1
|
Wang Q, Peng L, Wang P, Zhou Z, Li C, Chen C, Wang Y. Changes of atrazine dissipation and microbial community under coexistence of graphene oxide in river water. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132708. [PMID: 37856959 DOI: 10.1016/j.jhazmat.2023.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
The coexistence of herbicide atrazine (ATZ) and the nanomaterial graphene oxide (GO) in natural water bodies will be an inevitable scenario due to their widespread application and consequent release into aquatic ecosystems. But the dissipation of ATZ with GO and the response of the microbial community to their combination are still not clear. Here, we investigated the dissipation dynamics and transformation of ATZ with and without GO in river water after 21-d incubation. In the presence of GO, ATZ residue significantly decreased by 11%-43%; the transformation of ATZ markedly increased by 11%-17% when ATZ concentrations were not above 1.0 mg∙L-1. The direct adsorption of ATZ on GO, mainly via π-π interactions, proton transfer and hydrogen bonding, contributed 54%-68% of the total increased ATZ dissipation by GO. ATZ and ATZ+GO exerted effects of similar magnitude on microbial OTU numbers with an increase of bacterial diversity. The coexisting GO increased the relative abundance of ATZ-degradation bacteria and Chitinophagales, thus improving ATZ transformation. This work indicated that the coexistence of GO at environmentally relevant concentrations can effectively reduce ATZ residues and promote the transformation of ATZ to degradation products in river water; nevertheless, the potential risk of GO acting as an ATZ carrier should be given more prominence.
Collapse
Affiliation(s)
- Qinghai Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| | - Lei Peng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Peixin Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Zixin Zhou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Cui Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yu Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
2
|
Liu Z, Han L, Zhang X, Chen S, Wang X, Fang H. Core bacteria carrying the genes associated with the degradation of atrazine in different soils. ENVIRONMENT INTERNATIONAL 2023; 181:108303. [PMID: 37948867 DOI: 10.1016/j.envint.2023.108303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Atrazine residues can pose serious threats to soil ecology and human health. Currently, the underlying relationship between soil microbial communities and the degradation genes associated with atrazine degradation remains unclear. In this study, the degradation characteristics of atrazine was investigated in ten different soil types. Further, diversity and abundance of degradation genes and succession of the bacterial community were also studied. The degradation of 10 mg/kg atrazine in different soil types exhibited an initial rapid trend followed by a gradual slowdown, adhering to the first-order kinetic equation. Atrazine significantly increased the absolute abundance of atz degradation genes. The increase in the absolute abundance of atzC gene was the largest, whereas that of atzA gene was the smallest, and the trzD gene was only detected in the Binzhou loam soil. Co-occurrence network analysis showed that the number of potential bacterial hosts of atzC was the highest compared with the other atz genes. Atrazine also altered the structural composition of the soil microbial community. The relative abundances of Ochrobactrum, Nocardiopsis, Lactobacillus, and Brevibacterium was increased in the atrazine-treated soils, while those of Conexibate, Solirubacter, and Micromonospora was decreased significantly compared with the control. Additionally, four atrazine-degrading bacterial strains Rhizobium AT1, Stenotrophomonas AT2, Brevibacterium AT3, and Bacillus AT4 were isolated from the atrazine-treated soils. After 14 d for inoculation, their degradation rate for 10 mg/L atrazine ranged from 17.56 % to 30.55 %. Moreover, the relative abundances of the bacterial genera, including these four isolates, in the atrazine-treated soil were significantly higher than those in the control, indicating that they were involved in the synergistic degradation of atrazine in the soil. This study revealed the degradation characteristics of atrazine, distribution of degradation genes, and succession of microbial communities, and explored the internal relationship between microbial community structure and atrazine degradation mechanisms in different soil types.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xin Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Shiyu Chen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Wahla AQ, Anwar S, Mueller JA, Arslan M, Iqbal S. Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121493. [PMID: 32081488 DOI: 10.1016/j.jhazmat.2019.121493] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Metribuzin (MB) is a triazinone herbicide used for the eradication of weeds in agriculture. Presence of its residues in agricultural soil can potentially harm the establishment of subsequent crops and structure of soil microbial populations. In this study, remediation potential of an MB degrading bacterial consortium MB3R immobilized on biochar was evaluated in potato vegetated soil. In potato vegetated soil augmented with MB3R alone and MB3R immobilized on biochar, 82 and 96% MB degradation was recorded respectively as compared to only 29.3% in un-augmented soil. Kinetic parameters revealed that MB3R immobilized biochar is highly proficient as indicated by significant increase in the rate of biodegradation and decrease in half-life of MB. Enhanced plant growth was observed when augmented with bacterial consortium either alone or immobilized on biochar. Presence of herbicide negatively affected the soil bacterial community structure. However, MB3R immobilized on biochar proved to be helpful for restoration of soil bacterial community structure affected by MB. This is the very first report that reveals improved remediation of contaminated soil and restoration of soil bacterial populations by use of the MB degrading bacterial consortium immobilized on biochar.
Collapse
Affiliation(s)
- Abdul Qadeer Wahla
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Samina Anwar
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Jochen A Mueller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, Germany
| | - Muhammad Arslan
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, Germany
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
| |
Collapse
|
4
|
Douglass JF, Radosevich M, Tuovinen OH. Microbial attenuation of atrazine in agricultural soils: Biometer assays, bacterial taxonomic diversity, and catabolic genes. CHEMOSPHERE 2017; 176:352-360. [PMID: 28273542 DOI: 10.1016/j.chemosphere.2017.02.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to examine the potential biomineralization of atrazine and identification of atrazine-degrading bacteria in agricultural soils. Different atrazine application histories of soils impacted the kinetics of biomineralization but not the presence of catabolic genes of two atrazine degradative pathways (Trz and Atz). Biomineralization was based on the measurement of 14CO2 from [U-ring-14C]-atrazine in surface soil (0-7 cm) samples incubated in biometers. Aerobic atrazine biomineralization rate constants (k) varied in the range of 0.004-0.508 d-1 depending on the specific soil sample and glucose amendment. The corresponding k-values for anaerobic biometers ± nitrate, ferrihydrite or sulfate were 0.002-0.360 d-1. Glucose enhancement of atrazine biomineralization was not consistent. Aerobic enrichments from soil samples and in-situ incubated BioSep beads yielded mixed cultures, four of which were characterized by 16S rRNA gene amplification, cloning and sequencing. Twelve pure cultures were isolated from enrichments and they were primarily Arthrobacter spp. (10/12). The presence of eight atrazine catabolic genes representing two degradative pathways was investigated in seven bacterial isolates by PCR amplification and sequencing. Several combinations of atrazine catabolic genes were detected; each contained at least atzBC. A complete set of genes for the Atz pathway was not found among the isolates. Our data indicate that atrazine metabolism involves multiple microorganisms and cooperative pathways diverging from atrazine metabolites.
Collapse
Affiliation(s)
- James F Douglass
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Mark Radosevich
- Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J. Chapman Drive, Knoxville, TN 37996, USA
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Yale RL, Sapp M, Sinclair CJ, Moir JWB. Microbial changes linked to the accelerated degradation of the herbicide atrazine in a range of temperate soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7359-7374. [PMID: 28108915 PMCID: PMC5383679 DOI: 10.1007/s11356-017-8377-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/03/2017] [Indexed: 05/11/2023]
Abstract
Accelerated degradation is the increased breakdown of a pesticide upon its repeated application, which has consequences for the environmental fate of pesticides. The herbicide atrazine was repeatedly applied to soils previously untreated with s-triazines for >5 years. A single application of atrazine, at an agriculturally relevant concentration, was sufficient to induce its rapid dissipation. Soils, with a range of physico-chemical properties and agricultural histories, showed similar degradation kinetics, with the half-life of atrazine decreasing from an average of 25 days after the first application to <2 days after the second. A mathematical model was developed to fit the atrazine-degrading kinetics, which incorporated the exponential growth of atrazine-degrading organisms. Despite the similar rates of degradation, the repertoire of atrazine-degrading genes varied between soils. Only a small portion of the bacterial community had the capacity for atrazine degradation. Overall, the microbial community was not significantly affected by atrazine treatment. One soil, characterised by low pH, did not exhibit accelerated degradation, and atrazine-degrading genes were not detected. Neutralisation of this soil restored accelerated degradation and the atrazine-degrading genes became detectable. This illustrates the potential for accelerated degradation to manifest when conditions become favourable. Additionally, the occurrence of accelerated degradation under agriculturally relevant concentrations supports the consideration of the phenomena in environmental risk assessments.
Collapse
Affiliation(s)
- R. L. Yale
- CRD, Mallard House, 3 Peasholme Green, York, YO1 7PX UK
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
- FERA Science Ltd., Sand Hutton, York, YO41 1LZ UK
| | - M. Sapp
- FERA Science Ltd., Sand Hutton, York, YO41 1LZ UK
- Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, NRW Germany
| | | | - J. W. B. Moir
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| |
Collapse
|
6
|
Ławniczak Ł, Syguda A, Borkowski A, Cyplik P, Marcinkowska K, Wolko Ł, Praczyk T, Chrzanowski Ł, Pernak J. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:247-55. [PMID: 27135587 DOI: 10.1016/j.scitotenv.2016.04.109] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/10/2016] [Accepted: 04/16/2016] [Indexed: 05/23/2023]
Abstract
The aim of this study was to evaluate the impact of selected herbicidal ionic liquids (HILs), which exhibit high efficacy in terms of weed control and low toxicity, but may be persistent due to limited biodegradability, on the community structure of autochthonic bacteria present in agricultural soil. Four different oligomeric HILs (with two types of cations and different ratio of herbicidal anions) were synthesized and characterized by employing (1)H and (13)C NMR. The results of biodegradation assay indicated that none of the tested HILs could be classified as readily biodegradable (biodegradation rate ranged from 0 to 7%). The conducted field studies confirmed that the herbicidal efficacy of the HILs was higher compared to the reference herbicide mixture by 10 to 30%, depending on the dose and weed species. After termination of field studies, the soil treated with the tested HILs was subjected to next generation sequencing in order to investigate the potential changes in the bacterial community structure. Proteobacteria was the dominant phylum in all studied samples. Treatment with the studied HILs resulted in an increase of Actinobacteria compared to the reference herbicidal mixture. Differenced among the studied HILs were generally associated with a significantly higher abundance of Bacteroidetes in case of 1-HIL-Dicamba 1/3 and Firmicutes in case of 2-HIL-Dicamba 1/3.
Collapse
Affiliation(s)
- Ł Ławniczak
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland.
| | - A Syguda
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland.
| | - A Borkowski
- Faculty of Geology, University of Warsaw, 02-089 Warsaw, Poland.
| | - P Cyplik
- Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznan, 60-627 Poznan, Poland.
| | - K Marcinkowska
- Institute of Plant Protection - National Research Institute, Poznan 60-318, Poland.
| | - Ł Wolko
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences in Poznan, 60-632 Poznan, Poland.
| | - T Praczyk
- Institute of Plant Protection - National Research Institute, Poznan 60-318, Poland.
| | - Ł Chrzanowski
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland.
| | - J Pernak
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland.
| |
Collapse
|
7
|
Fang H, Lian J, Wang H, Cai L, Yu Y. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:457-65. [PMID: 25603295 DOI: 10.1016/j.jhazmat.2015.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/16/2014] [Accepted: 01/03/2015] [Indexed: 05/21/2023]
Abstract
Substantial application of the herbicide atrazine in agriculture leads to persistent contamination, which may damage the succeeding crops and pose potential threats to soil ecology and environmental health. Here, the degradation characteristics of atrazine and dynamic change of soil bacterial community structure and function as well as their relations were studied during three repeated treatments at the recommended, double, and five-fold doses. The results showed that the degradation half-life of atrazine obviously decreased with increased treatment frequency. Soil microbial functional diversity displayed a variation trend of suppression-recovery-stimulation, which was associated with increased degradation rate of atrazine. 16S amplicon sequencing was conducted to explore bacterial community structure and correlate the genus to potential atrazine degradation. A total of seven potentially atrazine-degrading bacterial genera were found including Nocardioides, Arthrobacter, Bradyrhizobium, Burkholderia, Methylobacterium, Mycobacterium, and Clostridium. These bacterial genera showed almost complete atrazine degradation pathways including dechlorination, dealkylation, hydroxylation, and ring cleavage. Furthermore, the relative abundance of four of them (i.e., Nocardioides, Arthrobacter, Methylobacterium, and Bradyrhizobium) increased with treatment frequency and atrazine concentration, suggesting that they may participate in atrazine degradation during repeated treatments. Our findings reveal the potential relationship between atrazine degradation and soil bacterial community structure in repeatedly treated soils.
Collapse
Affiliation(s)
- Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianjun Lian
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huifang Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lin Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Catabolism of terbuthylazine by mixed bacterial culture originating from s-triazine-contaminated soil. Appl Microbiol Biotechnol 2014; 98:7223-32. [PMID: 24788365 DOI: 10.1007/s00253-014-5774-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
The s-triazine herbicide terbuthylazine (TERB) has been used as the main substitute of atrazine in many EU countries for more than 10 years. However, the ecological consequences of this substitution are still not fully understood. Since the fate of triazine herbicides is primarily dependent on microbial degradation, in this paper, we investigated the ability of a mixed bacterial culture, M3-T, originating from s-triazine-contaminated soil, to degrade TERB in liquid culture and soil microcosms. The M3-T culture grown in mineral medium with TERB as the N source and citrate as the C source degraded 50 mg L(-1) of TERB within 3 days of incubation. The culture was capable of degrading TERB as the sole C and N source, though at slower degradation kinetics. A thorough LC-MS analysis of the biodegradation media showed the formation of hydroxyterbuthylazine (TERB-OH) and N-t-butylammelide (TBA) as major metabolites, and desethylterbuthylazine (DET), hydroxydesethylterbuthylazine (DET-OH) and cyanuric acid (CA) as minor metabolites in the TERB degradation pathway. TBA was identified as a bottleneck in the catabolic pathway leading to its transient accumulation in culture media. The supplementation of glucose as the exogenous C source had no effect on TBA degradation, whereas citrate inhibited its disappearance. The addition of M3-T to sterile soil artificially contaminated with TERB at 3 mg kg(-1) of soil resulted in an accelerated TERB degradation with t 1/2 value being about 40 times shorter than that achieved by the native microbial community. Catabolic versatility of M3-T culture makes it a promising seed culture for accelerating biotransformation processes in s-triazine-contaminated environment.
Collapse
|
9
|
Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation 2014; 25:615-32. [DOI: 10.1007/s10532-014-9686-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
10
|
Wan R, Wang Z, Xie S. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:502-508. [PMID: 24317158 DOI: 10.1016/j.scitotenv.2013.11.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 06/02/2023]
Abstract
Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils.
Collapse
Affiliation(s)
- Rui Wan
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Zhao Wang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Babut M, Arts GH, Barra Caracciolo A, Carluer N, Domange N, Friberg N, Gouy V, Grung M, Lagadic L, Martin-Laurent F, Mazzella N, Pesce S, Real B, Reichenberger S, Roex EWM, Romijn K, Röttele M, Stenrød M, Tournebize J, Vernier F, Vindimian E. Pesticide risk assessment and management in a globally changing world--report from a European interdisciplinary workshop. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8298-312. [PMID: 23975709 PMCID: PMC3824372 DOI: 10.1007/s11356-013-2004-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 05/10/2023]
Affiliation(s)
- Marc Babut
- Irstea, UR MALY, 5 rue de la Doua, CS70077, 69626, Villeurbanne, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xie S, Wan R, Wang Z, Wang Q. Atrazine biodegradation by Arthrobacter strain DAT1: effect of glucose supplementation and change of the soil microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4078-4084. [PMID: 23224504 DOI: 10.1007/s11356-012-1356-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
The objective of this study was to investigate the impact of glucose supplementation on the soil microbiota inoculated with the atrazine-degrading Arthrobacter strain DAT1. Soil microcosms with different treatments were constructed for biodegradation tests. The impact of glucose supplementation on atrazine degradation capacity of the strain DAT1 and the strain's survival and growth were assessed. The densities of the 16S rRNA gene and the atrazine-metabolic trzN gene were determined using quantitative PCR. The growth of the strain DAT1 and the bacterial community structure were characterized using terminal restriction fragment length polymorphism. Glucose supplementation could affect atrazine degradation by the strain DAT1 and the strain's trzN gene density and growth. The density of the16S rRNA gene decreased during the incubation period. Glucose supplementation could alter the bacterial community structure during the bioaugmentation process. Glucose supplementation could promote the growth of the autochthonous soil degraders that harbored novel functional genes transforming atrazine. Further study will be necessary in order to elucidate the impact of exogenous carbon on autochthonous and inoculated degraders. This study could add some new insights on atrazine bioremediation.
Collapse
Affiliation(s)
- Shuguang Xie
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, China.
| | | | | | | |
Collapse
|
13
|
Zhou X, Wang Q, Wang Z, Xie S. Nitrogen impacts on atrazine-degrading Arthrobacter strain and bacterial community structure in soil microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2484-2491. [PMID: 22961491 DOI: 10.1007/s11356-012-1168-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
The objective of this study was to investigate the impacts of exogenous nitrogen on a microbial community inoculated with the atrazine-degrading Arthrobacter sp. in soil amended with a high concentration of atrazine. Inoculated and uninoculated microcosms for biodegradation tests were constructed. Atrazine degradation capacity of the strain DAT1 and the strain's atrazine-metabolic potential and survival were assessed. The relative abundance of the strain DAT1 and the bacterial community structure in soils were characterized using quantitative PCR in combination with terminal restriction fragment length polymorphism. Atrazine degradation by the strain DAT1 and the strain's atrazine-metabolic potential and survival were not affected by addition of a medium level of nitrate, but these processes were inhibited by addition of a high level of nitrate. Microbial community structure changed in both inoculated and uninoculated microcosms, dependent on the level of added nitrate. Bioaugmentation with the strain DAT1 could be a very efficient biotechnology for bioremediation of soils with high concentrations of atrazine.
Collapse
Affiliation(s)
- Xiaode Zhou
- State Key Laboratory of Ecohydraulic Engineering in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | | | | | | |
Collapse
|
14
|
Griffiths BS, Philippot L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 2013; 37:112-29. [DOI: 10.1111/j.1574-6976.2012.00343.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/16/2012] [Accepted: 05/01/2012] [Indexed: 11/29/2022] Open
|
15
|
Comparing metabolic functionalities, community structures, and dynamics of herbicide-degrading communities cultivated with different substrate concentrations. Appl Environ Microbiol 2012; 79:367-75. [PMID: 23124226 DOI: 10.1128/aem.02536-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter(-1)) or high (25 mg liter(-1)) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities. The enrichments selected on low concentrations mineralized MCPA with shorter lag phases than those selected on high concentrations. Flow cytometry measurements revealed that mineralization led to cell growth. The presence of low-nucleic acid-content bacteria (LNA bacteria) was correlated with mineralization activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide concentrations can coexist in the same environment and that using a low herbicide concentration enables enrichment of apparently oligotrophic subpopulations.
Collapse
|
16
|
Udiković-Kolić N, Scott C, Martin-Laurent F. Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 2012; 96:1175-89. [DOI: 10.1007/s00253-012-4495-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
|
17
|
Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 2012; 24:203-13. [PMID: 22991035 DOI: 10.1007/s10532-012-9574-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Assessing in situ microbial abilities of soils to degrade pesticides is of great interest giving insight in soil filtering capability, which is a key ecosystem function limiting pollution of groundwater. Quantification of pesticide-degrading gene expression by reverse transcription quantitative PCR (RT-qPCR) was tested as a suitable indicator to monitor pesticide biodegradation performances in soil. RNA extraction protocol was optimized to enhance the yield and quality of RNA recovered from soil samples to perform RT-qPCR assays. As a model, the activity of atrazine-degrading communities was monitored using RT-qPCRs to estimate the level of expression of atzD in five agricultural soils showing different atrazine mineralization abilities. Interestingly, the relative abundance of atzD mRNA copy numbers was positively correlated to the maximum rate and to the maximal amount of atrazine mineralized. Our findings indicate that the quantification of pesticide-degrading gene expression may be suitable to assess biodegradation performance in soil and monitor natural attenuation of pesticide.
Collapse
|
18
|
Changey F, Devers-Lamrani M, Rouard N, Martin-Laurent F. In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: evidence for the selective loss of a 47 kb region on the plasmid ADP1 containing the atzA, B and C genes. Gene 2011; 490:18-25. [PMID: 21959051 DOI: 10.1016/j.gene.2011.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 02/02/2023]
Abstract
The adaptation of microorganisms to pesticide biodegradation relies on the recruitment of catabolic genes by horizontal gene transfer and homologous recombination mediated by insertion sequences (IS). This environment-friendly function is maintained in the degrading population but it has a cost which could diminish its fitness. The loss of genes in the course of evolution being a major mechanism of ecological specialization, we mimicked evolution in vitro by sub-culturing the atrazine-degrading Pseudomonas sp. ADP in a liquid medium containing cyanuric acid as the sole source of nitrogen. After 120 generations, a new population evolved, which replaced the original one. This new population grew faster on cyanuric acid but showed a similar cyanuric acid degrading ability. Plasmid profiles and Southern blot analyses revealed the deletion of a 47 kb region from pADP1 containing the atzABC genes coding for the enzymes that turn atrazine into cyanuric acid. Long PCR and sequencing analyses revealed that this deletion resulted from a homologous recombination between two direct repeats of a 110-bp, identical to ISPps1 of Pseudomonas huttiensis, flanking the deleted 47 kb region. The loss of a region containing three functional genes constitutively expressed thereby constituting a genetic burden under cyanuric acid selection pressure was responsible for the gain in fitness of the new population. It highlights the IS-mediated plasticity of the pesticide-degrading potential and shows that IS not only favours the expansion of the degrading genetic potential thanks to dispersion and duplication events but also contribute to its reduction thanks to deletion events.
Collapse
Affiliation(s)
- F Changey
- INRA, Université de Bourgogne, Microbiologie du Sol et de l'Environnement, 17 Rue Sully, 21065 Dijon Cedex, France
| | | | | | | |
Collapse
|