce hazardous by-products that have negative impacts on ecosystems. Therefore, this investigation attempts to assess the impact of As-tolerant bacterial isolates via a bacterial Rhizobim nepotum strain (B1), a bacterial Glutamicibacter halophytocola strain (B2), and MgO-NPs (N) and their combinations on the arsenic content, biological activity, and growth characteristics of maize plants cultivated in highly As-contaminated soil (300 mg As Kg-1). The results indicated that the spectroscopic characterization of MgO-NPs contained functional groups (e.g., Mg-O, OH, and Si-O-Si) and possessed a large surface area. Under As stress, its addition boosted the growth of plants, biomass, and chlorophyll levels while decreasing As uptake. Co-inoculation of R. nepotum and G. halophytocola had the highest significant values for chlorophyll content, soil organic matter (SOM), microbial biomass (MBC), dehydrogenase activity (DHA), and total number of bacteria compared to other treatments, which played an essential role in increasing maize growth. The addition of R. nepotum and G. halophytocola alone or in combination with MgO-NPs significantly decreased As uptake and increased the biological activity and growth characteristics of maize plants cultivated in highly arsenic-contaminated soil. Considering the results of this investigation, the combination of G. halophytocola with MgO-NPs can be used as a nanobioremediation strategy for remediating severely arsenic-contaminated soil and also improving the biological activity and growth parameters of maize plants.
Collapse
Affiliation(s)
- Mahmoud El Sharkawy
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China (J.L.)
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Arwa A. AL-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Alya M. Aljuaid
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 15571, Saudi Arabia
| | - Nourhan Kamal
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Esawy Mahmoud
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Alaa El-Dein Omara
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt;
| | - Nasser Abd El-Kader
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Jian Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China (J.L.)
| | - Nashaat N. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed A. El Baroudy
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Adel M. Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Cairo 12619, Egypt
| | - Sahar Mohamed Ismail
- Soil Physics and Chemistry Department, Desert Research Center, Cairo 11753, Egypt;
| |
Collapse
|
10
|
Diab MK, Mead HM, Ahmad Khedr MM, Abu-Elsaoud AM, El-Shatoury SA. Actinomycetes are a natural resource for sustainable pest control and safeguarding agriculture. Arch Microbiol 2024; 206:268. [PMID: 38762847 DOI: 10.1007/s00203-024-03975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024]
Abstract
Actinomycetes, a diverse group of bacteria with filamentous growth characteristics, have long captivated researchers and biochemists for their prolific production of secondary metabolites. Among the myriad roles played by actinomycete secondary metabolites, their historical significance in the field of biocontrol stands out prominently. The fascinating journey begins with the discovery of antibiotics, where renowned compounds like streptomycin, tetracycline, and erythromycin revolutionized medicine and agriculture. The history of biocontrol traces its roots back to the early twentieth century, when scientists recognized the potential of naturally occurring agents to combat pests and diseases. The emergence of synthetic pesticides in the mid-twentieth century temporarily overshadowed interest in biocontrol. However, with growing environmental concerns and the realization of the negative ecological impacts of chemical pesticides, the pendulum swung back towards exploring sustainable alternatives. Beyond their historical role as antibiotics, actinomycete-produced secondary metabolites encompass a rich repertoire with biopesticide potential. The classification of these compounds based on chemical structure and mode of action is highlighted, demonstrating their versatility against both plant pathogens and insect pests. Additionally, this review provides in-depth insights into how endophytic actinomycete strains play a pivotal role in biocontrol strategies. Case studies elucidate their effectiveness in inhibiting Spodoptera spp. and nematodes through the production of bioactive compounds. By unraveling the multifunctional roles of endophytic actinomycetes, this review contributes compelling narrative knowledge to the field of sustainable agriculture, emphasizing the potential of these microbial allies in crafting effective, environmentally friendly biocontrol strategies for combating agricultural pests.
Collapse
Affiliation(s)
- Mohamed Khaled Diab
- Agricultural Research Center, Pest Physiology Department, Plant Protection Research Institute, Giza, 12311, Egypt.
| | - Hala Mohamed Mead
- Agricultural Research Center, Pest Physiology Department, Plant Protection Research Institute, Giza, 12311, Egypt
| | - Mohamad M Ahmad Khedr
- Agricultural Research Center, Cotton Leafworm Department, Plant Protection Research Institute, Giza, 12311, Egypt
| | | | - Sahar Ahmed El-Shatoury
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
11
|
Tanvir R, Ijaz S, Sajid I, Hasnain S. Multifunctional in vitro, in silico and DFT analyses on antimicrobial BagremycinA biosynthesized by Micromonospora chokoriensis CR3 from Hieracium canadense. Sci Rep 2024; 14:10976. [PMID: 38745055 PMCID: PMC11093986 DOI: 10.1038/s41598-024-61490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Among the actinomycetes in the rare genera, Micromonospora is of great interest since it has been shown to produce novel therapeutic compounds. Particular emphasis is now on its isolation from plants since its population from soil has been extensively explored. The strain CR3 was isolated as an endophyte from the roots of Hieracium canadense, and it was identified as Micromonospora chokoriensis through 16S gene sequencing and phylogenetic analysis. The in-vitro analysis of its extract revealed it to be active against the clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Candida tropicalis (15 mm). No bioactivity was observed against Gram-negative bacteria, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 706003. The Micromonospora chokoriensis CR3 extract was also analyzed through the HPLC-DAD-UV-VIS resident database, and it gave a maximum match factor of 997.334 with the specialized metabolite BagremycinA (BagA). The in-silico analysis indicated that BagA strongly interacted with the active site residues of the sterol 14-α demethylase and thymidylate kinase enzymes, with the lowest binding energies of - 9.7 and - 8.3 kcal/mol, respectively. Furthermore, the normal mode analysis indicated that the interaction between these proteins and BagA was stable. The DFT quantum chemical properties depicted BagA to be reasonably reactive with a HOMO-LUMO gap of (ΔE) of 4.390 eV. BagA also passed the drug-likeness test with a synthetic accessibility score of 2.06, whereas Protox-II classified it as a class V toxicity compound with high LD50 of 2644 mg/kg. The current study reports an endophytic actinomycete, M. chokoriensis, associated with H. canadense producing the bioactive metabolite BagA with promising antimicrobial activity, which can be further modified and developed into a safe antimicrobial drug.
Collapse
Affiliation(s)
- Rabia Tanvir
- Institute of Microbiology (IOM), University of Veterinary and Animal Sciences (UVAS), Lahore, 54000, Punjab, Pakistan.
| | - Saadia Ijaz
- Department of Microbiology and Molecular Genetics, The Women University, Multan, 66000, Punjab, Pakistan
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics (IMMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Punjab, Pakistan
| | - Shahida Hasnain
- Institute of Microbiology and Molecular Genetics (IMMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Punjab, Pakistan
| |
Collapse
|
12
|
Barman D, Dkhar MS. Purification and characterization of moderately thermostable raw-starch digesting α-amylase from endophytic Streptomyces mobaraensis DB13 associated with Costus speciosus. J GEN APPL MICROBIOL 2024; 69:293-300. [PMID: 37635076 DOI: 10.2323/jgam.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Endophytic actinobacteria are known to produce various enzymes with potential industrial applications. Alpha-amylase is an important class of industrial enzyme with a multi-dimensional utility. The present experiment was designed to characterize a moderately thermostable α-amylase producing endophytic Streptomyces mobaraensis DB13 isolated from Costus speciosus (J. Koenig) Sm. The enzyme was purified using 60% ammonium sulphate precipitation, dialysis, and Sephadex G-100 column chromatography. Based on 12% SDS-PAGE, the molecular weight of the purified α-amylase was estimated to be 55 kDa. The maximum α-amylase activity was achieved at pH 7.0, 50°C and it retained 80% of its activity at both pH 7.0 and 8.0 after incubation for 2 h. The α-mylase activity is strongly enhanced by Ca2+, Mg2+, and inhibited by Ba2+. The activity remains stable in the presence of Tween-80, SDS, PMSF, and Triton X-100; however, β-mercaptoethanol, EDTA, and H2O2 reduced the activity. The kinetic parameters Km and Vmax values for this α-amylase were calculated as 2.53 mM and 29.42 U/mL respectively. The α-amylase had the ability to digest various raw starches at a concentration of 10 mg/mL at pH 7.0, 50°C, where maize and rice are the preferred substrates. The digestion starts after 4 h of incubation, which reaches maximum after 48 h of incubation. These results suggest that S. mobaraensis DB13 is a potential source of moderately thermostable α-amylase enzyme, that effciently hydrolyzes raw starch. It suggesting that this α-amylase is a promising candidate to be use for industrial purposes.
Collapse
Affiliation(s)
- Dina Barman
- Microbial Ecology Laboratory, Centre for Advanced Studies in Botany, Department of Botany
- Department of Microbiology, The Assam Royal Global University
| | - Mamtaj S Dkhar
- Microbial Ecology Laboratory, Centre for Advanced Studies in Botany, Department of Botany
| |
Collapse
|
13
|
Khilyas IV, Markelova MI, Valeeva LR, Ivoilova TM, Shagimardanova E, Laikov AV, Elistratova AA, Berkutova ES, Lochnit G, Sharipova MR. Genomic insights and anti-phytopathogenic potential of siderophore metabolome of endolithic Nocardia mangyaensis NH1. Sci Rep 2024; 14:5676. [PMID: 38453942 PMCID: PMC10920908 DOI: 10.1038/s41598-024-54095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.
Collapse
Affiliation(s)
- Irina V Khilyas
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.
| | - Maria I Markelova
- Laboratory of Multiomics Technologies of Living Systems, Institute Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Liia R Valeeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Tatiana M Ivoilova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Elena Shagimardanova
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russian Federation
| | - Alexander V Laikov
- Laboratory of Multiomics Technologies of Living Systems, Institute Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Anna A Elistratova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Ekaterina S Berkutova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| |
Collapse
|
14
|
Chhetri G, Kim MJ, Kim I, Tran DVH, Kim YW, Kim HW, Seo T. Streptomyces tagetis sp. nov., a chromomycin producing bacteria isolated from the roots of Tagetes patula. Front Microbiol 2024; 15:1361583. [PMID: 38495511 PMCID: PMC10940327 DOI: 10.3389/fmicb.2024.1361583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
A novel halotolerant actinobacterium, designated as RG38T, capable of producing black extracellular melanin pigment on SP2 agar, was isolated from the roots of Tagetes patula. Comparative analysis of the 16S rRNA gene sequence revealed the highest similarity to Streptomyces collinus NBRC 12759T (99.3%). Phylogenetic analysis showed that strain RG38T clustered within the genus Streptomyces forming a monophyletic cluster with its close relatives. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and amino-acid identity (AAI) values between strain RG38T and related species within the genus Streptomyces were below the standard threshold for prokaryotic species delineation. The DNA G + C content of the strain RG38T was determined to be 73.3%. The genome size measured 7,150,598 bp comprising 17 contigs and encompassed 6,053 protein coding genes. AntiSMASH analysis of the whole genome revealed 35 putative biosynthetic gene clusters (BGCs) responsible for various secondary metabolites. Among these clusters, two gene clusters exhibited 100% similarity to the chromomycin A3, albaflavenone, and anthracimycin, respectively. These compounds were reported to possess significant anticancer and antibacterial activities. LC-MS-based analysis, coupled with further isolation studies, confirmed the production of chromomycins A2 (1), A3 (2), and their derivatives, along with their antibiotic activities. These findings underscore the potential of this novel strain as a novel resource for the discovery of diverse antimicrobial compounds. This study is the first to report an antimicrobial compound producing Streptomyces species isolated from medicinal plant T. patula. Based on a polyphasic study, the strain RG38T isolated from an unexplored habitat with a high potential for new natural products represents a novel species within the genus Streptomyces. Accordingly, we propose the name Streptomyces tagetis sp. nov. for this novel species, with the type strain is RG38T (=KCTC 49624T = TBRC 15113T).
Collapse
Affiliation(s)
- Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Myeong Ji Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Duc V. H. Tran
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Young-Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
15
|
Zhang LN, Jiang CH, Si F, Song N, Yang W, Zhu Y, Luo Y, Guo JH. Long-Term Field Application of a Plant Growth-Promoting Rhizobacterial Consortium Suppressed Root-Knot Disease by Shaping the Rhizosphere Microbiota. PLANT DISEASE 2024; 108:94-103. [PMID: 37467122 DOI: 10.1094/pdis-09-22-2196-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) are one of the most economically important plant parasitic nematodes, infecting almost all cultivated plants and resulting in severe yield losses every year. Plant growth-promoting rhizobacteria (PGPR) have been extensively used to prevent and control root-knot diseases and increase yield. In this study, the effect of a consortium of three PGPR strains (Bacillus cereus AR156, B. subtilis SM21, and Serratia sp. XY21; hereafter "BBS") on root-knot disease of cucumber was evaluated. The application of BBS significantly reduced the severity of root-knot disease by 56 to 72%, increased yield by 36 to 55%, and improved fruit quality by 14 to 90% and soil properties by 1 to 90% relative to the control in the cucumber fields of the Nanjing suburb, Jiangsu Province, from 2015 to 2018. BBS altered the rhizosphere bacterial community. Compared with the control group, it significantly (false discovery rate, P < 0.05) increased the abundance of 14 bacterial genera that were negatively correlated with disease severity. Additionally, the redundancy analysis suggested that BBS-treated rhizosphere soil samples were dominated by disease-suppressive bacteria, including the genera Iamia, Kutzneria, Salinibacterium, Mycobacterium, Kribbella, Pseudonocardia, Sporichthya, Sphaerisporangium, Actinomadura, Flavisolibacter, Phenylobacterium, Bosea, Hyphomicrobium, Agrobacterium, Sphingomonas, and Nannocystis, which were positively related to total organic carbon, total nitrogen, total organic matter, dissolved organic carbon, [Formula: see text]-N, and available phosphorus contents. This suggests that BBS suppresses root-knot nematodes and improves the soil chemical properties of cucumber by altering the rhizosphere microbial community.
Collapse
Affiliation(s)
- Li-Na Zhang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huaian 223300, China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Fangjie Si
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Ning Song
- Nanjing Planck Technology and Trade Co., Ltd., Nanjing 210095, China
| | - Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huaian 223300, China
| | - Yanze Zhu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huaian 223300, China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|
16
|
Ebu SM, Adem MA, Dekebo A, Olani A. Isolation and Identification of Endophytic Bacterial Isolates from the Leaves, Roots, and Stems Parts of Artemisia annua, Moringa oleifera, and Ocimum lamiifolium Plants. Curr Microbiol 2023; 80:405. [PMID: 37930451 DOI: 10.1007/s00284-023-03513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Medicinal plants are known to harbor diverse species of endophytic bacteria which are known for secretion of beneficial secondary metabolites, like enzymes and antimicrobial compounds. The present study aimed to isolate, characterize, and identify the endophytic bacteria isolates from Artemisia annua, Moringa oleifera, and Ocimum lamiifolium plants. Certain endophytic bacterial isolates were screened. Phosphate and Zinc solubilization were performed for newly obtained isolates. The 16S rRNA gene sequencing was performed for RPAAI-8 isolate. Data were analyzed. Our study showed that endophytic bacterial isolates were recognized to be Bacillus cereus, B. subtilis, Citrobacter freundii, Enterobacter asburiae, E. cloacae, E. kobei, E. ludwigii, Enterococcus faecium, and Pseudomonas monteilli. From among these differentiated endophytic bacterial isolates, Enterobacter species are the most frequently obtained isolates. These bacterial isolates were shown 99.77% sequence similarity to Enterobacter ludwigii EN-119T (JTLO01000001) using 16S rRNA gene sequencing. This isolate was designated as Enterobacter sp. RPAAI-8. This isolate was able to employ selected cheap and cost-effective agro wastes as a carbon source. This cheap agro waste utilization by these Enterobacter species could be the first report. In conclusion, the present isolates are found to be employed for plant growth promotion and solubilizing insoluble phosphate and zinc. Before this time, most of the recent isolates were not identified from these medicinal plants. The ethyl acetate extract of the isolates also showed inhibitory activity against selected test pathogens.
Collapse
Affiliation(s)
- Seid Mohammed Ebu
- Department of Applied Biology, Adama Science and Technology University, Adama, Oromia, Ethiopia.
| | - Muktar Ahmed Adem
- Department of Applied Biology, Adama Science and Technology University, Adama, Oromia, Ethiopia
| | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Oromia, Ethiopia
| | - Ababe Olani
- Istitute of Biotechnology, Sebeta, Oromia, Ethiopia
| |
Collapse
|
17
|
Wei Y, Yang H, Hu J, Li H, Zhao Z, Wu Y, Li J, Zhou Y, Yang K, Yang H. Trichoderma harzianum inoculation promotes sweet sorghum growth in the saline soil by modulating rhizosphere available nutrients and bacterial community. FRONTIERS IN PLANT SCIENCE 2023; 14:1258131. [PMID: 37771481 PMCID: PMC10523306 DOI: 10.3389/fpls.2023.1258131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
As one of the major abiotic stresses, salinity can affect crop growth and plant productivity worldwide. The inoculation of rhizosphere or endophytic microorganisms can enhance plant tolerance to salt stresses, but the potential mechanism is not clear. In this study, Trichoderma harzianum ST02 was applied on sweet sorghum [Sorghum bicolor (L.) Moench] in a field trial to investigate the effects on microbiome community and physiochemical properties in the rhizosphere soil. Compared with the non-inoculated control, Trichoderma inoculation significantly increased the stem yield, plant height, stem diameter, and total sugar content in stem by 35.52%, 32.68%, 32.09%, and 36.82%, respectively. In addition, Trichoderma inoculation improved the nutrient availability (e.g., N, P, and K) and organic matter in the rhizosphere soil and changed the bacterial community structure and function in both bulk and rhizosphere soil by particularly increasing the relative abundance of Actinobacter and N-cycling genes (nifH, archaeal and bacterial amoA). We proposed that T. harzianum ST02 could promote sweet sorghum growth under saline conditions by regulating available nutrients and the bacterial community in the rhizosphere soil.
Collapse
Affiliation(s)
- Yanli Wei
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Han Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jindong Hu
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongmei Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhongjuan Zhao
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuanzheng Wu
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jishun Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yi Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Kai Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hetong Yang
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
18
|
Delbari Y, Mohassel Y, Kakaei E, Bahrami Y. Identification and anti-bacterial property of endophytic actinobacteria from Thymes kotschyanus, Allium hooshidaryae, and Cerasus microcarpa. Sci Rep 2023; 13:13145. [PMID: 37573468 PMCID: PMC10423286 DOI: 10.1038/s41598-023-40478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023] Open
Abstract
The arbitrary and overuses of antibiotics have resulted in the emergence of multidrug resistance bacteria which encounters human to a serious public health problem. Thus, there is an ever-increasing demand for discovery of novel effective antibiotics with new modes of function against resistant pathogens. Endophytic actinobacteria (EA) have currently been considered as one of the most prospective group of microorganisms for discovery of therapeutic agents. This study aimed to isolate EA from Thymes kotschyanus, Allium hooshidaryae, and Cerasus microcarpa plants and to evaluate their antibacterial properties. The healthy samples were collected, dissected and surface-sterilized before cultured on four different selection media at 28 °C. Nine EA were isolated and identified based on morphological and molecular properties, and scanning electron micrograph analyses. Based on phylogenetic analysis, they were taxonomically grouped into four families Streptomycetaceae, Nocardiaceae, Micromonosporaceae, and Pseudonocardiaceae. Their branched aerial mycelia produced chains of cylindrical or cube or oval shaped spores with smooth or rough surfaces. Four strains; IKBG03, IKBG05, IKBG13, and IKBG17 had less than 98.65% sequence similarity to their closely related strains, which constitute them as novel species/strains. Besides, three strains; IKBG05, IKBG13, and IKBG18 were reported as endophytes for the first time. Preliminary antibacterial activity conducted on the all isolates revealed potent antibacterial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. All isolates strongly inhibited the growth of at least one of the tested pathogens. Our results reveals that the test plants are novel sources for isolating a diverse group of rare and common actinobacteria that could produce a wide range of novel biologically active natural products with antibacterial activity which have a great potential in pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Yaser Delbari
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaser Mohassel
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
- Advanced Marine Biomanufacturing Laboratory, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
| |
Collapse
|
19
|
Chi Y, Ma X, Wu J, Wang R, Zhang X, Chu S, Zhang D, Zhou P. Plant growth promoting endophyte promotes cadmium accumulation in Solanum nigrum L. by regulating plant homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131866. [PMID: 37329596 DOI: 10.1016/j.jhazmat.2023.131866] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
The homeostasis regulating mechanism of endophyte enhancing cadmium (Cd) extraction by hyperaccumulator is poorly understood. Here, an endophyte strain E3 that belonged to Pseudomonas was screened from Cd hyperaccumulator Solanum nigrum L., which significantly improved the Cd phytoextraction efficiency of S. nigrum by 40.26%. The content and translocation factor of nutrient elements indicated that endophyte might regulate Cd accumulation by affecting the uptake and transport of magnesium and iron in S. nigrum. Gene transcriptional expression profile further revealed that SnMGT, SnIRT1, and SnIRT2, etc., were the key genes involved in the regulation of S. nigrum elements uptake by endophyte. However, changes in elemental homeostasis did not negatively affect plant growth. Endophyte inoculation promoted plant growth by fortifying photosynthesis as well as recruiting specific bacteria in S. nigrum endosphere, e.g., Pseudonocardiaceae, Halomonas. Notably, PICRUSt2 analysis and biochemical characterization jointly suggested that endophyte regulated starch degradation in S. nigrum leaves to maintain photosynthetic balance. Our results demonstrated that microecological characteristics of hyperaccumulator could be reshaped by endophyte, also the homeostasis regulation in endophyte enhanced hyperaccumulator Cd phytoextraction was significant.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Hussen EM, Endalew SA. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complement Med Ther 2023; 23:146. [PMID: 37143058 PMCID: PMC10157976 DOI: 10.1186/s12906-023-03923-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Plants are able to deliver a huge number of differing bioactive compounds which may supplement the requirements of the human body by acting as natural antioxidants. Antioxidants are mindful for the defense component of the life form against the pathologies related to the assault of free radicals. The main purpose of this study was to investigate the qualitative phytochemical composition of Vernonia amygdalina leaf extract and its antioxidant activity. METHOD The powdered plant sample was successively extracted with aqueous, methanol and ethanol solvents using Soxhlet apparatus. The antioxidant activities of the crude leaf extract were determined using 1, 1- diphenyl-2-picryl hydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical, phosphomolybdate (PM) and hydrogen peroxide (H2O2) scavenging assay. All the examinations were drained triplicates and average values of each test were taken. RESULTS Phytochemical investigation of the plant revealed that the three solvent extracts contained numerous bioactive compounds namely alkaloids, tannins, saponins, phenols, terpenoids, steroids, glycosides and sugars. The result showed that, the leaf extracts of V. amygdalina obtained from methanol extract exhibit the maximum antioxidant activity compared ethanol and aqueous extracts. The IC50 values of DPPH assay for the H2O, MeOH and EtOH extracts were 111.4, 94.92 and 94.83 μg/ml; of ABTS assay were 334.3, 179.8 and 256.9 μg/ml; of H2O2 assay were 141.6, 156 and 180.6 μg/ml, respectively. The maximum radical scavenging activity was obtained in DPPH assay while the lowest scavenging activity was obtained in ABTS assay method. The data obtained in the in vitro models clearly suggest that methanol extract has higher antioxidant activity due to a higher presence of phenolic constituents in the extract. CONCLUSION This study revealed that V. amygdalina leaf has a noteworthy antioxidant and free radical scavenging activity mitigating the traditional use of the plant for different aliments.
Collapse
Affiliation(s)
- Endris Muhie Hussen
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box: 1145, Dessie, Ethiopia
| | - Sisay Awoke Endalew
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box: 1145, Dessie, Ethiopia.
| |
Collapse
|
21
|
Chang M, Ma J, Sun Y, Fu M, Liu L, Chen Q, Zhang Z, Song C, Sun J, Wan X. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5208-5218. [PMID: 36970979 DOI: 10.1021/acs.jafc.2c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important economic plant, tea (Camellia sinensis) has a good economic value and significant health effects. Theanine is an important nitrogen reservoir, and its synthesis and degradation are considered important for nitrogen storage and remobilization in tea plants. Our previous research indicated that the endophyte CsE7 participates in the synthesis of theanine in tea plants. Here, the tracking test confirmed that CsE7 tended to be exposed to mild light and preferentially colonized mature tea leaves. CsE7 also participated in glutamine, theanine, and glutamic acid circulatory metabolism (Gln-Thea-Glu) and contributed to nitrogen remobilization, mediated by the γ-glutamyl-transpeptidase (CsEGGT) with hydrolase preference. The reisolation and inoculation of endophytes further verified their role in accelerating the remobilization of nitrogen, especially in the reuse of theanine and glutamine. This is the first report about the photoregulated endophytic colonization and the positive effect of endophytes on tea plants mediated and characterized by promoting leaf nitrogen remobilization.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| |
Collapse
|
22
|
Wang X, Zeng X, Qin C, Yan X, Chen X, Zhang L, Zhou Y. Herbaspirillum sp. ZXN111 Colonization Characters to Different Tea Cultivars and the Effects on Tea Metabolites Profiling on Zijuan ( Camellia sinensis var. assamica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5283-5292. [PMID: 36946772 DOI: 10.1021/acs.jafc.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herbaspirillum sp. ZXN111 and its mutants (Δacc, Δtyrb, and Δacc-tyrb), which show PGP activity on Zijuan, were tested for tea plants' colonization characteristics and the strain-dependent response of tea metabolites. The results showed that strain ZXN111 could widely colonize in different tea cultivars of Zijuan, Yunkang-10, Longjin 43, and Shuchazao, but with significant colonization preference to Zijuan, which might be ascribed to anthocyanins' chemotaxis. After 9 weeks of co-cultivation, l-theanine and theobromine in Zijuan leaves that were inoculated with wild-type ZXN111 were decreased, while theobromine, caffeine, and l-theanine that were inoculated with mutant Δacc were increased; especially l-theanine increased much significantly. Metabolomics analysis showed that tea metabolite profiling of inoculant groups was clearly separated from the control; therein, the flavanols were downregulated in ZXN111 and Δacc groups, but the l-theanine of the Δacc group was significantly upregulated compared to control and ZXN111 groups. These results indicated that strain ZXN111, especially of mutant Δacc, improved Zijuan tea flavor.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Zeng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xuanqin Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Jingming Road 727, Kunming 650000, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Kimeklis AK, Gladkov GV, Orlova OV, Afonin AM, Gribchenko ES, Aksenova TS, Kichko AA, Pinaev AG, Andronov EE. The Succession of the Cellulolytic Microbial Community from the Soil during Oat Straw Decomposition. Int J Mol Sci 2023; 24:ijms24076342. [PMID: 37047311 PMCID: PMC10094526 DOI: 10.3390/ijms24076342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The process of straw decomposition is dynamic and is accompanied by the succession of the microbial decomposing community, which is driven by poorly understood interactions between microorganisms. Soil is a complex ecological niche, and the soil microbiome can serve as a source of potentially active cellulolytic microorganisms. Here, we performed an experiment on the de novo colonization of oat straw by the soil microbial community by placing nylon bags with sterilized oat straw in the pots filled with chernozem soil and incubating them for 6 months. The aim was to investigate the changes in decomposer microbiota during this process using conventional sequencing techniques. The bacterial succession during straw decomposition occurred in three phases: the early phase (first month) was characterized by high microbial activity and low diversity, the middle phase (second to third month) was characterized by low activity and low diversity, and the late phase (fourth to sixth months) was characterized by low activity and high diversity. Analysis of amplicon sequencing data revealed three groups of co-changing phylotypes corresponding to these phases. The early active phase was abundant in the cellulolytic members from Pseudomonadota, Bacteroidota, Bacillota, and Actinobacteriota for bacteria and Ascomycota for fungi, and most of the primary phylotypes were gone by the end of the phase. The second intermediate phase was marked by the set of phylotypes from the same phyla persisting in the community. In the mature community of the late phase, apart from the core phylotypes, non-cellulolytic members from Bdellovibrionota, Myxococcota, Chloroflexota, and Thermoproteota appeared. Full metagenome sequencing of the microbial community from the end of the middle phase confirmed that major bacterial and fungal members of this consortium had genes of glycoside hydrolases (GH) connected to cellulose and chitin degradation. The real-time analysis of the selection of these genes showed that their representation varied between phases, and this occurred under the influence of the host, and not the GH family factor. Our findings demonstrate that soil microbial community may act as an efficient source of cellulolytic microorganisms and that colonization of the cellulolytic substrate occurs in several phases, each characterized by its own taxonomic and functional profile.
Collapse
Affiliation(s)
- Anastasiia K. Kimeklis
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Department of Applied Ecology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (A.K.K.); (E.E.A.)
| | - Grigory V. Gladkov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Olga V. Orlova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Emma S. Gribchenko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana S. Aksenova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Arina A. Kichko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexander G. Pinaev
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Evgeny E. Andronov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Dokuchaev Soil Science Institute, 119017 Moscow, Russia
- Correspondence: (A.K.K.); (E.E.A.)
| |
Collapse
|
24
|
Hazarika SN, Saikia K, Thakur D. Characterization and selection of endophytic actinobacteria for growth and disease management of Tea ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2022; 13:989794. [PMID: 36438109 PMCID: PMC9681920 DOI: 10.3389/fpls.2022.989794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 06/13/2023]
Abstract
Endophytic microbes are vital for nutrient solubilization and uptake, growth, and survival of plants. Here, 88 endophytic actinobacteria (EnA) associated with five tea clones were isolated, assessed for their diversity, plant growth promoting (PGP), and biocontrol traits, and then used as an inoculant for PGP and disease control in host and non-host plants. Polyphasic methods, including phenotypic and genotypic characteristics led to their identification as Streptomyces, Microbacterium, Curtobacterium, Janibacter, Rhodococcus, Nocardia, Gordonia, Nocardiopsis, and Kribbella. Out of 88 isolates, 35 (39.77%) showed antagonistic activity in vitro against major fungal pathogens, viz. Fusarium oxysporum, Rhizoctonia solani, Exobasidium vexans, Poria hypobrunnea, Phellinus lamaensis, and Nigrospora sphaerica. Regarding PGP activities, the percentage of isolates that produced indole acetic acid, siderophore, and ammonia, as well as P-solubilisation and nitrogen fixation, were 67.05, 75, 80.68, 27.27, 57.95, respectively. A total of 51 and 42 isolates showed chitinase and 1-aminocyclopropane-1-carboxylic acid deaminase activity, respectively. Further, two potent Streptomyces strains KA12 and MA34, selected based on the bonitur scale, were screened for biofilm formation ability and tested in vivo under nursery conditions. Confocal laser scanning microscopy and the crystal violet staining technique revealed that these Streptomyces strains can form biofilms, indicating the potential for plant colonization. In the nursery experiment, they significantly enhanced the shoot and root biomass, shoot and root length, and leaf number in host tea plants. Additionally, treatment of tomato seeds by KA12 suppressed the growth of fungal pathogen Fusarium oxysporum, increased seed germination, and improved root architecture, demonstrating its ability to be used as a seed biopriming agent. Our results confirm the potential of tea endophytic actinobacterial strains with multifarious beneficial traits to enhance plant growth and suppress fungal pathogens, which may be used as bioinoculant for sustainable agriculture.
Collapse
Affiliation(s)
- Shabiha Nudrat Hazarika
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
25
|
Ma J, Lu C, Tang Y, Shen Y. Phytotoxic Metabolites Isolated from Aspergillus sp., an Endophytic Fungus of Crassula arborescens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227710. [PMID: 36431820 PMCID: PMC9699134 DOI: 10.3390/molecules27227710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Aspergillus sp., an endophytic fungus isolated from Crassula arborescens, displayed potent inhibitory activity against the seed germination of Arabidopsis thaliana. The bioactivity-guided fractionation of the culture extract of Aspergillus sp. MJ01 led to the isolation of nine compounds, including one previously undescribed furanone, namely aspertamarinoic acid (1), and eight known compounds, (-)-dihydrocanadensolide (2), kojic acid (3), citreoisocoumarin (4), astellolide A (5), astellolide B (6), astellolide G (7), cyclo-N-methylphenylalanyltryptophenyl (8) and (-)-ditryptophenaline (9). In the evaluation of the phytotoxic activities of compounds 1-9, the results suggested that 1 and 5 showed significant inhibitory activity on the seed germination of A. thaliana. This is the first report to disclose the phytotoxic activity of these compounds.
Collapse
Affiliation(s)
- Jingjing Ma
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yajie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence:
| |
Collapse
|
26
|
Liu JQ, Chen SM, Zhang CM, Xu MJ, Xing K, Li CG, Li K, Zhang YQ, Qin S. Abundant and diverse endophytic bacteria associated with medicinal plant Arctium lappa L. and their potential for host plant growth promoting. Antonie Van Leeuwenhoek 2022; 115:1405-1420. [DOI: 10.1007/s10482-022-01785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
|
27
|
A New Saharan Strain of Streptomyces sp. GSB-11 Produces Maculosin and N-acetyltyramine Active Against Multidrug-Resistant Pathogenic Bacteria. Curr Microbiol 2022; 79:298. [PMID: 36002540 DOI: 10.1007/s00284-022-02994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
Abstract
Multi-resistant bacterial pathogens are a major public health problem for treating nosocomial infections owing to their high resistance to antibiotics. The objective of this research was to characterize the bioactive molecules secreted by a novel moderately halophilic actinobacterium strain, designated GSB-11, exhibiting a strong antagonistic activity against several multidrug-resistant pathogenic bacteria. This potential strain was identified by phenotypic, genotypic (16S rRNA), and phylogenetic analyses. GSB-11 was related to "Streptomyces acrimycini" NBRC 12736 T with 99.59% similarity. Molecular screening by PCR assay demonstrated that the strain possesses two biosynthetic genes coding for NRPS and PKS-II. Two active compounds GSB11-6 and GSB11-7 were extracted from the cell-free culture supernatant of Bennett medium and purified using reversed-phase HPLC. According to spectrometric (mass spectrum) and spectroscopic (1H NMR, 13C NMR, 1H-1H COSY, and 1H-13C HMBC) spectra analyses, the compounds GSB11-6 and GSB11-7 were identified to be maculosin and N-acetyltyramine, respectively. Their minimum inhibitory concentrations (MIC) revealed interesting values against certain multidrug-resistant pathogenic bacteria. They were between 5 and 15 mg/mL for GSB11-6, 10 and 30 mg/mL for GSB11-7. To our best knowledge, this is the first study of these active substances isolated from "Streptomyces acrimycini" showing an interesting antibacterial activity. Therefore, these essential compounds could be candidates for future research against multidrug-resistant bacteria.
Collapse
|
28
|
Gao Z, Chen H, Zhang X, Xiao Z, Fan X, Yin C, Tang X, Han FX, Liang Y. Silicon enhances abundances of reducing microbes in rhizoplane and decreases arsenite uptake by rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119405. [PMID: 35523383 DOI: 10.1016/j.envpol.2022.119405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/09/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Although silicon (Si) transporters-mediated uptake of arsenic (As) by rice roots is well-documented, how Si influences As behaviors in rhizosphere and rhizoplane before As entry into roots is still unclear. Here we used three rice genotypes to explore the effect of silicic acid on the root uptake of As as impacted by chemical and microbial changes in bulk soil, rhizosphere, rhizoplane and endosphere. The results show that exogenous Si decreased root arsenite [As(III)] absorption, which was attributed to Si-mediated alteration of traits in chemical plaque and microbial films on the rhizoplane. The pH, Eh, As and Fe in the porewater were not influenced by Si. However, Si enhanced the concentrations of As(III) (16-49%) and Fe (15-80%) in the rhizoplane while decreasing As(III) concentrations in the roots (19-39%) and grains (22-29%). The diversities and richness of microbes in soils and plants were not affected by Si. The microbial connections were negatively influenced by Si in bulk and rhizosphere soils, but positively impacted in rhizoplane and endosphere. Both the abundance of reducing microbes, Anaeromyxobacter and Geobacteraceae, and the level of As(III) and Fe in rhizoplane were significantly increased by the addition of Si, thereby restraining As(III) from uptake into roots. This study provides new insights into the microbial mechanisms of Si-mediated As uptake by rice.
Collapse
Affiliation(s)
- Zixiang Gao
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Chen
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyuan Zhang
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuoxi Xiao
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Fan
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chang Yin
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianjin Tang
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengxiang X Han
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA
| | - Yongchao Liang
- Ministry of Education, Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Chauhan J, Gohel S. Exploring plant growth-promoting, biocatalytic, and antimicrobial potential of salt tolerant rhizospheric Georgenia soli strain TSm39 for sustainable agriculture. Braz J Microbiol 2022; 53:1817-1828. [PMID: 35854099 PMCID: PMC9679074 DOI: 10.1007/s42770-022-00794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/06/2022] [Indexed: 01/13/2023] Open
Abstract
To explore the in vivo and in vitro plant growth promoting activities, biocatalytic potential, and antimicrobial activity of salt tolerance rhizoactinobacteria, rhizospheric soil of a halotolerant plant Saueda maritima L. was collected from Rann of Tiker, near Little Rann of Kutch, Gujarat (India). The morphology analysis of the isolated strain TSm39 revealed that the strain belonged to the phylum actinobacteria, as it was stained Gram-positive, displayed filamentous growth, showed spore formation and red pigment production on starch casein agar (SCA). It was identified as Georgenia soli based on 16S rRNA gene sequencing. The Georgenia soli strain TSm39 secreted extracellular amylase, pectinase, and protease. It showed in vitro plant growth-promoting (PGP) activities such as indole acetic acid (IAA) production, siderophore production, ammonia production, and phosphate solubilization. In vivo plant growth-promoting traits of strain TSm39 revealed 30% seed germination on water agar and vigor index 374.4. Additionally, a significant increase (p ≤ 0.05) was found in growth parameters such as root length (16.1 ± 0.22), shoot length (15.2 ± 0.17), the fresh weight (g), and dry weight (g) of the roots (0.43 ± 0.42 and 0.32 ± 0.12), shoots (0.62 ± 0.41 and 0.13 ± 0.03), and leaves (0.42 ± 0.161 and 0.14 ± 0.42) in treated seeds of Vigna radiata L. plant with the strain TSm39 compared to control. The antibiotic susceptibility profile revealed resistance of the strain TSm39 to erythromycin, ampicillin, tetracycline, and oxacillin, while it displayed maximum sensitivity to vancomycin (40 ± 0.72), chloramphenicol (40 ± 0.61), clarithromycin (40 ± 1.30), azithromycin (39 ± 0.42), and least sensitivity to teicoplanin (15 ± 0.15). Moreover, the antimicrobial activity of the strain TSm39 was observed against Gram's positive and Gram's negative microorganisms such as Shigella, Proteus vulgaris, and Bacillus subtilis. These findings indicated that the Georgenia soli strain TSm39 has multiple plant-growth-promoting properties and biocatalytic potential that signifies its agricultural applications in the enhancement of crop yield and quality and would protect the plant against plant pathogens.
Collapse
Affiliation(s)
- Jagruti Chauhan
- grid.412428.90000 0000 8662 9555Department of Biosciences, Saurashtra University, Rajkot, 360005 Gujarat India
| | - Sangeeta Gohel
- grid.412428.90000 0000 8662 9555Department of Biosciences, Saurashtra University, Rajkot, 360005 Gujarat India
| |
Collapse
|
30
|
Kalimuthu AK, Parasuraman P, Sivakumar P, Murugesan S, Arunachalam S, Pandian SRK, Ravishankar V, Ammunje DN, Sampath M, Panneerselvam T, Kunjiappan S. In silico, in vitro screening of antioxidant and anticancer potentials of bioactive secondary metabolites from an endophytic fungus (Curvularia sp.) from Phyllanthus niruri L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48908-48925. [PMID: 35201581 DOI: 10.1007/s11356-022-19249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The main objective of this research work is to discover novel and efficient phytochemical substances from endophytic fungus found in medicinal plants. Curvularia geniculata L. (C. geniculata L.), an endophytic fungus isolated from Phyllanthus niruri L. (P. niruri L.), was tested against hepatoma cell lines (HepG2) in order to screen their antioxidant and anticancer potentials. The profiling of phytochemicals from the fungal extract was characterized using gas chromatography-mass spectrometry (GC-MS), and molecular docking was done for the identified compounds against one of the potential receptors predominantly present in the hepatocellular carcinoma cell lines. Among the phytochemicals found, 2-methyl-7-phenylindole had the highest binding affinity (- 8.8 kcal mol-1) for the epidermal growth factor receptor (EGFR). The stability of 2-methyl-7-phenylindole in the EGFR-binding pockets was tested using in silico molecular dynamics simulation. The fungal extract showed the highest antioxidant activity as measured by DPPH, ABTS radical scavenging, and FRAP assays. In vitro cytotoxicity assay of fungal extract demonstrated the concentration-dependent cytotoxicity against HepG2 cells after 24 h, and the IC50 (50% cell death) value was estimated to be 62.23 μg mL-1. Typical morphological changes such as condensation of nuclei and deformed membrane structures are indicative of ongoing apoptosis. The mitochondria of HepG2 cells were also targeted by the endophytic fungal extract, which resulted in substantial generation of reactive oxygen species (ROS) leading to the destruction of mitochondrial transmembrane potential integrity. These outcomes suggest that the ethyl acetate extract of C. geniculata L. has the potential to be an antioxidant agent and further to be exploited in developing potential anticancer agents.
Collapse
Affiliation(s)
- Arjun Kumar Kalimuthu
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Pavadai Parasuraman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Pandian Sivakumar
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Vigneshwaran Ravishankar
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Muthukumar Sampath
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi-835215, Mesra, Jharkhand, India
| | - Theivendran Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengodu, 637205, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India.
| |
Collapse
|
31
|
Maki Y, Soejima H, Sugiyama T, Watahiki MK, Sato T, Yamaguchi J. 3-Phenyllactic acid is converted to phenylacetic acid and induces auxin-responsive root growth in Arabidopsis plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:111-117. [PMID: 35937539 PMCID: PMC9300423 DOI: 10.5511/plantbiotechnology.21.1216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 06/15/2023]
Abstract
Many microorganisms have been reported to produce compounds that promote plant growth and are thought to be involved in the establishment and maintenance of symbiotic relationships. 3-Phenyllactic acid (PLA) produced by lactic acid bacteria was previously shown to promote root growth in adzuki cuttings. However, the mode of action of PLA as a root-promoting substance had not been clarified. The present study therefore investigated the relationship between PLA and auxin. PLA was found to inhibit primary root elongation and to increase lateral root density in wild-type Arabidopsis, but not in an auxin signaling mutant. In addition, PLA induced IAA19 promoter fused β-glucuronidase gene expression, suggesting that PLA exhibits auxin-like activity. The inability of PLA to promote degradation of Auxin/Indole-3-Acetic Acid protein in a yeast heterologous reconstitution system indicated that PLA may not a ligand of auxin receptor. Using of a synthetic PLA labeled with stable isotope showed that exogenously applied PLA was converted to phenylacetic acid (PAA), an endogenous auxin, in both adzuki and Arabidopsis. Taken together, these results suggest that exogenous PLA promotes auxin signaling by conversion to PAA, thereby regulating root growth in plants.
Collapse
Affiliation(s)
- Yuko Maki
- Snow Brand Seed Co. LTD., Horonai 1066-5, Naganuma, Hokkaido 069-1464, Japan
| | - Hiroshi Soejima
- Snow Brand Seed Co. LTD., Horonai 1066-5, Naganuma, Hokkaido 069-1464, Japan
| | - Tamizi Sugiyama
- Department of Agricultural Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masaaki K. Watahiki
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku, N10-W8, Sapporo, Hokkaido 060-0810, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku, N10-W8, Sapporo, Hokkaido 060-0810, Japan
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku, N10-W8, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
32
|
Xia Y, Liu J, Chen C, Mo X, Tan Q, He Y, Wang Z, Yin J, Zhou G. The Multifunctions and Future Prospects of Endophytes and Their Metabolites in Plant Disease Management. Microorganisms 2022; 10:microorganisms10051072. [PMID: 35630514 PMCID: PMC9146654 DOI: 10.3390/microorganisms10051072] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
Endophytes represent a ubiquitous and magical world in plants. Almost all plant species studied by different researchers have been found to harbor one or more endophytes, which protect host plants from pathogen invasion and from adverse environmental conditions. They produce various metabolites that can directly inhibit the growth of pathogens and even promote the growth and development of the host plants. In this review, we focus on the biological control of plant diseases, aiming to elucidate the contribution and key roles of endophytes and their metabolites in this field with the latest research information. Metabolites synthesized by endophytes are part of plant disease management, and the application of endophyte metabolites to induce plant resistance is very promising. Furthermore, multi-omics should be more fully utilized in plant–microbe research, especially in mining novel bioactive metabolites. We believe that the utilization of endophytes and their metabolites for plant disease management is a meaningful and promising research direction that can lead to new breakthroughs in the development of more effective and ecosystem-friendly insecticides and fungicides in modern agriculture.
Collapse
Affiliation(s)
- Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Cang Chen
- College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Xiuli Mo
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Qian Tan
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Yuan He
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Zhikai Wang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Jia Yin
- College of Life Science, Hunan Normal University, Changsha 410081, China;
- Correspondence: (J.Y.); (G.Z.)
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
- Correspondence: (J.Y.); (G.Z.)
| |
Collapse
|
33
|
Microbiological Analysis and Metagenomic Profiling of the Bacterial Community of an Anthropogenic Soil Modified from Typic Haploxererts. LAND 2022. [DOI: 10.3390/land11050748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work aimed to characterize the microbial communities of an anthropogenic soil originating from application of pedotechniques to Vertisols in a Mediterranean environment. Bare soil profiles were sampled at three depths (0–10 cm, 10–30 cm, and 30–50 cm) and compared with the original soil not transformed at the same depths. The anthropogenic soils were characterized by a higher CaCO3 concentration (360–640 g/kg) than control soil (190–200 g/kg), while an opposite trend was registered for clay, where control soil showed a higher concentration (465 g/kg on average) than anthropogenic soil (355 g/kg on average). Organic carbon content was much higher in the untransformed soil. All samples were microbiologically investigated using a combined culture-dependent and -independent approach. Each pedon displayed a generally decreasing level with soil depth for the several microbial groups investigated; in particular, filamentous fungi were below the detection limit at 30–50 cm. To isolate bacteria actively involved in soil particle aggregation, colonies with mucoid appearance were differentiated at the strain level and genetically identified: the major groups were represented by Bacillus and Pseudomonas. MiSeq Illumina analysis identified Actinobacteria and Firmicutes as the main groups. A high microbial variability was found in all the three anthropogenic pedons and the microorganisms constitute a mature community.
Collapse
|
34
|
Ingestional Toxicity of Radiation-Dependent Metabolites of the Host Plant for the Pale Grass Blue Butterfly: A Mechanism of Field Effects of Radioactive Pollution in Fukushima. Life (Basel) 2022; 12:life12050615. [PMID: 35629283 PMCID: PMC9146399 DOI: 10.3390/life12050615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Biological effects of the Fukushima nuclear accident have been reported in various organisms, including the pale grass blue butterfly Zizeeria maha and its host plant Oxalis corniculata. This plant upregulates various secondary metabolites in response to low-dose radiation exposure, which may contribute to the high mortality and abnormality rates of the butterfly in Fukushima. However, this field effect hypothesis has not been experimentally tested. Here, using an artificial diet for larvae, we examined the ingestional toxicity of three radiation-dependent plant metabolites annotated in a previous metabolomic study: lauric acid (a saturated fatty acid), alfuzosin (an adrenergic receptor antagonist), and ikarugamycin (an antibiotic likely from endophytic bacteria). Ingestion of lauric acid or alfuzosin caused a significant decrease in the pupation, eclosion (survival), and normality rates, indicating toxicity of these compounds. Lauric acid made the egg-larval days significantly longer, indicating larval growth retardation. In contrast, ikarugamycin caused a significant increase in the pupation and eclosion rates, probably due to the protection of the diet from fungi and bacteria. These results suggest that at least some of the radiation-dependent plant metabolites, such as lauric acid, contribute to the deleterious effects of radioactive pollution on the butterfly in Fukushima, providing experimental evidence for the field effect hypothesis.
Collapse
|
35
|
Porsani MV, Poitevin CG, Tralamazza SM, de Souza MT, de Souza MT, da Silva ÉDB, Zawadneak MAC, Pimentel IC, de Melo IS. Streptomyces spp. Isolated from Marine and Caatinga Biomes in Brazil for the Biological Control of Duponchelia fovealis. NEOTROPICAL ENTOMOLOGY 2022; 51:299-310. [PMID: 35020183 DOI: 10.1007/s13744-022-00942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Actinobacteria have been drawing attention due to their potential for the development of new pest control products. We hereby assess the effects of Streptomyces isolated from marine and caatinga biomes against Duponchelia fovealis Zeller (Lepidoptera: Crambidae), a pest associated with the strawberry culture at a global scale. To this end, eggs deposited by adults were immersed for 5 s in a bacterial suspension, and the larvae were fed on leaflets placed in glass tubes containing bacterial suspensions. In both treatments, the control was a saline solution. The bioassays demonstrated that the Streptomyces strains were able to cause the death of D. fovealis eggs (≈ 40%) and larvae (≈ 65%) compared to untreated eggs (1.4%) and larvae (2.0%). The crude extract of strain T49 and the chitinase extract of strain T26 affected larval growth when applied directly to the thorax of first-instar larvae (larval-adult lifespan of 65.3 ± 0.5 days and 67.5 ± 0.7 days, respectively; survival of 61.2 ± 1.2%) in relation to the control treatment (larval-adult lifespan of 41.75 ± 0.2 days and survival of 83.7 ± 2.6%). The Streptomyces spp. strains T41, T49, and T50 caused antifeeding activity. Apart from larval mortality, the adults that emerged from the larvae exposed to the extracts presented morphological abnormalities, and the moths' chitin spectra showed clear alterations to the pupa and wings. Our studies show, for the very first time, that Streptomyces isolated from the marine environment and the Caatinga biome are effective at provoking the mortality of D. fovealis and are promising agents for developing new products with biological control properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Itamar Soares de Melo
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna, São Paulo, Brazil
| |
Collapse
|
36
|
Wang X, Zeng X, Luo L, Chen X, Yan H, Xie Z, Zhou Y. Plant Growth-Promoting Activity of Herbaspirillum aquaticum ZXN111 on the Zijuan Tea Plant ( Camellia sinensis var. assamica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3757-3764. [PMID: 35290053 DOI: 10.1021/acs.jafc.1c08178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herbaspirillum aquaticum ZXN111 which was isolated from the tea plant Zijuan can produce indole-3-acetic acid (IAA) and contain abiotic-stress tolerance gene 1-aminocyclopropane-1-carboxylate deaminase (accd). In this study, ZXN111 PGP activity and the molecular mechanism were investigated. The result showed that ACCD activity of wild-type ZXN111 was 0.4505 mM α-KB/mg·Pro·h, but mutants Δacc and Δacc-tyrb did not showed ACCD activity. IAA production by ZXN111 within 48 hrs was 20.4 μg/mL, while mutants of Δtyrb and Δacc-tyrb were lower than 3.6 μg/mL, indicating that indole-3-pyruvic acid is the primary IAA synthesis pathway. Potting tests found that ZXN111 displayed significant PGP activity to the tea plant Zijuan, but Δtyrb and Δacc-tyrb did not show PGP activity, indicating that IAA is critical to PGP activity. In a salt-stress test, ZXN111 did not enhance the tea plant NaCl tolerance by gene accd. The results of this study indicated that strain ZXN111 has potential for biofertilizer development on tea plantation.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Zeng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai 200444, China
| | - Xuanqin Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Jingming Road 727, Kunming 650000, China
| | - Hangbin Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
37
|
Luo HZ, Jiang H, Sun B, Wang ZN, Jia AQ. Sesquiterpenoids and furan derivatives from the Orychophragmus violaceus (L.) O.E. Schulz endophytic fungus Irpex lacteus OV38. PHYTOCHEMISTRY 2022; 194:112996. [PMID: 34844037 DOI: 10.1016/j.phytochem.2021.112996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Nine undescribed compounds, including six tremulane-type sesquiterpenoids, irpexolaceus A-F, one phenolic bisabolane-type sesquiterpenoid, irpexolaceus G, and two furan derivatives, irpexonjust A-B, as well as eight known analogs, were isolated from an endophytic fungus (Irpex lacteus OV38) of Orychophragmus violaceus (L.) O.E. Schulz, a Chinese medicinal and edible plant. The structures of these natural compounds were elucidated based on NMR, HRESIMS, single-crystal X-ray diffraction, and ECD spectroscopic data. Among the tested isolates (50 μg/mL), the inhibitory effects of irpexolaceus A, C, D, F, and G, irpexonjust B, and irpexlacte B against NO release from LPS-induced RAW 264.7 cells were higher than 45%, while irpexlacte C (42.6%), irpexolaceus B (39.6%), irpexonjust A (43.7%), and irpexolaceus E (33.6%) exhibited weaker inhibitory effects on the release of NO.
Collapse
Affiliation(s)
- Huai-Zhi Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, 570228, China
| | - Huan Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen-Nan Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, 570228, China.
| |
Collapse
|
38
|
Zamora-Quintero AY, Torres-Beltrán M, Guillén Matus DG, Oroz-Parra I, Millán-Aguiñaga N. Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001144. [PMID: 35213299 PMCID: PMC8941997 DOI: 10.1099/mic.0.001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the Actinomadura, Micromonospora, Nocardiopsis, Plantactinospora and Streptomyces sp. We observed seasonal differences on actinobacteria recovery. For instance, Micromonospora strains were recovered during the four sampling seasons, while Arthrobacter and Pseudokineococcus were only isolated in February 2018, and Blastococcus, Rhodococcus and Streptomyces were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.
Collapse
Affiliation(s)
- Andrea Y. Zamora-Quintero
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Mónica Torres-Beltrán
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Dulce G. Guillén Matus
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Irasema Oroz-Parra
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Natalie Millán-Aguiñaga
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| |
Collapse
|
39
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Profiles of the Creeping Wood Sorrel Oxalis corniculata in Radioactively Contaminated Fields in Fukushima: Dose-Dependent Changes in Key Metabolites. Life (Basel) 2022; 12:life12010115. [PMID: 35054508 PMCID: PMC8780803 DOI: 10.3390/life12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The biological impacts of the Fukushima nuclear accident, in 2011, on wildlife have been studied in many organisms, including the pale grass blue butterfly and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed an LC–MS-based metabolomic analysis on leaves of this plant collected in 2018 from radioactively contaminated and control localities in Fukushima, Miyagi, and Niigata prefectures, Japan. Using 7967 peaks detected by LC–MS analysis, clustering analyses showed that nine Fukushima samples and one Miyagi sample were clustered together, irrespective of radiation dose, while two Fukushima (Iitate) and two Niigata samples were not in this cluster. However, 93 peaks were significantly different (FDR < 0.05) among the three dose-dependent groups based on background, low, and high radiation dose rates. Among them, seven upregulated and 15 downregulated peaks had single annotations, and their peak intensity values were positively and negatively correlated with ground radiation dose rates, respectively. Upregulated peaks were annotated as kudinoside D (saponin), andrachcinidine (alkaloid), pyridoxal phosphate (stress-related activated vitamin B6), and four microbe-related bioactive compounds, including antibiotics. Additionally, two peaks were singularly annotated and significantly upregulated (K1R1H1; peptide) or downregulated (DHAP(10:0); decanoyl dihydroxyacetone phosphate) most at the low dose rates. Therefore, this plant likely responded to radioactive pollution in Fukushima by upregulating and downregulating key metabolites. Furthermore, plant-associated endophytic microbes may also have responded to pollution, suggesting their contributions to the stress response of the plant.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Research Planning Office, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
40
|
Cai S, Jia J, He C, Zeng L, Fang Y, Qiu G, Lan X, Su J, He X. Multi-Omics of Pine Wood Nematode Pathogenicity Associated With Culturable Associated Microbiota Through an Artificial Assembly Approach. FRONTIERS IN PLANT SCIENCE 2022; 12:798539. [PMID: 35046983 PMCID: PMC8762061 DOI: 10.3389/fpls.2021.798539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Pinewood nematode (PWN), the causal agent of pine wilt disease (PWD), causes massive global losses of Pinus species each year. Bacteria and fungi existing in symbiosis with PWN are closely linked with the pathogenesis of PWD, but the relationship between PWN pathogenicity and the associated microbiota is still ambiguous. This study explored the relationship between microbes and the pathogenicity of PWN by establishing a PWN-associated microbe library, and used this library to generate five artificial PWN-microbe symbiont (APMS) assemblies with gnotobiotic PWNs. The fungal and bacterial communities of different APMSs (the microbiome) were explored by next-generation sequencing. Furthermore, different APMSs were used to inoculate the same Masson pine (Pinus massoniana) cultivar, and multi-omics (metabolome, phenomics, and transcriptome) data were obtained to represent the pathogenicity of different APMSs at 14 days post-inoculation (dpi). Significant positive correlations were observed between microbiome and transcriptome or metabolome data, but microbiome data were negatively correlated with the reactive oxygen species (ROS) level in the host. Five response genes, four fungal genera, four bacterial genera, and nineteen induced metabolites were positively correlated with the ROS level, while seven induced metabolites were negatively correlated. To further explore the function of PWN-associated microbes, single genera of functional microbes (Mb1-Mb8) were reloaded onto gnotobiotic PWNs and used to inoculate pine tree seedlings. Three of the genera (Cladophialophora, Ochroconis, and Flavobacterium) decreased the ROS level of the host pine trees, while only one genus (Penicillium) significantly increased the ROS level of the host pine tree seedlings. These results demonstrate a clear relationship between associated microbes and the pathogenicity of PWN, and expand the knowledge on the interaction between PWD-induced forest decline and the PWN-associated microbiome.
Collapse
Affiliation(s)
- Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Jiayu Jia
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liqiong Zeng
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guowen Qiu
- Natural Resources Bureau of Shanghang County, Longyan, China
| | - Xiang Lan
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyou He
- Fujian Academy of Forestry Sciences, Fuzhou, China
| |
Collapse
|
41
|
Saikia J, Mazumdar R, Thakur D. Phylogenetic affiliation of endophytic actinobacteria associated with selected orchid species and their role in growth promotion and suppression of phytopathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1058867. [PMID: 36570961 PMCID: PMC9769409 DOI: 10.3389/fpls.2022.1058867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 05/22/2023]
Abstract
Endophytic actinobacteria aid in plant development and disease resistance by boosting nutrient uptake or producing secondary metabolites. For the first time, we investigated the culturable endophytic actinobacteria associated with ten epiphytic orchid species of Assam, India. 51 morphologically distinct actinobacteria were recovered from surface sterilized roots and leaves of orchids and characterized based on different PGP and antifungal traits. According to the 16S rRNA gene sequence, these isolates were divided into six families and eight genera, where Streptomyces was most abundant (n=29, 56.86%), followed by Actinomadura, Nocardia, Nocardiopsis, Nocardioides, Pseudonocardia, Microbacterium, and Mycolicibacterium. Regarding PGP characteristics, 25 (49.01%) isolates demonstrated phosphate solubilization in the range of 61.1±4.4 - 289.7±11.9 µg/ml, whereas 27 (52.94%) isolates biosynthesized IAA in the range of 4.0 ± 0.08 - 43.8 ± 0.2 µg/ml, and 35 (68.62%) isolates generated ammonia in the range of 0.9 ± 0.1 - 5.9 ± 0.2 µmol/ml. These isolates also produced extracellular enzymes, viz. protease (43.13%), cellulase (23.52%), pectinase (21.56%), ACC deaminase (27.45%), and chitinase (37.25%). Out of 51 isolates, 27 (52.94%) showed antagonism against at least one test phytopathogen. In molecular screening, most isolates with antifungal and chitinase producing traits revealed the presence of 18 family chitinase genes. Two actinobacterial endophytes, Streptomyces sp. VCLA3 and Streptomyces sp. RVRA7 were ranked as the best strains based on PGP and antifungal activity on bonitur scale. GC-MS examination of ethyl acetate extract of these potent strains displayed antimicrobial compound phenol, 2,4-bis-(1,1-dimethylethyl) as the major metabolite along with other antifungal and plant growth beneficial bioactive chemicals. SEM analysis of fungal pathogen F. oxysporum (MTCC 4633) affected by Streptomyces sp. VCLA3 revealed significant destruction in the spore structure. An in vivo plant growth promotion experiment with VCLA3 and RVRA7 on chili plants exhibited statistically significant (p<0.05) improvements in all of the evaluated vegetative parameters compared to the control. Our research thus gives insight into the diversity, composition, and functional significance of endophytic actinobacteria associated with orchids. This research demonstrates that isolates with multiple plant development and broad-spectrum antifungal properties are beneficial for plant growth. They may provide a viable alternative to chemical fertilizers and pesticides and a sustainable solution for chemical inputs in agriculture.
Collapse
Affiliation(s)
- Juri Saikia
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Department of Molecular Biology & Biotechnology, Cotton University, Guwahati, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Debajit Thakur,
| |
Collapse
|
42
|
Insuk C, Pongpamorn P, Forsythe A, Matsumoto A, Ōmura S, Pathom-aree W, Cheeptham N, Xu J. Taxonomic and Metabolite Diversities of Moss-Associated Actinobacteria from Thailand. Metabolites 2021; 12:metabo12010022. [PMID: 35050144 PMCID: PMC8777641 DOI: 10.3390/metabo12010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 01/08/2023] Open
Abstract
Actinobacteria are a group of ecologically important bacteria capable of producing diverse bioactive compounds. However, much remains unknown about the taxonomic and metabolic diversities of actinobacteria from many geographic regions and ecological niches. In this study, we report the isolation of actinobacteria from moss and moss-associated rhizosphere soils in Thailand. Among the 89 isolates analyzed for their bioactivities, 86 strains produced indole-3-acetic acid (IAA, ranging from 0.04 to 59.12 mg/L); 42 strains produced hydroxamate type of siderophore; 35 strains produced catecholate type of siderophore; 21 strains solubilized tricalcium phosphate; and many strains exhibited antagonistic activities against one to several of the seven selected plant, animal, and human pathogens. Overall, actinobacteria from the rhizosphere soil of mosses showed greater abilities to produce IAA and siderophores and to solubilize tricalcium phosphate than those from mosses. Among these 89 isolates, 37 were analyzed for their 16S rRNA gene sequences, which revealed their diverse phylogenetic distributions among seven genera, Streptomyces, Micromonospora, Nocardia, Actinoplanes, Saccharothrix, Streptosporangium, and Cryptosporangium. Furthermore, gas chromatography-mass spectrometry analyses of ethyl acetate crude extracts of three selected isolates with inhibitory effects against a methicillin-resistant Staphylococcus aureus strain revealed diverse metabolites with known antimicrobial activities. Together, our results demonstrate that actinobacteria from mosses in Thailand are taxonomically diverse and capable of producing a range of metabolites with plant-growth-promoting and microbial pathogen-inhibiting potentials.
Collapse
Affiliation(s)
- Chadabhorn Insuk
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.I.); (A.F.)
| | - Pornkanok Pongpamorn
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Adrian Forsythe
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.I.); (A.F.)
| | - Atsuko Matsumoto
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan; (A.M.); (S.Ō.)
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan; (A.M.); (S.Ō.)
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (W.P.-a.); (N.C.); (J.X.)
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
- Correspondence: (W.P.-a.); (N.C.); (J.X.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.I.); (A.F.)
- Correspondence: (W.P.-a.); (N.C.); (J.X.)
| |
Collapse
|
43
|
Ali M, Walait S, Farhan Ul Haque M, Mukhtar S. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68846-68861. [PMID: 34282546 DOI: 10.1007/s11356-021-15436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution especially heavy metal-contaminated soils adversely affects the microbial communities associated with the rhizosphere and phyllosphere of plants growing in these areas. In the current study, we identified and characterized the rhizospheric and phyllospheric bacterial strains from Avena fatua and Brachiaria reptans with the potential for antimicrobial activity and heavy metal resistance. A total of 18 bacterial strains from the rhizosphere and phyllosphere of A. fatua and 19 bacterial strains from the rhizosphere and phyllosphere of B. reptans were identified based on 16S rRNA sequence analysis. Bacterial genera, including Bacillus, Staphylococcus, Pseudomonas, and Enterobacter were dominant in the rhizosphere and phyllosphere of A. fatua and Bacillus, Marinobacter, Pseudomonas, Enterobacter, and Kocuria, were the dominating bacterial genera from the rhizosphere and phyllosphere of B. reptans. Most of the bacterial strains were resistant to heavy metals (Cd, Pb, and Cr) and showed antimicrobial activity against different pathogenic bacterial strains. The whole-genome sequence analysis of Pseudomonas putida BR-PH17, a strain isolated from the phyllosphere of B. reptans, was performed by using the Illumina sequencing approach. The BR-PH17 genome contained a chromosome with a size of 5774330 bp and a plasmid DNA with 80360 bp. In this genome, about 5368 predicted protein-coding sequences with 5539 total genes, 22 rRNAs, and 75 tRNA genes were identified. Functional analysis of chromosomal and plasmid DNA revealed a variety of enzymes and proteins involved in antibiotic resistance and biodegradation of complex organic pollutants. These results indicated that bacterial strains identified in this study could be utilized for bioremediation of heavy metal-contaminated soils and as a novel source of antimicrobial drugs.
Collapse
Affiliation(s)
- Muskan Ali
- Lahore College for Women University, Near Wapda Flats, Jail Rd, Jubilee Town, Lahore, Punjab, 54000, Pakistan
| | - Sadia Walait
- Riphah International University, Faisalabad, Adjacent Fish Farm, Satayana Rd, Faisalabad, Punjab, 44000, Pakistan
| | | | - Salma Mukhtar
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
44
|
Alves-Júnior M, de Sousa FO, Silva TF, Albino UB, Garcia MG, Moreira SMCDO, Vieira MRDS. Functional and morphological analysis of isolates of phylloplane and rhizoplane endophytic bacteria interacting in different cocoa production systems in the Amazon. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100039. [PMID: 34841330 PMCID: PMC8610332 DOI: 10.1016/j.crmicr.2021.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022] Open
Abstract
Endophytic bacteria colonize different internal tissues of plants without damaging their cells. They can establish themselves in the same niche as other microorganisms and develop antagonistic activities against phytopathogens. There is little research on the functional and morphological characterization of these bacteria in production systems in the Amazon. Thus, the objective of this work was to functionally and morphologically characterize endophytic bacteria isolated from cocoa trees (Theobroma cacao L.) and evaluate their antagonistic potential against phytopathogens. A total of 197 endophytic bacteria isolates were obtained from leaves and roots of cocoa plants with different production systems and at different times of the year. The characterization of functional groups consisted of proteolytic, amylolytic and cellulolytic activity and ability to fix nitrogen and solubilize phosphate. Morphological diversity was evaluated mainly according to the following parameters: shape, color, size and elevation of the colony. Thirteen isolates of endophytic bacteria, selected by cluster analysis, were used to evaluate the antagonistic potential in paired trials against four species of phytopathogenic fungi. The largest amount of endophytic bacteria was isolated from the root (95.9%), in the dry season. The most expressive activities with regards to the enzyme index were amylolytic (71.9%), proteolytic (70.2%) and nitrogen fixing (38.6%), respectively. The similarity analysis formed two clusters with isolates CS R 2.4 and CS R 2.25 exhibiting 100% similarity. Five isolates displayed inhibitory activity against phytopathogenic fungi, most notably isolate TS R 2.19, which exhibited antagonistic activity against all fungi and mycelial growth inhibition rates between 25.7% and 50.7%. Understanding the interaction between endophytes in cocoa plants is important as a possible additional tool in biological control. Our studies are incipient and the first to be carried out in different cocoa production systems in the state of Pará, Brazil.
Collapse
Affiliation(s)
- Miguel Alves-Júnior
- Faculty of Agronomic Engineering, Laboratory of Agricultural and Forestry Phytopathology, Federal University of Pará, Altamira, PA, 68372-040, Brazil
| | - Fabiana Oliveira de Sousa
- Faculty of Agronomic Engineering, Laboratory of Agricultural and Forestry Phytopathology, Federal University of Pará, Altamira, PA, 68372-040, Brazil
| | - Thays Ferreira Silva
- Faculty of Agronomic Engineering, Laboratory of Agricultural and Forestry Phytopathology, Federal University of Pará, Altamira, PA, 68372-040, Brazil
| | - Ulisses Brigatto Albino
- Faculty of Chemistry, Institute of Exact Sciences, Federal University of the South and Southeast of Pará, Marabá, PA 68507-590, Brazil
| | - Magali Gonçalves Garcia
- Faculty of Biological Sciences, Laboratory of Microbiology, Federal University of Pará, Altamira, PA 68372-040, Brazil
| | | | - Marcos Ribeiro da Silva Vieira
- Faculty of Agronomic Engineering, Laboratory of Physiology and Post-Harvest, Technology, Federal University of Pará, Altamira, PA 68372-040, Brazil
| |
Collapse
|
45
|
Zhang Z, Chai X, Tariq A, Zeng F, Li X, Graciano C. Intercropping Systems Modify Desert Plant-Associated Microbial Communities and Weaken Host Effects in a Hyper-Arid Desert. Front Microbiol 2021; 12:754453. [PMID: 34803977 PMCID: PMC8595258 DOI: 10.3389/fmicb.2021.754453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Intercropping is an important practice in promoting plant diversity and productivity. Compared to the accumulated understanding of the legume/non-legume crop intercrops, very little is known about the effect of this practice when applied to native species on soil microbial communities in the desert ecosystem. Therefore, in the present study, bulk soil and rhizosphere microbial communities in the 2-year Alhagi sparsifolia (legume)/Karelinia caspica (non-legume) monoculture vs. intercropping systems were characterized under field conditions. Our result revealed that plant species identities caused a significant effect on microbial community composition in monocultures but not in intercropping systems. Monoculture weakened the rhizosphere effect on fungal richness. The composition of bacterial and fungal communities (β-diversity) was significantly modified by intercropping, while bacterial richness (Chao1) was comparable between the two planting patterns. Network analysis revealed that Actinobacteria, α- and γ-proteobacteria dominated bulk soil and rhizosphere microbial co-occurrence networks in each planting pattern. Intercropping systems induced a more complex rhizosphere microbial community and a more modular and stable bulk soil microbial network. Keystone taxa prevailed in intercropping systems and were Actinobacteria-dominated. Overall, planting patterns and soil compartments, not plant identities, differentiated root-associated microbiomes. Intercropping can modify the co-occurrence patterns of bulk soil and rhizosphere microorganisms in desert ecosystems. These findings provided a potential strategy for us to manipulate desert soil microbial communities and optimize desert species allocation in vegetation sustainability.
Collapse
Affiliation(s)
- Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Cele, China
| | - Xutian Chai
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Cele, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Cele, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Cele, China
| | - Xiangyi Li
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Cele, China
| | - Corina Graciano
- Faculty of Agricultural and Forestry Sciences, Institute of Plant Physiology, National Council for Scientific and Technical Research, National University of La Plata, Buenos Aires, Argentina
| |
Collapse
|
46
|
Paradza VM, Khamis FM, Yusuf AA, Subramanian S, Ekesi S, Akutse KS. Endophytic Colonisation of Solanum lycopersicum and Phaseolus vulgaris by Fungal Endophytes Promotes Seedlings Growth and Hampers the Reproductive Traits, Development, and Survival of the Greenhouse Whitefly, Trialeurodes vaporariorum. FRONTIERS IN PLANT SCIENCE 2021; 12:771534. [PMID: 34868170 PMCID: PMC8640138 DOI: 10.3389/fpls.2021.771534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 06/01/2023]
Abstract
In the scope of mitigating the negative impacts of pesticide use and managing greenhouse whiteflies, Trialeurodes vaporariorum sustainably, 16 endophytic fungal isolates from five different genera (Beauveria, Trichoderma, Hypocrea, Bionectria, and Fusarium) were screened for their ability to colonise two preferred host plant species, namely, tomato (Solanum lycopersicum L.) and French bean (Phaseolus vulgaris L.), through seed inoculation. Seven and nine isolates were endophytic to P. vulgaris and S. lycopersicum, respectively, where significant differences in the endophytic colonisation rates were observed among the fungal isolates in P. vulgaris and its plant parts, with a significant interaction between the isolates and plant parts in S. lycopersicum. Hypocrea lixii F3ST1, Trichoderma asperellum M2RT4, Trichoderma atroviride F5S21, and T. harzianum KF2R41 successfully colonised all the plant parts of both hosts and therefore were selected and further evaluated for their endophytic persistence, effect on plant growth, and pathogenicity to T. vaporariorum adults and F1 progeny. The four endophytes remained in both host plants for the 5-week assessment with varied colonisation rates related to the strong interaction with the time, isolates, and plant parts in both hosts. The effect of the same endophytes on the different host growth parameters varied in P. vulgaris and S. lycopersicum, with T. asperellum M2RT4 not boosting the growth in both host plants while T. atroviride F5S21 resulted in enhanced shoot biomass in S. lycopersicum. T. atroviride F5S21 and T. harzianum KF2R41 inoculated S. lycopersicum plants and H. lixii F3ST1, T. asperellum M2RT4, and T. harzianum KF2R41 inoculated P. vulgaris plants had significantly lower oviposition, while nymph development in both hosts was significantly prolonged in all the endophytically-colonised plants. The endophytes H. lixii F3ST1 and T. asperellum M2RT4 significantly reduced the longevity/survival of the exposed T. vaporariorum adults and the progeny in both S. lycopersicum and P. vulgaris. The findings demonstrate the attributes of the various endophytes in host plant growth promotion as well as their effects on the life-history parameters of T. vaporariorum and could consequently be developed as potential endophytic fungal-based biopesticides for the sustainable management of the pest in S. lycopersicum and P. vulgaris cropping systems.
Collapse
Affiliation(s)
- Vongai M. Paradza
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Komivi S. Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
47
|
Streptomyces sp. S-9 promotes plant growth and confers resistance in Pigeon pea ( Cajanus cajan) against Fusarium wilt. 3 Biotech 2021; 11:459. [PMID: 34692368 DOI: 10.1007/s13205-021-02989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
Streptomyces sp. strain S-9 was studied for its effect in inducing systemic resistance in Pigeon pea against the plant pathogen Fusarium udum causing wilt. The 16S rRNA gene sequencing and phylogenetic analysis indicated that S-9 is closely related to genus Streptomyces for which it was referred to as Streptomyces sp. S-9. Streptomyces sp. S-9 caused 85% inhibition of the pathogen and showed various attributes of plant growth-promoting such as the production of IAA, P-solubilization, and β -1, 3-Glucanase activity. Proline and malondialdehyde (MDA) content was significantly higher whereas the chlorophyll content decreased in the pathogen-infected plant when compared to S-9 treated Pigeon pea plants. The anatomical research assisted the biocontrol-mediated stress tolerance findings in the Pigeon pea plant through increased root epidermis and enhanced stress-related xylem tissues. Fungus inoculation elevated the antioxidative enzymatic activities of superoxide dismutase (SOD; 78%) and catalase (CAT; 56%). Marked reductions in antioxidant enzymes were associated with the antagonistic effects of the different treatments. Conclusions showed that S-9 bioinocula applied as a seed coating enhanced soil availability of nitrogen (N), phosphate (P), and potassium (K), indicating their suitability for direct application invigorating plant growth and persuade resistance in the plant Pigeon pea against Fusarium wilt. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02989-0.
Collapse
|
48
|
Mechanism of Microbial Metabolite Leupeptin in the Treatment of COVID-19 by Traditional Chinese Medicine Herbs. mBio 2021; 12:e0222021. [PMID: 34579576 PMCID: PMC8546846 DOI: 10.1128/mbio.02220-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused huge deaths and economic losses worldwide in the current pandemic. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is thought to be an ideal drug target for treating COVID-19. Leupeptin, a broad-spectrum covalent inhibitor of serine, cysteine, and threonine proteases, showed inhibitory activity against Mpro, with a 50% inhibitory concentration (IC50) value of 127.2 μM in vitro in our study here. In addition, leupeptin can also inhibit SARS-CoV-2 in Vero cells, with 50% effective concentration (EC50) values of 42.34 μM. More importantly, various strains of streptomyces that have a broad symbiotic relationship with medicinal plants can produce leupeptin and leupeptin analogs to regulate autogenous proteases. Fingerprinting and structure elucidation using high-performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS), respectively, further proved that the Qing-Fei-Pai-Du (QFPD) decoction, a traditional Chinese medicine (TCM) formula for the effective treatment of COVID-19 during the period of the Wuhan outbreak, contains leupeptin. All these results indicate that leupeptin at least contributes to the antiviral activity of the QFPD decoction against SARS-CoV-2. This also reminds us to pay attention to the microbiomes in TCM herbs as streptomyces in the soil might produce leupeptin that will later infiltrate the medicinal plant. We propose that plants, microbiome, and microbial metabolites form an ecosystem for the effective components of TCM herbs.
Collapse
|
49
|
Yang D, Wang L, Wang T, Zhang Y, Zhang S, Luo Y. Plant Growth-Promoting Rhizobacteria HN6 Induced the Change and Reorganization of Fusarium Microflora in the Rhizosphere of Banana Seedlings to Construct a Healthy Banana Microflora. Front Microbiol 2021; 12:685408. [PMID: 34354685 PMCID: PMC8329250 DOI: 10.3389/fmicb.2021.685408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Streptomyces aureoverticillatus HN6 was isolated in our previous study and effectively controlled banana Fusarium wilt. We explored the role of HN6 in constructing a healthy rhizosphere microflora of banana seedlings. The method of antibiotic resistance was used to determine the colonization ability of HN6. The effect of HN6 on the rhizosphere microbial communities was assessed using culture-dependent and high-throughput sequencing. The effect of HN6 on the infection process of the pathogen was evaluated using a pot experiment and confocal laser scanning microscopy. The results showed that HN6 could prevent pathogen infection; it increased the nutrient content and diversity of the bacterial community in the rhizosphere, promoted plant growth, and decreased the mycotoxin fusaric acid content and abundance of pathogens in the banana rhizosphere. Thus, HN6 decreased the relative abundance of Fusarium species, increased the diversity of fungi, and increased the relative abundance of bacteria in the rhizosphere. HN6 induced the change and reorganization of the microbial community dominated by Fusarium in the rhizosphere of banana seedlings, and it evolved into a community dominated that was not conducive to the occurrence of diseases, shaping the rhizosphere microflora and promoting the growth of banana.
Collapse
Affiliation(s)
- Deyou Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Lanying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Tianhao Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Yunfei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Shujing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Yanping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
50
|
Mishra S, Goyal D, Phurailatpam L. Targeted 16S rRNA gene and ITS2 amplicon sequencing of leaf and spike tissues of Piper longum identifies new candidates for bioprospecting of bioactive compounds. Arch Microbiol 2021; 203:3851-3867. [PMID: 34013420 DOI: 10.1007/s00203-021-02356-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Piper longum (also known as Indian long pepper) is widely used in Ayurvedic, Siddha and Unani medicine systems. The principle bioactive compound of this plant is piperine, which mainly accumulates in the fruits called spikes. The report of piperine production by endophytic microbes isolated from Piper sp., motivated us to investigate the endophytic microbial diversity associated with the spikes vis-à-vis leaves (which contain negligible levels of piperine). This is the first report to use metagenomics approach to unravel the endophytic microbial diversity in P. longum. Our results indicate that 2, 56, 631 bacterial OTUs and 1090 fungal OTUs were picked cumulatively from both the tissues. Although bacterial and fungal endophytes occupy the same niche, remarkable differences exist in their diversity and abundance. For instance, the most abundant bacterial genera in spikes were Nocardioides and Pseudonocardia (Phylum Actinobacteria; reported to produce bioactive compounds); while, in leaves were Larkinella and Hymenobacter (Phylum Bacteriodetes). Likewise, the fungal endophytes, Periconia, Cladosporium and Coniothyrium (which have been earlier reported to produce commercially important metabolites including piperine), were also present in high abundance in spikes, in comparison to leaves. Further, the results of PICRUSt analysis reveal the high metabolic potential of spike-associated bacteria for secondary metabolism, namely biosynthesis of alkaloids (including pyridine/piperidine), terpenes, flavonoids and antibiotics. Therefore, our findings indicate that the endophytes abundant or unique in spikes could be explored for bioprospecting of novel/commercially important metabolites; an approach that has both ecological and economical benefits.
Collapse
Affiliation(s)
- Sushma Mishra
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, India.
| | - Deepika Goyal
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, India
| | - Laccy Phurailatpam
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, India
| |
Collapse
|