1
|
Hooe S, Thakur M, Lasarte-Aragonés G, Breger JC, Walper SA, Medintz IL, Ellis GA. Exploration of the In Vitro Violacein Synthetic Pathway with Substrate Analogues. ACS OMEGA 2024; 9:3894-3904. [PMID: 38284012 PMCID: PMC10809250 DOI: 10.1021/acsomega.3c08233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Evolution has gifted enzymes with the ability to synthesize an abundance of small molecules with incredible control over efficiency and selectivity. Central to an enzyme's role is the ability to selectively catalyze reactions in the milieu of chemicals within a cell. However, for chemists it is often desirable to extend the substrate scope of reactions to produce analogue(s) of a desired product and therefore some degree of enzyme promiscuity is often desired. Herein, we examine this dichotomy in the context of the violacein biosynthetic pathway. Importantly, we chose to interrogate this pathway with tryptophan analogues in vitro, to mitigate possible interference from cellular components and endogenous tryptophan. A total of nine tryptophan analogues were screened for by analyzing the substrate promiscuity of the initial enzyme, VioA, and compared to the substrate tryptophan. These results suggested that for VioA, substitutions at either the 2- or 4-position of tryptophan were not viable. The seven analogues that showed successful substrate conversion by VioA were then applied to the five enzyme cascade (VioABEDC) for the production of violacein, where l-tryptophan and 6-fluoro-l-tryptophan were the only substrates which were successfully converted to the corresponding violacein derivative(s). However, many of the other tryptophan analogues did convert to various substituted intermediaries. Overall, our results show substrate promiscuity with the initial enzyme, VioA, but much less for the full pathway. This work demonstrates the complexity involved when attempting to analyze substrate analogues within multienzymatic cascades, where each enzyme involved within the cascade possesses its own inherent promiscuity, which must be compatible with the remaining enzymes in the cascade for successful formation of a desired product.
Collapse
Affiliation(s)
- Shelby
L. Hooe
- National
Research Council, Washington, D.C. 20001, United States
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Meghna Thakur
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Guillermo Lasarte-Aragonés
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Joyce C. Breger
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Gregory A. Ellis
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
2
|
Huang C, Chu X, Hui W, Xie C, Xu X. Study on extraction and characterization of new antibiotics violacein from engineered Escherichia coli VioABCDE-SD. Biotechnol Appl Biochem 2023; 70:1582-1596. [PMID: 36898961 DOI: 10.1002/bab.2454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
To better understand the characteristic properties of violacein biosynthesized by engineered Escherichia coli VioABCDE-SD, a convenient and simplified method was designed to extract violacein and its stability, antimicrobial activity, and antioxidant capacity were analyzed. Different from the traditional extraction methods, our new method is easier and less time consuming and can directly obtain violacein dry powder product with a higher extraction rate. Low temperature, dark condition, neutral pH, reducing agents, Ba2+ , Mn2+ , Ni2+ , Co2+ , and some food additives of sucrose, xylose, and glucose were conducive to maintaining its stability. The violacein also exhibited surprisingly high bacteriostatic action against Gram-positive Bacillus subtilis, Deinococcus radiodurans R1, and Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but no effect on E. coli. The violacein of VioABCDE-SD exhibited strong antioxidant activity, with the scavenging rate of 1,1-diphenyl-2-picrylhydrazyl free radicals reaching 60.33%, the scavenging efficiency of hydroxyl radical scavenging reaching 56.34%, and the total antioxidant capacity reaching 0.63 U/mL. Violacein from VioABCDE-SD can be synthesized directionally with better stability, antibacterial, and antioxidant properties compared with that from the original strain Janthinobacterium sp. B9-8. Therefore, our study indicated that violacein from engineered E. coli VioABCDE-SD was a kind of new antibiotic with potential biological activities, which may have potential utility in multiple areas such as pharmacological, cosmetics, and healthy food industries.
Collapse
Affiliation(s)
- Chunyan Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xiaoting Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
4
|
Xiao S, Wang Z, Wang B, Hou B, Cheng J, Bai T, Zhang Y, Wang W, Yan L, Zhang J. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives. Front Microbiol 2023; 14:1099098. [PMID: 37032885 PMCID: PMC10076799 DOI: 10.3389/fmicb.2023.1099098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Tryptophan derivatives are various aromatic compounds produced in the tryptophan metabolic pathway, such as 5-hydroxytryptophan, 5-hydroxytryptamine, melatonin, 7-chloro-tryptophan, 7-bromo-tryptophan, indigo, indirubin, indole-3-acetic acid, violamycin, and dexoyviolacein. They have high added value, widely used in chemical, food, polymer and pharmaceutical industry and play an important role in treating diseases and improving life. At present, most tryptophan derivatives are synthesized by biosynthesis. The biosynthesis method is to combine metabolic engineering with synthetic biology and system biology, and use the tryptophan biosynthesis pathway of Escherichia coli, Corynebacterium glutamicum and other related microorganisms to reconstruct the artificial biosynthesis pathway, and then produce various tryptophan derivatives. In this paper, the characteristics, applications and specific biosynthetic pathways and methods of these derivatives were reviewed, and some strategies to increase the yield of derivatives and reduce the production cost on the basis of biosynthesis were introduced in order to make some contributions to the development of tryptophan derivatives biosynthesis industry.
Collapse
Affiliation(s)
- Shujian Xiao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| |
Collapse
|
5
|
Tong Y, Zhou J, Zhang L, Xu P. A Golden-Gate Based Cloning Toolkit to Build Violacein Pathway Libraries in Yarrowia lipolytica. ACS Synth Biol 2021; 10:115-124. [PMID: 33399465 PMCID: PMC7812646 DOI: 10.1021/acssynbio.0c00469] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Violacein is a naturally
occurring anticancer therapeutic compound
with deep purple color. In this work, we harnessed the modular and
combinatorial feature of a Golden Gate assembly method to construct
a library of violacein producing strains in the oleaginous yeast Yarrowia lipolytica, where each gene in the violacein pathway
was controlled by three different promoters with varying transcriptional
strength. After optimizing the linker sequence and the Golden Gate
reaction, we achieved high transformation efficiency and obtained
a panel of representative Y. lipolytica recombinant
strains. By evaluating the gene expression profile of 21 yeast strains,
we obtained three colorful compounds in the violacein pathway: green
(proviolacein), purple (violacein), and pink (deoxyviolacein). Our
results indicated that strong expression of VioB, VioC, and VioD favors violacein production
with minimal byproduct deoxyvioalcein in Y. lipolytica, and high deoxyviolacein production was found strongly associated
with the weak expression of VioD. By further optimizing
the carbon to nitrogen ratio and cultivation pH, the maximum violacein
reached 70.04 mg/L with 5.28 mg/L of deoxyviolacein in shake flasks.
Taken together, the development of Golden Gate cloning protocols to
build combinatorial pathway libraries, and the optimization of culture
conditions set a new stage for accessing the violacein pathway intermediates
and engineering violacein production in Y. lipolytica. This work further expands the toolbox to engineering Y.
lipolytica as an industrially relevant host for plant or
marine natural product biosynthesis.
Collapse
Affiliation(s)
- Yingjia Tong
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Liang Zhang
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Peng Xu
- Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
6
|
Violacein improves recombinant IgG production by controlling the cell cycle of Chinese hamster ovary cells. Cytotechnology 2020; 73:319-332. [PMID: 34149168 DOI: 10.1007/s10616-020-00434-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are used as host cells for industrial monoclonal antibody (mAb) production. Cell cycle control is an effective approach to increase mAb production in the cell culture. Violacein, a purple-colored pigment produced by microorganisms, has diverse bioactive properties and has been proposed for various industrial applications. In this study, we evaluated the potency of violacein for cell cycle control and improvement of recombinant immunoglobulin G (IgG) production in CHO cells. Compared with the control, 0.9 μM violacein in a 14-day fed-batch culture increased the maximum IgG concentration by 37.6% via increasing the specific production rate and cell longevity. Cell cycle analysis showed that violacein induced G1 and G2/M phase arrest. However, the G1 arrest was observed only on day 1, while G2/M arrest lasted more than 3 days, suggesting that G2/M arrest mediated the violacein-induced enhanced IgG production. Moreover, in line with the increased protein expression, the expression levels of IgG mRNA and nutrient metabolic rates were also increased. N-Linked glycosylation and charge variant profiles were barely affected by violacein treatment. Our results indicate that violacein affects the cell cycle of CHO cells and increases IgG production without changing product quality, showing promise as a mAb production enhancer in CHO cells. The study provides insight into violacein utilization in industrial mAb manufacturing and can help develop advanced, effective mAb production technologies using CHO cell cultures.
Collapse
|
7
|
Wang L, Sun Y, Lv D, Liu B, Guan Y, Yu D. Protein scaffold optimizes arrangement of constituent enzymes in indigoidine synthetic pathway to improve the pigment production. Appl Microbiol Biotechnol 2020; 104:10493-10502. [PMID: 33151367 DOI: 10.1007/s00253-020-10990-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/30/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Indigoidine is a dark-blue natural pigment with application prospect and synthesized from glutamine (Gln) by series of indigoidine synthetases (IndCs). Indigoidine production can be improved by enhancing Gln pool via supplementing Gln directly or converting metabolism glutamate (Glu) to Gln by glutamine synthetase (GlnA). But, Gln is expensive, and excess Gln inhibits indigoidine production of the recombinant strain. Supplementing Glu instead of Gln may improve the productive and economic efficiency of indigoidine, but the local activities and positions of the indigoidine pathway enzymes GlnA, Sc-IndC, and the helper protein of Sc-IndC (IndB) should be well arranged. We identified the Streptomyces chromofuscus ATCC 49982 derived IndC (Sc-IndC) as an more efficient IndC compared to other IndCs applied for constructing indigoidine-producting strains, and designed series of protein scaffold complexes with architectures of PDZ, SH3, and GBD domains (PxSyG1) to arrange the pathway enzymes. The strain recruiting GlnA, Sc-IndC, and IndB on the PDZ, SH3, and GBD domains of scaffold P1S2G1, respectively, was the most efficient. In the strain, the GlnA supplied sufficient local Gln for Sc-IndC from Glu, and the generated Gln was immediately consumed by Sc-IndC to relieve cell growth inhibition caused by Gln. The optimum Glu concentration (6 g/L) for the strain was higher than those of the strains recruiting Sc-IndC on the GBD domain, which was away from the PDZ domain recruiting GlnA. The highest titer of indigoidine was 12 g/L, which was two folds of the control without scaffold (5.8 g/L). The titer is 5 g/L higher than the control without Glu supplemented (6.9 g/L), meaning that 97% of the supplemented Glu was transformed into indigoidine. The batch fermentation with the optimum strain in a 5-L reactor achieved an indigoidine titer of 14 g/L in 60 h. To our knowledge, this was the most efficient indigoidine productivity achieved so far. The optimization strategies by protein scaffold should be applicative to other pathways with complex substrate demands. KEY POINTS: •Protein scaffold systems were designed to arrange the indigoidine synthetic pathway. •The scaffold system improved supplement of Gln for indigoidine production from Glu. •The inhibition caused by excess Gln was relieved by proper designed scaffold. •The yield and titer of indigoidine was improved by arranging the pathway enzymes. Graphical abstract.
Collapse
Affiliation(s)
- Lei Wang
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Yue Sun
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
- Viablife Biotech Co., Ltd, Hangzhou, 311113, China
| | - Di Lv
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Bin Liu
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Yuekai Guan
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Dayu Yu
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, China.
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
- Viablife Biotech Co., Ltd, Hangzhou, 311113, China.
| |
Collapse
|
8
|
Wannier TM, Nyerges A, Kuchwara HM, Czikkely M, Balogh D, Filsinger GT, Borders NC, Gregg CJ, Lajoie MJ, Rios X, Pál C, Church GM. Improved bacterial recombineering by parallelized protein discovery. Proc Natl Acad Sci U S A 2020; 117:13689-13698. [PMID: 32467157 PMCID: PMC7306799 DOI: 10.1073/pnas.2001588117] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Exploiting bacteriophage-derived homologous recombination processes has enabled precise, multiplex editing of microbial genomes and the construction of billions of customized genetic variants in a single day. The techniques that enable this, multiplex automated genome engineering (MAGE) and directed evolution with random genomic mutations (DIvERGE), are however, currently limited to a handful of microorganisms for which single-stranded DNA-annealing proteins (SSAPs) that promote efficient recombineering have been identified. Thus, to enable genome-scale engineering in new hosts, efficient SSAPs must first be found. Here we introduce a high-throughput method for SSAP discovery that we call "serial enrichment for efficient recombineering" (SEER). By performing SEER in Escherichia coli to screen hundreds of putative SSAPs, we identify highly active variants PapRecT and CspRecT. CspRecT increases the efficiency of single-locus editing to as high as 50% and improves multiplex editing by 5- to 10-fold in E. coli, while PapRecT enables efficient recombineering in Pseudomonas aeruginosa, a concerning human pathogen. CspRecT and PapRecT are also active in other, clinically and biotechnologically relevant enterobacteria. We envision that the deployment of SEER in new species will pave the way toward pooled interrogation of genotype-to-phenotype relationships in previously intractable bacteria.
Collapse
Affiliation(s)
| | - Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary
| | | | - Márton Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary
| | - Dávid Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary
| | | | | | | | - Marc J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Xavier Rios
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
9
|
Isolation and characterization of violacein from an Antarctic Iodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 2019; 24:43-52. [DOI: 10.1007/s00792-019-01111-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
10
|
Sankaran S, Becker J, Wittmann C, Del Campo A. Optoregulated Drug Release from an Engineered Living Material: Self-Replenishing Drug Depots for Long-Term, Light-Regulated Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804717. [PMID: 30589209 DOI: 10.1002/smll.201804717] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/30/2018] [Indexed: 06/09/2023]
Abstract
On-demand and long-term delivery of drugs are common requirements in many therapeutic applications, not easy to be solved with available smart polymers for drug encapsulation. This work presents a fundamentally different concept to address such scenarios using a self-replenishing and optogenetically controlled living material. It consists of a hydrogel containing an active endotoxin-free Escherichia coli strain. The bacteria are metabolically and optogenetically engineered to secrete the antimicrobial and antitumoral drug deoxyviolacein in a light-regulated manner. The permeable hydrogel matrix sustains a viable and functional bacterial population and permits diffusion and delivery of the synthesized drug to the surrounding medium at quantities regulated by light dose. Using a focused light beam, the site for synthesis and delivery of the drug can be freely defined. The living material is shown to maintain considerable levels of drug production and release for at least 42 days. These results prove the potential and flexibility that living materials containing engineered bacteria can offer for advanced therapeutic applications.
Collapse
Affiliation(s)
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, 66123, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
11
|
Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proc Natl Acad Sci U S A 2018; 115:E5726-E5735. [PMID: 29871954 PMCID: PMC6016788 DOI: 10.1073/pnas.1801646115] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology.
Collapse
|
12
|
Zhou Y, Fang MY, Li G, Zhang C, Xing XH. Enhanced Production of Crude Violacein from Glucose in Escherichia coli by Overexpression of Rate-Limiting Key Enzyme(S) Involved in Violacein Biosynthesis. Appl Biochem Biotechnol 2018; 186:909-916. [PMID: 29797295 DOI: 10.1007/s12010-018-2787-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/15/2018] [Indexed: 01/12/2023]
Abstract
Crude violacein, consisting of violacein and deoxyviolacein, displays many attractive bio-activities in the field of drug therapy. To produce crude violacein from an industrially economic carbon source, we firstly introduced the violacein pathway into Escherichia coli B8/pTRPH1, which was previously engineered to accumulate tryptophan from glucose. A crude violacein production capacity of 0.25 g L-1 OD600-1 was obtained using glucose-containing medium. By further overexpressing each of the five genes involved in violacein synthesis pathway, VioE was found as the rate-limiting step for the violacein production. The optimal strain of B8/pTRPH1-pVio-VioE was then used for fed-batch fermentation in a 5-L bioreactor and a crude violacein titer of 4.45 g L-1, as well as a productivity of 98.7 mg L-1 h-1, was obtained. This engineered strain showed the highest violacein titer and productivity reported so far. Our optimal strain of E. coli B8/pTRPH1-pVio-VioE by overexpression of the rate-limiting VioE in violacein synthesis pathway was a potential violacein producer by directly using glucose for industrial application.
Collapse
Affiliation(s)
- Yikang Zhou
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Ming-Yue Fang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Gang Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| | - Xin-Hui Xing
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Recent research advances on Chromobacterium violaceum. ASIAN PAC J TROP MED 2017; 10:744-752. [PMID: 28942822 DOI: 10.1016/j.apjtm.2017.07.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/18/2017] [Accepted: 06/17/2017] [Indexed: 11/21/2022] Open
Abstract
Chromobacterium violaceum is a gram-negative bacterium, which has been used widely in microbiology labs involved in quorum sensing (QS) research. Among the QS-regulated traits of this bacterium, violacein production has received the maximum attention. Violacein production in this organism, however is not under sole control of QS machinery, and other QS-regulated traits of this bacterium also need to be investigated in better detail. Though not often involved in human infections, this bacterium is being viewed as an emerging pathogen. This review attempts to highlight the recent research advances on C. violaceum, with respect to violacein biosynthesis, development of various applications of this bacterium and its bioactive metabolite violacein, and its pathogenicity.
Collapse
|
14
|
Intermediate-sensor assisted push–pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab Eng 2016; 33:41-51. [DOI: 10.1016/j.ymben.2015.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/22/2015] [Accepted: 10/15/2015] [Indexed: 01/29/2023]
|
15
|
High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci Rep 2015; 5:15598. [PMID: 26489441 PMCID: PMC4614999 DOI: 10.1038/srep15598] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/23/2015] [Indexed: 11/24/2022] Open
Abstract
A violacein-producing bacterial strain was isolated and identified as a relative of Duganella violaceinigra YIM 31327 based upon phylogenetic analyses using the 16S rRNA, gyrB and vioA gene sequences and a fatty acid methyl ester (FAME) analysis. This new strain was designated D. violaceinigra str. NI28. Although these two strains appear related based upon these analyses, the new isolate was phenotypically different from the type strain as it grew 25% faster on nutrient media and produced 45-fold more violacein. When compared with several other violacein producing strains, including Janthinobacterium lividum, D. violaceinigra str. NI28 was the best violacein producer. For instance, the crude violacein yield with D. violaceinigra str. NI28 was 6.0 mg/OD at 24 hours, a value that was more than two-fold higher than all the other strains. Finally, the antibacterial activity of D. violaceinigra str. NI28 crude violacein was assayed using several multidrug resistant Staphylococcus aureus. Addition of 30 μM crude violacein led to a 96% loss in the initial S. aureus population while the minimum inhibitory concentration was 1.8 μM. Consequently, this novel isolate represents a phenotypic variant of D. violaceinigra capable of producing much greater quantities of crude violacein, an antibiotic effective against multidrug resistant S. aureus.
Collapse
|
16
|
Violacein: Properties and Production of a Versatile Bacterial Pigment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:465056. [PMID: 26339614 PMCID: PMC4538413 DOI: 10.1155/2015/465056] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/18/2014] [Indexed: 01/01/2023]
Abstract
Violacein-producing bacteria, with their striking purple hues, have undoubtedly piqued the curiosity of scientists since their first discovery. The bisindole violacein is formed by the condensation of two tryptophan molecules through the action of five proteins. The genes required for its production, vioABCDE, and the regulatory mechanisms employed have been studied within a small number of violacein-producing strains. As a compound, violacein is known to have diverse biological activities, including being an anticancer agent and being an antibiotic against Staphylococcus aureus and other Gram-positive pathogens. Identifying the biological roles of this pigmented molecule is of particular interest, and understanding violacein's function and mechanism of action has relevance to those unmasking any of its commercial or therapeutic benefits. Unfortunately, the production of violacein and its related derivatives is not easy and so various groups are also seeking to improve the fermentative yields of violacein through genetic engineering and synthetic biology. This review discusses the recent trends in the research and production of violacein by both natural and genetically modified bacterial strains.
Collapse
|
17
|
Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 2015; 99:6197-214. [PMID: 26099332 PMCID: PMC4495716 DOI: 10.1007/s00253-015-6745-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/30/2022]
Abstract
The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.
Collapse
|
18
|
Fang MY, Zhang C, Yang S, Cui JY, Jiang PX, Lou K, Wachi M, Xing XH. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb Cell Fact 2015; 14:8. [PMID: 25592762 PMCID: PMC4306242 DOI: 10.1186/s12934-015-0192-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background As bacteria-originated crude violacein, a natural indolocarbazole product, consists of violacein and deoxyviolacein, and can potentially be a new type of natural antibiotics, the reconstruction of an effective metabolic pathway for crude violacein (violacein and deoxyviolacein mixture) synthesis directly from glucose in Escherichia coli was of importance for developing industrial production process. Results Strains with a multivariate module for varied tryptophan productivities were firstly generated by combinatorial knockout of trpR/tnaA/pheA genes and overexpression of two key genes trpEfbr/trpD from the upstream tryptophan metabolic pathway. Then, the gene cluster of violacein biosynthetic pathway was introduced downstream of the generated tryptophan pathway. After combination of these two pathways, maximum crude violacein production directly from glucose by E. coli B2/pED + pVio was realized with a titer of 0.6 ± 0.01 g L−1 in flask culture, which was four fold higher than that of the control without the tryptophan pathway up-regulation. In a 5-L bioreactor batch fermentation with glucose as the carbon source, the recombinant E. coli B2/pED + pVio exhibited a crude violacein titer of 1.75 g L−1 and a productivity of 36 mg L−1 h−1, which was the highest titer and productivity reported so far under the similar culture conditions without tryptophan addition. Conclusion Metabolic pathway analysis using 13C labeling illustrated that the up-regulated tryptophan supply enhanced tryptophan metabolism from glucose, whereas the introduction of violacein pathway drew more carbon flux from glucose to tryptophan, thereby contributing to the effective production of crude violacein in the engineered E. coli cell factory. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0192-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Yue Fang
- Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China.
| | - Chong Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China.
| | - Song Yang
- School of Life Sciences, Qingdao Agriculture University, Qingdao, 266109, China.
| | - Jin-Yu Cui
- School of Life Sciences, Qingdao Agriculture University, Qingdao, 266109, China.
| | - Pei-Xia Jiang
- Institute of Microbiology, Chinese Academy of Science, Beijing, 10084, China.
| | - Kai Lou
- Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, 830000, China.
| | - Masaaki Wachi
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| | - Xin-Hui Xing
- Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China.
| |
Collapse
|
19
|
Ballestriero F, Daim M, Penesyan A, Nappi J, Schleheck D, Bazzicalupo P, Di Schiavi E, Egan S. Antinematode activity of Violacein and the role of the insulin/IGF-1 pathway in controlling violacein sensitivity in Caenorhabditis elegans. PLoS One 2014; 9:e109201. [PMID: 25295516 PMCID: PMC4189955 DOI: 10.1371/journal.pone.0109201] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/10/2014] [Indexed: 01/23/2023] Open
Abstract
The purple pigment violacein is well known for its numerous biological activities including antibacterial, antiviral, antiprotozoan, and antitumor effects. In the current study we identify violacein as the antinematode agent produced by the marine bacterium Microbulbifer sp. D250, thereby extending the target range of this small molecule. Heterologous expression of the violacein biosynthetic pathway in E. coli and experiments using pure violacein demonstrated that this secondary metabolite facilitates bacterial accumulation in the nematode intestine, which is accompanied by tissue damage and apoptosis. Nematodes such as Caenorhabditis elegans utilise a well-defined innate immune system to defend against pathogens. Using C. elegans as a model we demonstrate the DAF-2/DAF-16 insulin/IGF-1 signalling (IIS) component of the innate immune pathway modulates sensitivity to violacein-mediated killing. Further analysis shows that resistance to violacein can occur due to a loss of DAF-2 function and/or an increased function of DAF-16 controlled genes involved in antimicrobial production (spp-1) and detoxification (sod-3). These data suggest that violacein is a novel candidate antinematode agent and that the IIS pathway is also involved in the defence against metabolites from non-pathogenic bacteria.
Collapse
Affiliation(s)
- Francesco Ballestriero
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - Malak Daim
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jadranka Nappi
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - David Schleheck
- Biology Department, University of Konstanz, Konstanz, Germany
| | - Paolo Bazzicalupo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Elia Di Schiavi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Suhelen Egan
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Rodrigues AL, Becker J, de Souza Lima AO, Porto LM, Wittmann C. Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol. Biotechnol Bioeng 2014; 111:2280-9. [PMID: 24889673 DOI: 10.1002/bit.25297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/24/2014] [Accepted: 05/21/2014] [Indexed: 12/15/2022]
Abstract
Deoxyviolacein is a microbial drug with biological activity against tumors, gram-positive bacteria, and fungal plant pathogens. Here, we describe an Escherichia coli strain for heterologous production of this high-value drug from glycerol. Plasmid-based expression of the deoxyviolacein cluster vioABCE was controlled by the araBAD promoter and induction by L-arabinose. Through elimination of L-arabinose catabolism in E. coli, the pentose sugar could be fully directed to induction of deoxyviolacein biosynthesis and was no longer metabolized, as verified by (13) C isotope experiments. Deletion of the araBAD genes beneficially complemented with previously described (i) engineering of the pentose phosphate pathway, (ii) chorismate biosynthesis, (iii) tryptophan biosynthesis, (iv) improved supply of L-serine, (v) elimination of tryptophan repression, and (vi) of tryptophan catabolism. Subsequent screening of the created next-generation producer E. coli dVio-8 identified glycerol as optimum carbon source and a level of 100 mg L(-1) of L-arabinose as optimum for induction. Transferred to a glycerol-based fed-batch process, E. coli dVio-8 surpassed the gram scale and produced 1.6 g L(-1) deoxyviolacein. With straightforward extraction from culture broth and purification by flash chromatography, deoxyviolacein was obtained at >99.5% purity. Biotechnol. Bioeng. 2014;111: 2280-2289. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- André Luis Rodrigues
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany; Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
21
|
Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, Korneli C, de Souza Lima AO, Porto LM, Sprenger GA, Wittmann C. Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng 2013; 20:29-41. [PMID: 23994489 DOI: 10.1016/j.ymben.2013.08.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/01/2013] [Accepted: 08/21/2013] [Indexed: 12/25/2022]
Abstract
Violacein and deoxyviolacein are interesting therapeutics against pathogenic bacteria and viruses as well as tumor cells. In the present work, systems-wide metabolic engineering was applied to target Escherichia coli, a widely accepted recombinant host in pharmaceutical biotechnology, for production of these high-value products. The basic producer, E. coli dVio-1, that expressed the vioABCE cluster from Chromobacterium violaceum under control of the inducible araC system, accumulated 180 mg L(-1) of deoxyviolacein. Targeted intracellular metabolite analysis then identified bottlenecks in tryptophan supporting pathways, the major product building block. This was used for comprehensive engineering of serine, chorismate and tryptophan biosynthesis and the non-oxidative pentose-phosphate pathway. The final strain, E. coli dVio-6, accumulated 320 mg L(-1) deoxyviolacein in shake flask cultures. The created chassis of a high-flux tryptophan pathway was complemented by genomic integration of the vioD gene of Janthinobacterium lividum, which enabled exclusive production of violacein. In a fed-batch process, the resulting producer E. coli Vio-4 accumulated 710 mg L(-1) of the desired product. With straightforward broth extraction and subsequent crystallization, violacein could be obtained with 99.8% purity. This demonstrates the potential of E. coli as a platform for production of tryptophan based therapeutics.
Collapse
Affiliation(s)
- André L Rodrigues
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Biosynthesis and characterization of violacein, deoxyviolacein and oxyviolacein in heterologous host, and their antimicrobial activities. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|