1
|
Xie X, Huang R, Zhang W, Zhang R. Semi-rational engineering of 7β-hydroxysteroid dehydrogenase enhances forward reaction activity towards ursodeoxycholic acid synthesis. Int J Biol Macromol 2024; 293:139329. [PMID: 39743101 DOI: 10.1016/j.ijbiomac.2024.139329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
7β-Hydroxysteroid dehydrogenase (7β-HSDH) catalyzes the reversible reaction between 7-ketolithocholic acid (7K-LCA) and ursodeoxycholic acid (UDCA). However, its much lower forward reaction activity led to the unsatisfactory UDCA production. Here, by autodocking 7K-LCA and UDCA into the structure of Hyphomicrobium sp. 7β-hydroxysteroid dehydrogenase (Hs7β-HSDH) respectively, several key amino acids in the substrate/product channel were identified for virtual mutagenesis. After three-round screening, a dominant mutant F152L/W101N was obtained, which increased forward reaction activity by 3.2-fold and decreased reverse reaction activity by 3.6-fold under optimal conditions: pH 7.5 and 30 °C. Compared to the wild-type, the mutant significantly improved the binding affinity (Km) and kcat/Km by 3.2-fold and 4.3-fold towards 7K-LCA. Moreover, glucose dehydrogenase-based cofactor regeneration system was integrated into the Hs7β-HSDH-mediated UDCA synthesis pathway. The enzyme-coupled system achieved a yield of 92.8 % with 1 mM NADH, and it maintained an average yield of 89.2 % with a theoretical space-time yield of 171 g/L/d UDCA even after four batches. This work semi-rationally designs 7β-HSDH affinity with the substrate and product, and rebalance the forward and reverse reaction activity to effectively improve UDCA production, which supplies a good strategy for the efficient preparation of target product in the reversible reaction.
Collapse
Affiliation(s)
- Xiubing Xie
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Runyi Huang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rongzhen Zhang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yang Y, Gao W, Zhu R, Tao L, Chen W, Zhu X, Shen M, Xu T, Zhao T, Zhang X, Zhu L, Jiao N. Systematic identification of secondary bile acid production genes in global microbiome. mSystems 2024:e0081724. [PMID: 39688414 DOI: 10.1128/msystems.00817-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Microbial metabolism of bile acids (BAs) is crucial for maintaining homeostasis in vertebrate hosts and environments. Although certain organisms involved in bile acid metabolism have been identified, a global, comprehensive elucidation of the microbes, metabolic enzymes, and bile acid remains incomplete. To bridge this gap, we employed hidden Markov models to systematically search in a large-scale and high-quality search library comprising 28,813 RefSeq multi-kingdom microbial complete genomes, enabling us to construct a secondary bile acid production gene catalog. This catalog greatly expanded the distribution of secondary bile acid production genes across 11 phyla, encompassing bacteria, archaea, and fungi, and extended to 14 habitats spanning hosts and environmental contexts. Furthermore, we highlighted the associations between secondary bile acids (SBAs) and gastrointestinal and hepatic disorders, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and nonalcoholic fatty liver disease (NAFLD), further elucidating disease-specific alterations in secondary bile acid production genes. Additionally, we proposed the pig as a particularly suitable animal model for investigating secondary bile acid production in humans, given its closely aligned secondary bile acid production gene composition. This gene catalog provides a comprehensive and reliable foundation for future studies on microbial bile acid metabolism, offering new insights into the microbial contributions to health and disease. IMPORTANCE Bile acid metabolism is an important function in both host and environmental microorganisms. The existing functional annotations from single source pose limitations on cross-habitat analysis. Our construction of a systematic secondary bile acid production gene catalog encompassing numerous high-quality reference sequences propelled research on bile acid metabolism in the global microbiome, holding significance for the concept of One Health. We further highlighted the potential of the microbiota-secondary bile acid axis as a target for the treatment of hepatic and intestinal diseases, as well as the varying feasibility of using animal models for studying human bile acid metabolism. This gene catalog offers a solid groundwork for investigating microbial bile acid metabolism across different compartments, including humans, animals, plants, and environments, shedding light on the contributions of microorganisms to One Health.
Collapse
Affiliation(s)
- Yuwei Yang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenxing Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liwen Tao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wanning Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyue Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengping Shen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tingjun Xu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Zhao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Research Institute, GloriousMed Clinical Laboratory Co, Ltd, Shanghai, China
| | - Xiaobai Zhang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixin Zhu
- Department of General Surgery, The Six Affiliated Hospital, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Sun Yat-Sen University, Guangzhou, China
| | - Na Jiao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Xiao Y, Shi Y, Ni Y, Ni M, Yang Y, Zhang X. Gestational diabetes-combined excess weight gain exacerbates gut microbiota dysbiosis in newborns, associated with reduced abundance of Clostridium, Coriobacteriaceae, and Collinsella. Front Cell Infect Microbiol 2024; 14:1496447. [PMID: 39726807 PMCID: PMC11670820 DOI: 10.3389/fcimb.2024.1496447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background Existing literature indicates that Gestational diabetes mellitus (GDM) and maternal obesity disrupt the normal colonization of the neonatal gut microbiota alone. Still, the combined impact of GDM and excessive gestational weight gain (EGWG) on this process remains under explored. The association between gestational weight gain before/after GDM diagnosis and neonatal gut microbiota characteristics is also unclear.The purpose of this study is to conduct investigation and analysis on the above-mentioned issues, providing a basis for optimizing clinical management plans. Methods This study involved 98 mother-infant pairs categorized into GDM and non-GDM groups. The GDM group was further subdivided based on gestational weight gain (GWG) into normal (GDM+NGWG) and excessive (GDM+EGWG) weight gain groups. Neonatal stool samples were collected within 24 hours post-delivery for gut microbiota profiling through 16S rRNA gene sequencing. Statistical analyses explored correlations between total GWG/BMI gain and those before/after GDM diagnosis (t-GWG/GBG; b-GWG/GBG; a-GWG/GBG) with key bacterial taxa. Results Notable genus-level changes included enrichment of Escherichia and Klebsiella, and depletion of Bacteroides, Bifidobacterium, Coprococcus, Ruminococcus among GDM-Total and GDM+EGWG groups compared to non-GDM. Further,LEfSe analysis identified 30 differential bacteria taxa between GDM-Total and healthy control groups, which increased to 38 between GDM+EGWG and non-GDM groups, highlighting more pronounced microbial shifts associated with EGWG. Clostridium was negatively correlated with t-GWG and newborn birth weight; The Coriobacteriaceae showed a negative correlation with t-GWG, t-GBG, and a-GBG. Additionally,Collinsella exhibited negative correlations with t-GBG and a-GBG. Conclusion This study has identified that the presence of EGWG in GDM mothers further exacerbated neonatal gut microbial perturbations. Total GWG/GBG and those after the diagnosis of GDM were negatively correlated with the abundance of neonatal gut Clostridium, Coriobacteriaceae, and Collinsella. These findings provide new insights for precise prevention and management of GDM.
Collapse
Affiliation(s)
- Yunshan Xiao
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen Obstetric Quality Management Center, Xiamen, China
| | - Yuan Shi
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen Obstetric Quality Management Center, Xiamen, China
| | - Yan Ni
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Meilan Ni
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yuxin Yang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen Obstetric Quality Management Center, Xiamen, China
| |
Collapse
|
4
|
Liu P, Jin M, Hu P, Sun W, Tang Y, Wu J, Zhang D, Yang L, He H, Xu X. Gut microbiota and bile acids: Metabolic interactions and impacts on diabetic kidney disease. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100315. [PMID: 39726973 PMCID: PMC11670419 DOI: 10.1016/j.crmicr.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The intestinal microbiota comprises approximately 1013-1014 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes. These modified BA then activate specific receptors that regulate multiple metabolic pathways in the host, such as lipid and glucose metabolism, energy balance, inflammatory response, and cell proliferation and death. Recent attention has been given to intestinal flora disorders in diabetic kidney disease (DKD), where activation of BA receptors has shown promise in alleviating diabetic kidney damage by modulating renal lipid metabolism and mitochondrial production. Imbalances in the intestinal flora can influence the progression of DKD through the regulation of bile acid and its receptor pathways. This review aims to propose a mechanism involving the gut-BA-diabetes and nephropathy axes with the goal of optimizing new strategies for treating DKD.
Collapse
Affiliation(s)
| | | | - Ping Hu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiqian Sun
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiajun Wu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dongliang Zhang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Licai Yang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xudong Xu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Xie X, Huang R, Zhang W, Zhang R. Cofactor-dependence alteration of 7β-hydroxysteroid dehydrogenase: Enhancing one-pot synthesis efficiency of chenodeoxycholic acid to ursodeoxycholic acid through cofactor self-recycling. Int J Biol Macromol 2024; 280:136328. [PMID: 39378924 DOI: 10.1016/j.ijbiomac.2024.136328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
NAD+-dependent 7α-hydroxysteroid dehydrogenase (7α-HSDH) and NADPH-dependent 7β-hydroxysteroid dehydrogenase (7β-HSDH) are involved in the biosynthesis of chenodeoxycholic acid (CDCA) to ursodeoxycholic acid (UDCA). To realize the one-pot synthesis of CDCA to UDCA through NAD+-NADH cycling, we aimed to improve the binding ability of Hyphomicrobium sp. 7β-HSDH to NADH. The 7β-HSDH structure was modeled and some potential residues to improve NADH affinity near conserved cofactor binding regions were screened, including Ala22, Gln23, Asn24, Asp44, Leu45, and Asn46. The dominant mutant A22T/Q23E/L45A/N46E significantly enhanced the binding affinity for NADH, resulting in a 44.9-fold increase in its kcat/Km value. It increased enzymatic activity by 65.2-fold and catalyzed the synthesis of UDCA at a yield of 77.6 % with 5 g/L 7K-LCA and 12.5 mM NADH. Molecular dynamics simulations indicated increased interactions of mutated 7β-HSDH and the ligand NADH by their spatially reduced binding distance and reaction energy. The modified cofactor-dependence of 7β-HSDH realized efficient one-pot synthesis of CDCA to UDCA through strengthening cofactor-recycling and reducing the use of cofactor, achieving 90.1 % UDCA yield and 54.1 g/L/d spatiotemporal yield when coupled with 7α-HSDH with only 0.5 mM NAD+ as coenzyme. This work also supplies a universal cofactor-dependence engineering technique for homologous HSDH enzymes.
Collapse
Affiliation(s)
- Xiubing Xie
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Runyi Huang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rongzhen Zhang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Li WJ, Yao C, Han L, Zhou JH, Pang RM. Causal Relationship Between Gut Microbiota and Chronic Obstructive Pulmonary Disease: A Bidirectional Two-Sample Mendelian Randomization Study. Int J Chron Obstruct Pulmon Dis 2024; 19:1957-1969. [PMID: 39247666 PMCID: PMC11379542 DOI: 10.2147/copd.s464917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/20/2024] [Indexed: 09/10/2024] Open
Abstract
Background The associations between gut microbiota and chronic obstructive pulmonary disease (COPD) have gained increasing attention and research interest among scholars. However, it remains unclear whether gut microbiota serves as a causal factor for COPD or if it is a consequence of the disease. Therefore, we investigated the causal relationship between COPD and gut microbiota, with intention of providing novel insights and references for clinical diagnosis and treatment. Methods Based on the genome-wide association study (GWAS) data, we employed MR-Egger regression, random-effects inverse variance-weighted (IVW) method, and weighted median method for bidirectional Mendelian randomization (MR) analysis. We conducted Cochran's Q test for heterogeneity assessment and performed multivariable analysis, sensitivity analysis, and heterogeneity testing to validate the reliability and stability of results. Results Utilizing MR analysis, mainly employing the IVW method, we detected a collective of 11 gut microbiota species that exhibited associations with COPD. Among them, Bacteroidia, family XIII, Clostridium innocuum group, Barnesiella, Collinsella, Lachnospiraceae NK4A136 group, Lachnospiraceae UCG004, Lachnospiraceae UCG010, and Bacteroidales were found to be protective factors for COPD. On the other hand, Holdemanella and Marvinbryantia were identified as risk factors for COPD. Individuals with elevated levels of Holdemanella exhibited a 1.141-fold higher risk of developing COPD compared to their healthy counterparts, and those with increased levels of Marvinbryantia had a 1.154-fold higher risk. Reverse MR analysis yielded no evidence indicating a causal relationship between gut microbiota and COPD occurrence. Conclusion Our study established a causal link between 11 specific gut microbiota species and COPD, offering novel insights and valuable references for targeted therapies in the clinical management of COPD. However, our results were mainly based on the analysis of database, and further clinical studies are needed to clarify the effects of gut microbiota on COPD and its specific protective mechanism.
Collapse
Affiliation(s)
- Wen-Jia Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| | - Chen Yao
- Department of Orthopedics and Traumatology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| | - Lu Han
- Department of Pulmonary and Critical Care Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| | - Ji-Hong Zhou
- Department of Pulmonary and Critical Care Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| | - Rui-Ming Pang
- Department of Orthopedics and Traumatology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen City, People's Republic of China
| |
Collapse
|
7
|
Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024; 13:702. [PMID: 39204302 PMCID: PMC11356816 DOI: 10.3390/pathogens13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) play a crucial role in the human body's defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group's previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.
Collapse
Affiliation(s)
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| |
Collapse
|
8
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
9
|
Wang MQ, You ZN, Yang BY, Xia ZW, Chen Q, Pan J, Li CX, Xu JH. Machine-Learning-Guided Engineering of an NADH-Dependent 7β-Hydroxysteroid Dehydrogenase for Economic Synthesis of Ursodeoxycholic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19672-19681. [PMID: 38016669 DOI: 10.1021/acs.jafc.3c06339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Enzymatic synthesis of ursodeoxycholic acid (UDCA) catalyzed by an NADH-dependent 7β-hydroxysteroid dehydrogenase (7β-HSDH) is more economic compared with an NADPH-dependent 7β-HSDH when considering the much higher cost of NADP+/NADPH than that of NAD+/NADH. However, the poor catalytic performance of NADH-dependent 7β-HSDH significantly limits its practical applications. Herein, machine-learning-guided protein engineering was performed on an NADH-dependent Rt7β-HSDHM0 from Ruminococcus torques. We combined random forest, Gaussian Naïve Bayes classifier, and Gaussian process regression with limited experimental data, resulting in the best variant Rt7β-HSDHM3 (R40I/R41K/F94Y/S196A/Y253F) with improvements in specific activity and half-life (40 °C) by 4.1-fold and 8.3-fold, respectively. The preparative biotransformation using a "two stage in one pot" sequential process coupled with Rt7β-HSDHM3 exhibited a space-time yield (STY) of 192 g L-1 d-1, which is so far the highest productivity for the biosynthesis of UDCA from chenodeoxycholic acid (CDCA) with NAD+ as a cofactor. More importantly, the cost of raw materials for the enzymatic production of UDCA employing Rt7β-HSDHM3 decreased by 22% in contrast to that of Rt7β-HSDHM0, indicating the tremendous potential of the variant Rt7β-HSDHM3 for more efficient and economic production of UDCA.
Collapse
Affiliation(s)
- Mu-Qiang Wang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhi-Neng You
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Bing-Yi Yang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zi-Wei Xia
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Song P, Zhang X, Feng W, Xu W, Wu C, Xie S, Yu S, Fu R. Biological synthesis of ursodeoxycholic acid. Front Microbiol 2023; 14:1140662. [PMID: 36910199 PMCID: PMC9998936 DOI: 10.3389/fmicb.2023.1140662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a fundamental treatment drug for numerous hepatobiliary diseases that also has adjuvant therapeutic effects on certain cancers and neurological diseases. Chemical UDCA synthesis is environmentally unfriendly with low yields. Biological UDCA synthesis by free-enzyme catalysis or whole-cell synthesis using inexpensive and readily available chenodeoxycholic acid (CDCA), cholic acid (CA), or lithocholic acid (LCA) as substrates is being developed. The free enzyme-catalyzed one-pot, one-step/two-step method uses hydroxysteroid dehydrogenase (HSDH); whole-cell synthesis, mainly uses engineered bacteria (mainly Escherichia coli) expressing the relevant HSDHs. To further develop these methods, HSDHs with specific coenzyme dependence, high enzyme activity, good stability, and high substrate loading concentration, P450 monooxygenase with C-7 hydroxylation activity and engineered strain harboring HSDHs must be exploited.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Feng
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Chaoyun Wu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Shaoqing Xie
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Sisi Yu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| |
Collapse
|
11
|
Huang B, Yang K, Amanze C, Yan Z, Zhou H, Liu X, Qiu G, Zeng W. Sequence and structure-guided discovery of a novel NADH-dependent 7β-hydroxysteroid dehydrogenase for efficient biosynthesis of ursodeoxycholic acid. Bioorg Chem 2023; 131:106340. [PMID: 36586301 DOI: 10.1016/j.bioorg.2022.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
7β-Hydroxysteroid dehydrogenases (7β-HSDHs) have attracted increasing attention due to their crucial roles in the biosynthesis of ursodeoxycholic acid (UDCA). However, most published 7β-HSDHs are strictly NADPH-dependent oxidoreductases with poor activity and low productivity. Compared with NADPH, NADH is more stable and cheaper, making it the more popular cofactor for industrial applications of dehydrogenases. Herein, by using a sequence and structure-guided genome mining approach based on the structural information of conserved cofactor-binding motifs, we uncovered a novel NADH-dependent 7β-HSDH (Cle7β-HSDH). The Cle7β-HSDH was overexpressed, purified, and characterized. It exhibited high specific activity (9.6 U/mg), good pH stability and thermostability, significant methanol tolerance, and showed excellent catalytic efficiencies (kcat/Km) towards 7-oxo-lithocholic acid (7-oxo-LCA) and NADH (70.8 mM-1s-1 and 31.8 mM-1s-1, respectively). Molecular docking and mutational analyses revealed that Asp42 could play a considerable role in NADH binding and recognition. Coupling with a glucose dehydrogenase for NADH regeneration, up to 20 mM 7-oxo-LCA could be completely transformed to UDCA within 90 min by Cle7β-HSDH. This study provides an efficient approach for mining promising enzymes from genomic databases for cost-effective biotechnological applications.
Collapse
Affiliation(s)
- Bin Huang
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Zhen Yan
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China.
| |
Collapse
|
12
|
He Z, Ma Y, Yang S, Zhang S, Liu S, Xiao J, Wang Y, Wang W, Yang H, Li S, Cao Z. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. MICROBIOME 2022; 10:79. [PMID: 35643532 PMCID: PMC9142728 DOI: 10.1186/s40168-022-01269-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/06/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Antimicrobials are often used to prevent and treat diarrhea induced by enteroaggregative Escherichia coli (EAEC) in young ruminants. However, drug overuse or misuse accelerates the spread of multidrug-resistant extended-spectrum β-lactamase (ESBL)-producing E. coli. Thus, supplementary foods as alternatives to antibiotics are needed to prevent colibacillus diarrhea in neonatal dairy calves. Ursodeoxycholic acid (UDCA), a therapeutic bile acid, helps alleviate colitis. However, how UDCA helps alleviate ESBL-EAEC-induced clinical symptoms and colitis remains unclear. RESULTS We investigated the microbial profiles and metabolites of healthy and diarrheic neonatal calves to determine microbial and metabolite biomarkers in early-life development. Both the gut microbiota communities and their associated metabolites differed between healthy and diarrheic calves. Commensal Butyricicoccus, Faecalibacterium, Ruminococcus, Collinsella, and Coriobacterium were key microbial markers that distinguished healthy and diarrheic gut microbiomes. Random forest machine-learning algorithm and Spearman correlation results indicated that enriched UDCA, short-chain fatty acids (SCFAs), and other prebiotics were strongly positively correlated with these five bacterial genera. We explored the effect of ursodiol on bacterial growth, cell adherence, and lipopolysaccharide-treated Caco-2 cells. Adding ursodiol induced direct antibacterial effects, suppressed proinflammatory effects, and reduced cell integrity damage. Oral ursodiol delivery to neonatal mice exhibited significant antibacterial effects and helped maintain colonic barrier integrity in mouse models of peritonitis sepsis and oral infection. UDCA supplementation attenuated colitis and recovered colonic SCFA production. To validate this, we performed fecal microbiota transplantations to inoculate ESBL-EAEC-infected neonatal mice. Microbiotas from UDCA-treated neonatal mice ameliorated colitis and hindgut commensal bacterial damage compared with that of the microbiotas from the control and placebo mice, as evidenced by colonization of abundant bacteria, including Oscillospiraceae, Ruminococcaceae, Lachnospiraceae, and Clostridia_UCG-014, and upregulated SCFA production. CONCLUSIONS This study provided the first evidence that UDCA could confer diarrhea resistance in ESBL-EAEC-infected newborn dairy calves. UDCA blocked bacterial growth and invasion both in vitro and in vivo, alleviated commensal bacterial dysbiosis during ESBL-EAEC infection in neonatal mouse models of sepsis and colitis via the TGR5-NF-κB axis, and upregulated SCFA production in the hindgut digesta. Our findings provide insight into the UDCA-mediated remission of ESBL-EAEC infections and the potential role of UDCA as an antibiotic alternative. Video abstract.
Collapse
Affiliation(s)
- Zhiyuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Sirui Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuyuan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Lin Z, Ma X. Dietary nutrients mediate crosstalk between bile acids and gut microbes in animal host metabolism. Crit Rev Food Sci Nutr 2022; 63:9315-9329. [PMID: 35507502 DOI: 10.1080/10408398.2022.2067118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bile acids (BAs) are synthesized by liver, then gut microbes embellish primary BAs into secondary BAs with diverse and biological functions. Over the past few decades, amounts of evidences demonstrated the importance of gut microbes in BA metabolism. There is also significant evidence that BAs are regarded as cell signals in gut-liver, gut-brain, and gut-testis axis. Moreover, the interaction between BAs and gut microbes plays a key role not only in the absorption and metabolism of nutrients, but the regulation of immune function. Herein, we collected the major information of the BA metabolism-related bacteria, nutrients, and cell signals, focused on the possible molecular mechanisms by "Microbes-Bile acids" crosstalk, highlighted the gut-liver, gut-brain, and gut-testis axis, and discussed the possibility and application of the regulation of BA metabolism by nutrients.
Collapse
Affiliation(s)
- Zishen Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Abstract
Bile acids are detergent molecules that solubilize dietary lipids and lipid-soluble vitamins. Humans synthesize bile acids with α-orientation hydroxyl groups which can be biotransformed by gut microbiota to toxic, hydrophobic bile acids, such as deoxycholic acid (DCA). Gut microbiota can also convert hydroxyl groups from the α-orientation through an oxo-intermediate to the β-orientation, resulting in more hydrophilic, less toxic bile acids. This interconversion is catalyzed by regio- (C-3 vs. C-7) and stereospecific (α vs. β) hydroxysteroid dehydrogenases (HSDHs). So far, genes encoding the urso- (7α-HSDH & 7β-HSDH) and iso- (3α-HSDH & 3β-HSDH) bile acid pathways have been described. Recently, multiple human gut clostridia were reported to encode 12α-HSDH, which interconverts DCA and 12-oxolithocholic acid (12-oxoLCA). 12β-HSDH completes the epi-bile acid pathway by converting 12-oxoLCA to the 12β-bile acid denoted epiDCA; however, a gene(s) encoding this enzyme has yet to be identified. We confirmed 12β-HSDH activity in cultures of Clostridium paraputrificum ATCC 25780. From six candidate C. paraputrificum ATCC 25780 oxidoreductase genes, we discovered the first gene (DR024_RS09610) encoding bile acid 12β-HSDH. Phylogenetic analysis revealed unforeseen diversity for 12β-HSDH, leading to validation of two additional bile acid 12β-HSDHs through a synthetic biology approach. By comparison to a previous phylogenetic analysis of 12α-HSDH, we identified the first potential C-12 epimerizing strains: Collinsella tanakaei YIT 12063 and Collinsella stercoris DSM 13279. A Hidden Markov Model search against human gut metagenomes located putative 12β-HSDH genes in about 30% of subjects within the cohorts analyzed, indicating this gene is relevant in the human gut microbiome.
Collapse
Affiliation(s)
- Heidi L. Doden
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Patricia G. Wolf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Institute for Health Research and Policy, University of Illinois, Chicago, IL, USA,Cancer Education and Career Development Program, University of Illinois, Chicago, IL, USA
| | - H. Rex Gaskins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Cancer Center at Illinois, Urbana, IL, USA
| | | | - João M. P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jason M. Ridlon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Cancer Center at Illinois, Urbana, IL, USA,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,CONTACT Jason M. Ridlon Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| |
Collapse
|
15
|
Hirayama M, Nishiwaki H, Hamaguchi T, Ito M, Ueyama J, Maeda T, Kashihara K, Tsuboi Y, Ohno K. Intestinal Collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate. PLoS One 2021; 16:e0260451. [PMID: 34813629 PMCID: PMC8610263 DOI: 10.1371/journal.pone.0260451] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The mortality rates of COVID-19 vary widely across countries, but the underlying mechanisms remain unelucidated. We aimed at the elucidation of relationship between gut microbiota and the mortality rates of COVID-19 across countries. Raw sequencing data of 16S rRNA V3-V5 regions of gut microbiota in 953 healthy subjects in ten countries were obtained from the public database. We made a generalized linear model (GLM) to predict the COVID-19 mortality rates using gut microbiota. GLM revealed that low genus Collinsella predicted high COVID-19 mortality rates with a markedly low p-value. Unsupervised clustering of gut microbiota in 953 subjects yielded five enterotypes. The mortality rates were increased from enterotypes 1 to 5, whereas the abundances of Collinsella were decreased from enterotypes 1 to 5 except for enterotype 2. Collinsella produces ursodeoxycholate. Ursodeoxycholate was previously reported to inhibit binding of SARS-CoV-2 to angiotensin-converting enzyme 2; suppress pro-inflammatory cytokines like TNF-α, IL-1β, IL-2, IL-4, and IL-6; have antioxidant and anti-apoptotic effects; and increase alveolar fluid clearance in acute respiratory distress syndrome. Ursodeoxycholate produced by Collinsella may prevent COVID-19 infection and ameliorate acute respiratory distress syndrome in COVID-19 by suppressing cytokine storm syndrome.
Collapse
Affiliation(s)
- Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MH); (KO)
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MH); (KO)
| |
Collapse
|
16
|
Yamamoto T, Hasegawa Y, Lau PCK, Iwaki H. Identification and characterization of a chc gene cluster responsible for the aromatization pathway of cyclohexanecarboxylate degradation in Sinomonas cyclohexanicum ATCC 51369. J Biosci Bioeng 2021; 132:621-629. [PMID: 34583900 DOI: 10.1016/j.jbiosc.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022]
Abstract
Cyclohexanecarboxylate (CHCA) is formed by oxidative microbial degradation of n-alkylcycloparaffins and anaerobic degradation of benzoate, and also known to be a synthetic intermediate or the starter unit of biosynthesis of cellular constituents and secondary metabolites. Although two degradation pathways have been proposed, genetic information has been limited to the β-oxidation-like pathway. In this study, we identified a gene cluster, designated chcC1XTC2B1B2RAaAbAc, that is responsible for the CHCA aromatization pathway in Sinomonas (formerly Corynebacterium) cyclohexanicum strain ATCC 51369. Reverse transcription-PCR analysis indicated that the chc gene cluster is inducible by CHCA and that it consists of two transcriptional units, chcC1XTC2B1B2R and chcAaAbAc. Overexpression of the various genes in Escherichia coli, and purification of the recombinant proteins led to the functional characterization of ChcAaAbAc as subunits of a cytochrome P450 system responsible for CHCA hydroxylation; ChcB1 and ChcB2 as trans-4-hydroxyCHCA and cis-4-hydroxyCHCA dehydrogenases, respectively; ChcC1 was identified as a 4-oxoCHCA desaturase containing a covalently bound FAD; and ChcC2 was identified as a 4-oxocyclohexenecarboxylate desaturase. The binding constant of ChcAa for CHCA was found to be 0.37 mM. Kinetic parameters established for ChcB1 indicated that it has a high catalytic efficiency towards 4-oxoCHCA compared to trans- or cis-4-hydroxyCHCA. The Km and Kcat values of ChcC1 for 4-oxoCHCA were 0.39 mM and 44 s-1, respectively. Taken together with previous work on the identification of a pobA gene encoding a 4-hydroxybenzoate hydroxylase, we have now localized the remaining set of genes for the final degradation of protocatechuate before entry into the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Taisei Yamamoto
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yoshie Hasegawa
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Peter C K Lau
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Hiroaki Iwaki
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
17
|
Lucas LN, Barrett K, Kerby RL, Zhang Q, Cattaneo LE, Stevenson D, Rey FE, Amador-Noguez D. Dominant Bacterial Phyla from the Human Gut Show Widespread Ability To Transform and Conjugate Bile Acids. mSystems 2021; 6:e0080521. [PMID: 34463573 DOI: 10.1128/msystems.00805-21] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Gut bacteria influence human physiology by chemically modifying host-synthesized primary bile acids. These modified bile acids, known as secondary bile acids, can act as signaling molecules that modulate host lipid, glucose, and energy metabolism and affect gut microbiota composition via selective antimicrobial properties. However, knowledge regarding the bile acid-transforming capabilities of individual gut microbes remains limited. To help address this knowledge gap, we screened 72 bacterial isolates, spanning seven major phyla commonly found in the human gut, for their ability to chemically modify unconjugated bile acids. We found that 43 isolates, representing 41 species, were capable of in vitro modification of one or more of the three most abundant unconjugated bile acids in humans: cholic acid, chenodeoxycholic acid, and deoxycholic acid. Of these, 32 species have not been previously described as bile acid transformers. The most prevalent bile acid transformations detected were oxidation of 3α-, 7α-, or 12α-hydroxyl groups on the steroid core, a reaction catalyzed by hydroxysteroid dehydrogenases. In addition, we found 7α-dehydroxylation activity to be distributed across various bacterial genera, and we observed several other complex bile acid transformations. Finally, our screen revealed widespread bacterial conjugation of primary and secondary bile acids to glycine, a process that was thought to only occur in the liver, and to 15 other amino acids, resulting in the discovery of 44 novel microbially conjugated bile acids. IMPORTANCE Our current knowledge regarding microbial bile acid transformations comes primarily from biochemical studies on a relatively small number of species or from bioinformatic predictions that rely on homology to known bile acid-transforming enzyme sequences. Therefore, much remains to be learned regarding the variety of bile acid transformations and their representation across gut microbial species. By carrying out a systematic investigation of bacterial species commonly found in the human intestinal tract, this study helps better define the gut bacteria that impact composition of the bile acid pool, which has implications in the context of metabolic disorders and cancers of the digestive tract. Our results greatly expand upon the list of bacterial species known to perform different types of bile acid transformations. This knowledge will be vital for assessing the causal connections between the microbiome, bile acid pool composition, and human health.
Collapse
Affiliation(s)
- L N Lucas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - K Barrett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Q Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - L E Cattaneo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - D Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - F E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - D Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Lou D, Liu X, Tan J. An Overview of 7α- and 7β-Hydroxysteroid Dehydrogenases: Structure, Specificity and Practical Application. Protein Pept Lett 2021; 28:1206-1219. [PMID: 34397319 DOI: 10.2174/0929866528666210816114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
7α-Hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase are key enzymes involved in bile acid metabolism. They catalyze the epimerization of a hydroxyl group through 7-keto bile acid intermediates. Basic research of the two enzymes has focused on exploring new enzymes and the structure-function relationship. The application research focused on the in vitro biosynthesis of bile acid drugs and the exploration and improvement of their catalytic ability based on molecular engineering. This article summarized the primary and advanced structural characteristics, specificities, biochemical properties, and applications of the two enzymes. The emphasis is also given to obtaining of novel 7α-hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase that are thermally stable and active in the presence of organic solvents, high substrate concentration, and extreme pH values. To achieve these goals, enzyme redesigning based on protein engineering and genomics may be the most useful approaches.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
19
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
20
|
Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. MICROBIOME 2021; 9:140. [PMID: 34127070 PMCID: PMC8204491 DOI: 10.1186/s40168-021-01101-1] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Bile acids play key roles in gut metabolism, cell signaling, and microbiome composition. While the liver is responsible for the production of primary bile acids, microbes in the gut modify these compounds into myriad forms that greatly increase their diversity and biological function. Since the early 1960s, microbes have been known to transform human bile acids in four distinct ways: deconjugation of the amino acids glycine or taurine, and dehydroxylation, dehydrogenation, and epimerization of the cholesterol core. Alterations in the chemistry of these secondary bile acids have been linked to several diseases, such as cirrhosis, inflammatory bowel disease, and cancer. In addition to the previously known transformations, a recent study has shown that members of our gut microbiota are also able to conjugate amino acids to bile acids, representing a new set of "microbially conjugated bile acids." This new finding greatly influences the diversity of bile acids in the mammalian gut, but the effects on host physiology and microbial dynamics are mostly unknown. This review focuses on recent discoveries investigating microbial mechanisms of human bile acids and explores the chemical diversity that may exist in bile acid structures in light of the new discovery of microbial conjugations. Video Abstract.
Collapse
Affiliation(s)
- Douglas V. Guzior
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Robert A. Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
21
|
Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021; 9:microorganisms9030469. [PMID: 33668351 PMCID: PMC7996314 DOI: 10.3390/microorganisms9030469] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases (HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids from α-hydroxy conformations to β-hydroxy, or β-hydroxy to ω-hydroxy in the case of ω-muricholic acid. These reactions often result in products with drastically different physicochemical properties than their precursors, which can result in steroids being activators or inhibitors of host receptors, can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may have therapeutic potential as steroid pool modulators or druggable targets in the future. In this review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by microbial HSDHs.
Collapse
|
22
|
Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT. Modifikation der Regioselektivität einer P450‐Monooxygenase ermöglicht die Synthese von Ursodeoxycholsäure durch die 7β‐Hydroxylierung von Lithocholsäure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sascha Grobe
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Christoffel P. S. Badenhorst
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Thomas Bayer
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Emil Hamnevik
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Shuke Wu
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Christoph W. Grathwol
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Deutschland
| | - Andreas Link
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Deutschland
| | - Sven Koban
- Enzymicals AG Walther-Rathenau-Str. 49 17487 Greifswald Deutschland
| | - Henrike Brundiek
- Enzymicals AG Walther-Rathenau-Str. 49 17487 Greifswald Deutschland
| | - Beatrice Großjohann
- HERBRAND PharmaChemicals GmbH, Betriebsstätte Anklam An der Redoute 1 17390 Murchin Deutschland
| | - Uwe T. Bornscheuer
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| |
Collapse
|
23
|
Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT. Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β-Hydroxylation of Lithocholic Acid. Angew Chem Int Ed Engl 2021; 60:753-757. [PMID: 33085147 PMCID: PMC7839452 DOI: 10.1002/anie.202012675] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/11/2022]
Abstract
We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo- and regioselective 7β-hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β-position but LCA is exclusively hydroxylated at the 6β-position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity-determining residues. Alanine scanning identified S240A as a UDCA-producing variant. A synthetic "small but smart" library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio- and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10-fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA.
Collapse
Affiliation(s)
- Sascha Grobe
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Emil Hamnevik
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Christoph W. Grathwol
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Str. 1717487GreifswaldGermany
| | - Andreas Link
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Str. 1717487GreifswaldGermany
| | - Sven Koban
- Enzymicals AGWalther-Rathenau-Str. 4917487GreifswaldGermany
| | | | - Beatrice Großjohann
- HERBRAND PharmaChemicals GmbH, Betriebsstätte AnklamAn der Redoute 117390MurchinGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
24
|
Bertuletti S, Ferrandi EE, Marzorati S, Vanoni M, Riva S, Monti D. Insights into the Substrate Promiscuity of Novel Hydroxysteroid Dehydrogenases. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Susanna Bertuletti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
- Università degli Studi di Milano Via Giuseppe Colombo 60 20133 Milano Italy
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Stefano Marzorati
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Marta Vanoni
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
25
|
Ferrandi EE, Bertuletti S, Monti D, Riva S. Hydroxysteroid Dehydrogenases: An Ongoing Story. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC); Consiglio Nazionale delle Ricerche (CNR); Via Mario Bianco 9 20131 Milano Italy
| | - Susanna Bertuletti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC); Consiglio Nazionale delle Ricerche (CNR); Via Mario Bianco 9 20131 Milano Italy
- Università degli Studi di Milano; Via Giuseppe Colombo 60 20133 Milano Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC); Consiglio Nazionale delle Ricerche (CNR); Via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC); Consiglio Nazionale delle Ricerche (CNR); Via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
26
|
Abstract
Bile acid biotransformation is a collaborative effort by the host and the gut microbiome. Host hepatocytes synthesize primary bile acids from cholesterol. Once these host-derived primary bile acids enter the gastrointestinal tract, the gut microbiota chemically modify them into secondary bile acids. Interest into the gut-bile acid-host axis is expanding in diverse fields including gastroenterology, endocrinology, oncology, and infectious disease. This review aims to 1) describe the physiologic aspects of collaborative bile acid metabolism by the host and gut microbiota; 2) to evaluate how gut microbes influence bile acid pools, and in turn how bile acid pools modulate the gut microbial community structure; 3) to compare species differences in bile acid pools; and lastly, 4) discuss the effects of ursodeoxycholic acid (UDCA) administration, a common therapeutic bile acid, on the gut microbiota-bile acid-host axis.
Collapse
Affiliation(s)
- Jenessa A. Winston
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA,CONTACT Casey M. Theriot Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Research Building 406, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
27
|
Shi S, You Z, Zhou K, Chen Q, Pan J, Qian X, Xu J, Li C. Efficient Synthesis of 12‐Oxochenodeoxycholic Acid Using a 12α‐Hydroxysteroid Dehydrogenase fromRhodococcus ruber. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shou‐Cheng Shi
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Zhi‐Neng You
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Ke Zhou
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Xiao‐Long Qian
- Suzhou Bioforany EnzyTech Co. Ltd. No. 8 Yanjiuyuan Road, Economic Development Zone, Changshu Jiangsu 215512 People's Republic of China
| | - Jian‐He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Chun‐Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing, School of BiotechnologyEast China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
28
|
Zhang X, Fan D, Hua X, Zhang T. Large-scale production of ursodeoxycholic acid from chenodeoxycholic acid by engineering 7α- and 7β-hydroxysteroid dehydrogenase. Bioprocess Biosyst Eng 2019; 42:1537-1545. [DOI: 10.1007/s00449-019-02151-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
|
29
|
Tang S, Pan Y, Lou D, Ji S, Zhu L, Tan J, Qi N, Yang Q, Zhang Z, Yang B, Zhao W, Wang B. Structural and functional characterization of a novel acidophilic 7α-hydroxysteroid dehydrogenase. Protein Sci 2019; 28:910-919. [PMID: 30839141 PMCID: PMC6460000 DOI: 10.1002/pro.3599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) is an NAD(P)H-dependent oxidoreductase belonging to the short-chain dehydrogenases/reductases. In vitro, 7α-HSDH is involved in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this study, a gene encoding novel 7α-HSDH (named as St-2-1) from fecal samples of black bear was cloned and heterologously expressed in Escherichia coli. The protein has subunits of 28.3 kDa and a native size of 56.6 kDa, which suggested a homodimer. We studied the relevant properties of the enzyme, including the optimum pH, optimum temperature, thermal stability, activators, and inhibitors. Interestingly, the data showed that St-2-1 differs from the 7α-HSDHs reported in the literature, as it functions under acidic conditions. The enzyme displayed its optimal activity at pH 5.5 (TCDCA). The acidophilic nature of 7α-HSDH expands its application environment and the natural enzyme bank of HSDHs, providing a promising candidate enzyme for the biosynthesis of TUDCA or other related chemical entities.
Collapse
Affiliation(s)
- Shijin Tang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological & Chemical Engineering, Chongqing University of EducationChongqing 400067China
| | - Shunlin Ji
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
- Modern Life Science Experiment Teaching CenterCollege of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological & Chemical Engineering, Chongqing University of EducationChongqing 400067China
| | - Na Qi
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Qiong Yang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
- Chongqing Key Laboratory of Inorganic Special Functional MaterialsCollaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal UniversityChongqing 408100China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Biling Yang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Wenyan Zhao
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| |
Collapse
|
30
|
Cornejo-Pareja I, Martín-Núñez GM, Roca-Rodríguez MM, Cardona F, Coin-Aragüez L, Sánchez-Alcoholado L, Gutiérrez-Repiso C, Muñoz-Garach A, Fernández-García JC, Moreno-Indias I, Tinahones FJ. H. pylori Eradication Treatment Alters Gut Microbiota and GLP-1 Secretion in Humans. J Clin Med 2019; 8:jcm8040451. [PMID: 30987326 PMCID: PMC6517938 DOI: 10.3390/jcm8040451] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Changes in the intestinal microbial community and some metabolic disturbances, including obesity and type2 diabetes, are related. Glucagon-like peptide-1 (GLP-1) regulates glucose homeostasis. Microbiota have been linked to incretin secretion. Antibiotic use causes changes in microbial diversity and composition. Our aim was to evaluate the relationship between microbiota changes and GLP-1 secretion. A prospective case-control study with a Helicobacter pylori-positive patient model involving subjects under eradication therapy (omeprazole, clarithromycin, and amoxicillin). Forty patients with H. pylori infection and 20 matched participants, but negative for H. pylori antigen. Patients were evaluated before and two months after treatment. We analyzed anthropometric measurements, carbohydrate metabolism, lipid profile, and C-reactive protein. Gut microbiota composition was analyzed through 16S rRNA amplicon sequencing (IlluminaMiSeq). Eradication treatment for H. pylori decreased bacterial richness (Chao1, p = 0.041). Changes in gut microbiota profiles were observed at phylum, family, genus and species levels. GLP-1 secretion and variables of carbohydrate metabolism were improved. Correlations were seen between GLP-1 changes and variations within microbial community abundances, specifically Bifidobacterium adolescentis, the Lachnobacterium genus, and Coriobacteriaceae family. A conventional treatment to eradicate H. pylori could improve carbohydrate metabolism possibly in relation with an increase in GLP-1 secretion. GLP-1 secretion may be related to alterations in intestinal microbiota, specifically Lachnobacterium, B. adolescentis and Coriobacteriaceae.
Collapse
Affiliation(s)
- Isabel Cornejo-Pareja
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
- Centro de Investigacion Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Gracia M Martín-Núñez
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
| | - M Mar Roca-Rodríguez
- Department of Endocrinology and Nutrition, Puerta del Mar University Hospital, 11009 Cadiz, Spain.
| | - Fernando Cardona
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
- Centro de Investigacion Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Leticia Coin-Aragüez
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
- Centro de Investigacion Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Lidia Sánchez-Alcoholado
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
| | - Carolina Gutiérrez-Repiso
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
| | - Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
- Centro de Investigacion Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - José C Fernández-García
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
- Centro de Investigacion Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
- Centro de Investigacion Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain.
- Centro de Investigacion Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
31
|
Chen X, Cui Y, Feng J, Wang Y, Liu X, Wu Q, Zhu D, Ma Y. Flavin Oxidoreductase‐Mediated Regeneration of Nicotinamide Adenine Dinucleotide with Dioxygen and Catalytic Amount of Flavin Mononucleotide for One‐Pot Multi‐Enzymatic Preparation of Ursodeoxycholic Acid. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yu Wang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Xiangtao Liu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| |
Collapse
|
32
|
Molinero N, Ruiz L, Sánchez B, Margolles A, Delgado S. Intestinal Bacteria Interplay With Bile and Cholesterol Metabolism: Implications on Host Physiology. Front Physiol 2019; 10:185. [PMID: 30923502 PMCID: PMC6426790 DOI: 10.3389/fphys.2019.00185] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Bile is a biological fluid synthesized in the liver, mainly constituted by bile acids and cholesterol, which functions as a biological detergent that emulsifies and solubilizes lipids, thereby playing an essential role in fat digestion. Besides, bile acids are important signaling molecules that regulate key functions at intestinal and systemic levels in the human body, affecting glucose and lipid metabolism, and immune homeostasis. Apart from this, due to their amphipathic nature, bile acids are toxic for bacterial cells and, thus, exert a strong selective pressure on the microbial populations inhabiting the human gut, decisively shaping the microbial profiles of our gut microbiota, which has been recognized as a metabolic organ playing a pivotal role in host health. Remarkably, bacteria in our gut also display a range of enzymatic activities capable of acting on bile acids and, to a lesser extent, cholesterol. These activities can have a direct impact on host physiology as they influence the composition of the intestinal and circulating bile acid pool in the host, affecting bile homeostasis. Given that bile acids are important signaling molecules in the human body, changes in the microbiota-residing bile biotransformation ability can significantly impact host physiology and health status. Elucidating ways to fine-tune microbiota-bile acids-host interplay are promising strategies to act on bile and cholesterol-related disorders. This manuscript summarizes the current knowledge on bile and cholesterol metabolism by intestinal bacteria, as well as its influence on host physiology, identifying knowledge gaps and opportunities to guide further advances in the field.
Collapse
Affiliation(s)
- Natalia Molinero
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
33
|
Dong LB, Zhang X, Rudolf JD, Deng MR, Kalkreuter E, Cepeda AJ, Renata H, Shen B. Cryptic and Stereospecific Hydroxylation, Oxidation, and Reduction in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:4043-4050. [PMID: 30735041 DOI: 10.1021/jacs.8b13452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoids of ent-kauranol and ent-atiserene biosynthetic origin. C7 oxidation in the B-ring plays a key biosynthetic role in generating structural complexity known for ent-kaurane and ent-atisane derived diterpenoids. While all three oxidation patterns, α-hydroxyl, β-hydroxyl, and ketone, at C7 are seen in both the ent-kaurane and ent-atisane derived diterpenoids, their biosynthetic origins remain largely unknown. We previously established that PTM and PTN are produced by a single biosynthetic machinery, featuring cryptic C7 oxidations at the B-rings that transform the ent-kauranol and ent-atiserene derived precursors into the characteristic PTM and PTN scaffolds. Here, we report a three-enzyme cascade affording C7 α-hydroxylation in PTM and PTN biosynthesis. Combining in vitro and in vivo studies, we show that PtmO3 and PtmO6 are two functionally redundant α-ketoglutarate-dependent dioxygenases that generate a cryptic C7 β-hydroxyl on each of the ent-kauranol and ent-atiserene scaffolds, and PtmO8 and PtmO1, a pair of NAD+/NADPH-dependent dehydrogenases, subsequently work in concert to invert the C7 β-hydroxyl to α-hydroxyl via a C7 ketone intermediate. PtmO3 and PtmO6 represent the first dedicated C7 β-hydroxylases characterized to date and, together with PtmO8 and PtmO1, provide an account for the biosynthetic origins of all three C7 oxidation patterns that may shed light on other B-ring modifications in bacterial, plant, and fungal diterpenoid biosynthesis. Given their unprecedented activities in C7 oxidations, PtmO3, PtmO6, PtmO8, and PtmO1 enrich the growing toolbox of novel enzymes that could be exploited as biocatalysts to rapidly access complex diterpenoid natural products.
Collapse
|
34
|
You ZN, Chen Q, Shi SC, Zheng MM, Pan J, Qian XL, Li CX, Xu JH. Switching Cofactor Dependence of 7β-Hydroxysteroid Dehydrogenase for Cost-Effective Production of Ursodeoxycholic Acid. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03561] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhi-Neng You
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shou-Cheng Shi
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ming-Min Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Long Qian
- Suzhou Bioforany EnzyTech Co. Ltd., No. 8 Yanjiuyuan Road, Economic Development Zone, Changshu, Jiangsu 215512, China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
35
|
Targeted Synthesis and Characterization of a Gene Cluster Encoding NAD(P)H-Dependent 3α-, 3β-, and 12α-Hydroxysteroid Dehydrogenases from Eggerthella CAG:298, a Gut Metagenomic Sequence. Appl Environ Microbiol 2018; 84:AEM.02475-17. [PMID: 29330189 DOI: 10.1128/aem.02475-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/07/2018] [Indexed: 01/11/2023] Open
Abstract
Gut metagenomic sequences provide a rich source of microbial genes, the majority of which are annotated by homology or unknown. Genes and gene pathways that encode enzymes catalyzing biotransformation of host bile acids are important to identify in gut metagenomic sequences due to the importance of bile acids in gut microbiome structure and host physiology. Hydroxysteroid dehydrogenases (HSDHs) are pyridine nucleotide-dependent enzymes with stereospecificity and regiospecificity for bile acid and steroid hydroxyl groups. HSDHs have been identified in several protein families, including medium-chain and short-chain dehydrogenase/reductase families as well as the aldo-keto reductase family. These protein families are large and contain diverse functionalities, making prediction of HSDH-encoding genes difficult and necessitating biochemical characterization. We located a gene cluster in Eggerthella sp. CAG:298 predicted to encode three HSDHs (CDD59473, CDD59474, and CDD59475) and synthesized the genes for heterologous expression in Escherichia coli We then screened bile acid substrates against the purified recombinant enzymes. CDD59475 is a novel 12α-HSDH, and we determined that CDD59474 (3α-HSDH) and CDD59473 (3β-HSDH) constitute novel enzymes in an iso-bile acid pathway. Phylogenetic analysis of these HSDHs with other gut bacterial HSDHs and closest homologues in the database revealed predictable clustering of HSDHs by function and identified several likely HSDH sequences from bacteria isolated or sequenced from diverse mammalian and avian gut samples.IMPORTANCE Bacterial HSDHs have the potential to significantly alter the physicochemical properties of bile acids, with implications for increased/decreased toxicity for gut bacteria and the host. The generation of oxo-bile acids is known to inhibit host enzymes involved in glucocorticoid metabolism and may alter signaling through nuclear receptors such as farnesoid X receptor and G-protein-coupled receptor TGR5. Biochemical or similar approaches are required to fill in many gaps in our ability to link a particular enzymatic function with a nucleic acid or amino acid sequence. In this regard, we have identified a novel 12α-HSDH and a novel set of genes encoding an iso-bile acid pathway (3α-HSDH and 3β-HSDH) involved in epimerization and detoxification of harmful secondary bile acids.
Collapse
|
36
|
Tonin F, Arends IWCE. Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein J Org Chem 2018; 14:470-483. [PMID: 29520309 PMCID: PMC5827811 DOI: 10.3762/bjoc.14.33] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is a pharmaceutical ingredient widely used in clinics. As bile acid it solubilizes cholesterol gallstones and improves the liver function in case of cholestatic diseases. UDCA can be obtained from cholic acid (CA), which is the most abundant and least expensive bile acid available. The now available chemical routes for the obtainment of UDCA yield about 30% of final product. For these syntheses several protection and deprotection steps requiring toxic and dangerous reagents have to be performed, leading to the production of a series of waste products. In many cases the cholic acid itself first needs to be prepared from its taurinated and glycilated derivatives in the bile, thus adding to the complexity and multitude of steps involved of the synthetic process. For these reasons, several studies have been performed towards the development of microbial transformations or chemoenzymatic procedures for the synthesis of UDCA starting from CA or chenodeoxycholic acid (CDCA). This promising approach led several research groups to focus their attention on the development of biotransformations with non-pathogenic, easy-to-manage microorganisms, and their enzymes. In particular, the enzymatic reactions involved are selective hydrolysis, epimerization of the hydroxy functions (by oxidation and subsequent reduction) and the specific hydroxylation and dehydroxylation of suitable positions in the steroid rings. In this minireview, we critically analyze the state of the art of the production of UDCA by several chemical, chemoenzymatic and enzymatic routes reported, highlighting the bottlenecks of each production step. Particular attention is placed on the precursors availability as well as the substrate loading in the process. Potential new routes and recent developments are discussed, in particular on the employment of flow-reactors. The latter technology allows to develop processes with shorter reaction times and lower costs for the chemical and enzymatic reactions involved.
Collapse
Affiliation(s)
- Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Isabel W C E Arends
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
37
|
Isolation of six novel 7-oxo- or urso-type secondary bile acid-producing bacteria from rat cecal contents. J Biosci Bioeng 2017; 124:514-522. [PMID: 28751127 DOI: 10.1016/j.jbiosc.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Abstract
Understanding the dynamics of secondary bile acid (SBA) formation in the gut by SBA-producing bacteria is important for host health, as SBAs have been shown to affect host pathophysiology and gut microbiota composition. However, our knowledge of SBA producers is limited in light of the diversity of gut microbes. Here, we isolated six novel SBA-producing bacteria from rat cecal contents, all of which were members of known species of gut microbes. Anaerostipes caccae D10, Bacteroides nordii C5, Clostridioides difficile D7, and Clostridium cadaveris G11 were capable of oxidizing cholic acid and chenodeoxycholic acid into 7-oxo-derivatives with varying yields. B. nordii C5 and its type strain JCM 12987T had the highest molar yield, ∼90%. Clostridium disporicum F4 and Clostridium subterminale C4 epimerized cholic acid into ursocholic acid with yields of ∼85%; the corresponding type strains lacked epimerization activity. Furthermore, although not novel as an SBA producer, Clostridium scindens G10 that produced deoxycholic acid from cholic acid was isolated for the first time from rodents. These findings will contribute to elucidation of SBA formation in the gut.
Collapse
|
38
|
Wang R, Wu J, Jin DK, Chen Y, Lv Z, Chen Q, Miao Q, Huo X, Wang F. Structure of NADP +-bound 7β-hydroxysteroid dehydrogenase reveals two cofactor-binding modes. Acta Crystallogr F Struct Biol Commun 2017; 73:246-252. [PMID: 28471355 PMCID: PMC5417313 DOI: 10.1107/s2053230x17004460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/21/2017] [Indexed: 03/27/2024] Open
Abstract
In mammals, bile acids/salts and their glycine and taurine conjugates are effectively recycled through enterohepatic circulation. 7β-Hydroxysteroid dehydrogenases (7β-HSDHs; EC 1.1.1.201), including that from the intestinal microbe Collinsella aerofaciens, catalyse the NADPH-dependent reversible oxidation of secondary bile-acid products to avoid potential toxicity. Here, the first structure of NADP+ bound to dimeric 7β-HSDH is presented. In one active site, NADP+ adopts a conventional binding mode similar to that displayed in related enzyme structures. However, in the other active site a unique binding mode is observed in which the orientation of the nicotinamide is different. Since 7β-HSDH has become an attractive target owing to the wide and important pharmaceutical use of its product ursodeoxycholic acid, this work provides a more detailed template to support rational protein engineering to improve the enzymatic activities of this useful biocatalyst, further improving the yield of ursodeoxycholic acid and its other applications.
Collapse
Affiliation(s)
- Rui Wang
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Jiaquan Wu
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - David Kin Jin
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Yali Chen
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Zhijia Lv
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Qian Chen
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Qiwei Miao
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Xiaoyu Huo
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| | - Feng Wang
- Wuxi Biortus Biosciences Co. Ltd, A5, 6 Dongsheng West Road, 214437 Jiangyin, Jiangsu, People’s Republic of China
| |
Collapse
|
39
|
Song C, Wang B, Tan J, Zhu L, Lou D. Discovery of tauroursodeoxycholic acid biotransformation enzymes from the gut microbiome of black bears using metagenomics. Sci Rep 2017; 7:45495. [PMID: 28436439 PMCID: PMC5402301 DOI: 10.1038/srep45495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) has been used to treat many diseases effectively. 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 7β-hydroxysteroid dehydrogenase (7β-HSDH) are two key enzymes that drive the efficient biosynthesis of TUDCA from taurochenodeoxycholic acid (TCDCA) in vitro. In this study, a metagenomic approach was used to isolate 7α- and 7β-HSDHs from fecal samples of black bears. Five new 7α-HSDHs and one new 7β-HSDH enzyme were discovered and identified from the gut microbiota of black bears, and four of them presented good enzymatic properties. Our data also suggest cooperation in the biotransformation of TUDCA by the gut microbiota in black bears. In conclusion, this work expands the natural enzyme bank of HSDHs, provides promising candidate enzymes for application in the biosynthesis TUDCA and the epimerization reaction of bile acids at the C-7 position, and provides a data set for the discovery of novel enzymes in the gut micriobiome of black bears.
Collapse
Affiliation(s)
- Can Song
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing 400067, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Deshuai Lou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
40
|
Zheng MM, Chen KC, Wang RF, Li H, Li CX, Xu JH. Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1178-1185. [PMID: 28116898 DOI: 10.1021/acs.jafc.6b05428] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ursodeoxycholic acid (UDCA) is the main active ingredient of natural bear bile powder with multiple pharmacological functions. 7β-Hydroxysteroid dehydrogenase (HSDH) is a key biocatalyst for the synthesis of UDCA. However, all the 7β-HSDHs reported commonly suffer from poor activity and thermostability, resulting in limited productivity of UDCA. In this study, a multiobjective directed evolution (MODE) strategy was proposed and applied to improve the activity, thermostability, and pH optimum of a 7β-HSDH. The best variant (V3-1) showed a specific activity 5.5-fold higher than and a half-life 3-fold longer than those of the wild type. In addition, the pH optimum of the variant was shifted to a weakly alkaline value. In the cascade reaction, the productivity of UDCA with V3-1 increased to 942 g L-1 day-1, in contrast to 141 g L-1 day-1 with the wild type. Therefore, this study provides a useful strategy for improving the catalytic efficiency of a key enzyme that significantly facilitated the bioproduction of UDCA.
Collapse
Affiliation(s)
- Ming-Min Zheng
- State Key Laboratory of Bioreactor Engineering and ‡Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Ke-Cai Chen
- State Key Laboratory of Bioreactor Engineering and ‡Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Ru-Feng Wang
- State Key Laboratory of Bioreactor Engineering and ‡Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering and ‡Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering and ‡Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and ‡Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology , Shanghai 200237, P. R. China
| |
Collapse
|
41
|
Savino S, Ferrandi EE, Forneris F, Rovida S, Riva S, Monti D, Mattevi A. Structural and biochemical insights into 7β-hydroxysteroid dehydrogenase stereoselectivity. Proteins 2016; 84:859-65. [PMID: 27006087 DOI: 10.1002/prot.25036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/06/2022]
Abstract
Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo- and regio-selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active-site accessibility, the bases of the specificity for NADP(+) , and the general architecture of the steroid binding site. Comparison with 7α-hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C-terminal extension reshapes the substrate site of the β-selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859-865. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simone Savino
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Erica Elisa Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, 20131, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Stefano Rovida
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, 20131, Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, 20131, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| |
Collapse
|
42
|
The three-dimensional structure of Clostridium absonum 7α-hydroxysteroid dehydrogenase: new insights into the conserved arginines for NADP(H) recognition. Sci Rep 2016; 6:22885. [PMID: 26961171 PMCID: PMC4785404 DOI: 10.1038/srep22885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/23/2016] [Indexed: 11/09/2022] Open
Abstract
7α-hydroxysteroid dehydrogenase (7α-HSDH) can catalyse the oxidation of C7 α-OH of the steroid nucleus in the bile acid metabolism. In the paper we determined the crystal structure of 7α-HSDH from Clostridium absonum (CA 7α-HSDH) complexed with taurochenodeoxycholic acid (TCDCA) and NADP(+) by X-ray diffraction, which, as a tetramer, possesses the typical α/β folding pattern. The four subunits of an asymmetric unit lie in the fact that there are the stable hydrophobic interactions between Q-axis-related subunits. Significantly, we captured an active state of the NADP(+), confirming that nicotinamide moiety of NADP(+) act as electron carrier in the dehydrogenation. On the basis of crystal structure analysis, site-directed mutagenesis and MD simulation, furthermore, we find that the guanidinium of Arg38 can form the stable cation-π interaction with the adenine ring of NADP(+), and the cation-π interaction and hydrogen bonds between Arg38 and NADP(+) have a significant anchor effect on the cofactor binding to CA 7α-HSDH.
Collapse
|
43
|
Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol 2015; 11:685-90. [PMID: 26192599 PMCID: PMC4543561 DOI: 10.1038/nchembio.1864] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/27/2015] [Indexed: 12/26/2022]
Abstract
The gut bile acid pool is millimolar in concentration, varies widely in composition among individuals, and is linked to metabolic disease and cancer. Although these molecules derive almost exclusively from the microbiota, remarkably little is known about which bacterial species and genes are responsible for their biosynthesis. Here, we report a biosynthetic pathway for the second most abundant class in the gut, iso (3β-hydroxy) bile acids, whose levels exceed 300 µM in some humans and are absent in others. We show, for the first time, that iso bile acids are produced by Ruminococcus gnavus, a far more abundant commensal than previously known producers; and that the iso bile acid pathway detoxifies deoxycholic acid, favoring the growth of the keystone genus Bacteroides. By revealing the biosynthetic genes for an abundant class of bile acids, our work sets the stage for predicting and rationally altering the composition of the bile acid pool.
Collapse
Affiliation(s)
- A Sloan Devlin
- 1] Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Fischbach
- 1] Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA. [2] California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
44
|
Zheng MM, Wang RF, Li CX, Xu JH. Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Sun B, Hartl F, Castiglione K, Weuster-Botz D. Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors. Biotechnol Prog 2015; 31:375-86. [DOI: 10.1002/btpr.2036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/09/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Boqiao Sun
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Florian Hartl
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Kathrin Castiglione
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| | - Dirk Weuster-Botz
- Inst. of Biochemical Engineering, Dept. of Mechanical Engineering; Technische Universität München; Garching 85748 Germany
| |
Collapse
|
46
|
Eggert T, Bakonyi D, Hummel W. Enzymatic routes for the synthesis of ursodeoxycholic acid. J Biotechnol 2014; 191:11-21. [PMID: 25131646 DOI: 10.1016/j.jbiotec.2014.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/26/2014] [Accepted: 08/06/2014] [Indexed: 02/02/2023]
Abstract
Ursodeoxycholic acid, a secondary bile acid, is used as a drug for the treatment of various liver diseases, the optimal dose comprises the range of 8-10mg/kg/day. For industrial syntheses, the structural complexity of this bile acid requires the use of an appropriate starting material as well as the application of regio- and enantio-selective enzymes for its derivatization. Most strategies for the synthesis start from cholic acid or chenodeoxycholic acid. The latter requires the conversion of the hydroxyl group at C-7 from α- into β-position in order to obtain ursodeoxycholic acid. Cholic acid on the other hand does not only require the same epimerization reaction at C-7 but the removal of the hydroxyl group at C-12 as well. There are several bacterial regio- and enantio-selective hydroxysteroid dehydrogenases (HSDHs) to carry out the desired reactions, for example 7α-HSDHs from strains of Clostridium, Bacteroides or Xanthomonas, 7β-HSDHs from Clostridium, Collinsella, or Ruminococcus, or 12α-HSDH from Clostridium or from Eggerthella. However, all these bioconversion reactions need additional steps for the regeneration of the coenzymes. Selected multi-step reaction systems for the synthesis of ursodeoxycholic acid are presented in this review.
Collapse
Affiliation(s)
- Thorsten Eggert
- evocatal GmbH, Alfred-Nobel-Str. 10, 40789 Monheim am Rhein, Germany.
| | - Daniel Bakonyi
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Werner Hummel
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426 Jülich, Germany.
| |
Collapse
|
47
|
Cai JS, Chen JH. The mechanism of enterohepatic circulation in the formation of gallstone disease. J Membr Biol 2014; 247:1067-82. [PMID: 25107305 PMCID: PMC4207937 DOI: 10.1007/s00232-014-9715-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
Abstract
Bile acids entering into enterohepatic circulating are primary acids synthesized from cholesterol in hepatocyte. They are secreted actively across canalicular membrane and carried in bile to gallbladder, where they are concentrated during digestion. About 95 % BAs are actively taken up from the lumen of terminal ileum efficiently, leaving only approximately 5 % (or approximately 0.5 g/d) in colon, and a fraction of bile acids are passively reabsorbed after a series of modifications in the human large intestine including deconjugation and oxidation of hydroxy groups. Bile salts hydrolysis and hydroxy group dehydrogenation reactions are performed by a broad spectrum of intestinal anaerobic bacteria. Next, hepatocyte reabsorbs bile acids from sinusoidal blood, which are carried to liver through portal vein via a series of transporters. Bile acids (BAs) transporters are critical for maintenance of the enterohepatic BAs circulation, where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization, and excretion of cholesterol. Tight regulation of BA transporters via nuclear receptors (NRs) is necessary to maintain proper BA homeostasis. In conclusion, disturbances of enterohepatic circulation may account for pathogenesis of gallstones diseases, including BAs transporters and their regulatory NRs and the metabolism of intestinal bacterias, etc.
Collapse
Affiliation(s)
- Jian-Shan Cai
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, People's Republic of China,
| | | |
Collapse
|
48
|
Zhang D, Zhang R, Zhang J, Chen L, Zhao C, Dong W, Zhao Q, Wu Q, Zhu D. Engineering a hydroxysteroid dehydrogenase to improve its soluble expression for the asymmetric reduction of cortisone to 11β-hydrocortisone. Appl Microbiol Biotechnol 2014; 98:8879-86. [DOI: 10.1007/s00253-014-5967-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 10/25/2022]
|
49
|
Lee JY, Arai H, Nakamura Y, Fukiya S, Wada M, Yokota A. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J Lipid Res 2013; 54:3062-9. [PMID: 23729502 DOI: 10.1194/jlr.m039834] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90-100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon.
Collapse
Affiliation(s)
- Ja-Young Lee
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Sun B, Kantzow C, Bresch S, Castiglione K, Weuster-Botz D. Multi-enzymatic one-pot reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid with whole-cell biocatalysts. Biotechnol Bioeng 2012; 110:68-77. [PMID: 22806613 DOI: 10.1002/bit.24606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 11/06/2022]
Abstract
Ursodeoxycholic acid (UDCA) is a bile acid of industrial interest as it is used as an agent for the treatment of primary sclerosing cholangitis and the medicamentous, non-surgical dissolution of gallstones. Currently, it is prepared industrially from cholic acid following a seven-step chemical procedure with an overall yield of <30%. In this study, we investigated the key enzymatic steps in the chemo-enzymatic preparation of UDCA-the two-step reduction of dehydrocholic acid (DHCA) to 12-keto-ursodeoxycholic acid using a mutant of 7β-hydroxysteroid dehydrogenase (7β-HSDH) from Collinsella aerofaciens and 3α-hydroxysteroid dehydrogenase (3α-HSDH) from Comamonas testosteroni. Three different one-pot reaction approaches were investigated using whole-cell biocatalysts in simple batch processes. We applied one-biocatalyst systems, where 3α-HSDH, 7β-HSDH, and either a mutant of formate dehydrogenase (FDH) from Mycobacterium vaccae N10 or a glucose dehydrogenase (GDH) from Bacillus subtilis were expressed in a Escherichia coli BL21(DE3) based host strain. We also investigated two-biocatalyst systems, where 3α-HSDH and 7β-HSDH were expressed separately together with FDH enzymes for cofactor regeneration in two distinct E. coli hosts that were simultaneously applied in the one-pot reaction. The best result was achieved by the one-biocatalyst system with GDH for cofactor regeneration, which was able to completely convert 100 mM DHCA to >99.5 mM 12-keto-UDCA within 4.5 h in a simple batch process on a liter scale.
Collapse
Affiliation(s)
- Boqiao Sun
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr 15, 85748 Garching, Germany
| | | | | | | | | |
Collapse
|