1
|
Matsumoto K. Toward the production of block copolymers in microbial cells: achievements and perspectives. Appl Microbiol Biotechnol 2024; 108:164. [PMID: 38252290 PMCID: PMC10803391 DOI: 10.1007/s00253-023-12973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
The microbial production of polyhydroxyalkanoate (PHA) block copolymers has attracted research interests because they can be expected to exhibit excellent physical properties. Although post-polymerization conjugation and/or extension have been used for PHA block copolymer synthesis, the discovery of the first sequence-regulating PHA synthase, PhaCAR, enabled the direct synthesis of PHA-PHA type block copolymers in microbial cells. PhaCAR spontaneously synthesizes block copolymers from a mixture of substrates. To date, Escherichia coli and Ralstonia eutropha have been used as host strains, and therefore, sequence regulation is not a host-specific phenomenon. The monomer sequence greatly influences the physical properties of the polymer. For example, a random copolymer of 3-hydroxybutyrate and 2-hydroxybutyrate deforms plastically, while a block copolymer of approximately the same composition exhibits elastic deformation. The structure of the PHA block copolymer can be expanded by in vitro evolution of the sequence-regulating PHA synthase. An engineered variant of PhaCAR can synthesize poly(D-lactate) as a block copolymer component, which allows for greater flexibility in the molecular design of block copolymers. Therefore, creating sequence-regulating PHA synthases with a further broadened substrate range will expand the variety of properties of PHA materials. This review summarizes and discusses the sequence-regulating PHA synthase, analytical methods for verifying block sequence, properties of block copolymers, and mechanisms of sequence regulation. KEY POINTS: • Spontaneous monomer sequence regulation generates block copolymers • Poly(D-lactate) segment can be synthesized using a block copolymerization system • Block copolymers exhibit characteristic properties.
Collapse
Affiliation(s)
- Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kitaku, Sapporo, N13W8060-8628, Japan.
| |
Collapse
|
2
|
He J, Shi H, Li X, Nie X, Yang Y, Li J, Wang J, Yao M, Tian B, Zhou J. A review on microbial synthesis of lactate-containing polyesters. World J Microbiol Biotechnol 2022; 38:198. [PMID: 35995888 DOI: 10.1007/s11274-022-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Degradable polylactic acids (PLA) have been widely used in agriculture, textile, medicine and degradable plastics industry, and can completely replace petroleum-based plastics in the future. At present, polylactic acid was chemically synthesized by ring-opening polymerisation or the direct polycondensation of lactic acid, which inevitably leads to chemical and heavy metal catalyst pollution. The current research focus has gradually shifted to the development of recombinant industrial strains for the efficiently production of lactate-containing polyesters from renewable resources. This review summarizes various explorations of metabolic pathway optimization and production cost control in the industrialization of lactate-containing polyesters bio-production. In particular, the effects of key enzymes, including CoA transferase, polyhydroxyalkanoate synthase, and their mutants, culture conditions, low-cost carbon sources, and recombinant strains on the yield and composition of lactate-containing polyesters are summarized and discussed. Future prospects and challenges for the industrialization of lactate-containing polyesters are also pointed out.
Collapse
Affiliation(s)
- Junyi He
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Xiangqian Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Yuxiang Yang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jing Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jiahui Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Mengdie Yao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Baoxia Tian
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jia Zhou
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China. .,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
3
|
Guo P, Luo Y, Wu J, Wu H. Recent advances in the microbial synthesis of lactate-based copolymer. BIORESOUR BIOPROCESS 2021; 8:106. [PMID: 38650297 PMCID: PMC10992027 DOI: 10.1186/s40643-021-00458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the increasing environmental pollution of un-degradable plastics and the consumption of non-renewable resources, more attention has been attracted by new bio-degradable/based polymers produced from renewable resources. Polylactic acid (PLA) is one of the most representative bio-based materials, with obvious advantages and disadvantages, and has a wide range of applications in industry, medicine, and research. By copolymerizing to make up for its deficiencies, the obtained copolymers have more excellent properties. The development of a one-step microbial metabolism production process of the lactate (LA)-based copolymers overcomes the inherent shortcomings in the traditional chemical synthesis process. The most common lactate-based copolymer is poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], within which the difference of LA monomer fraction will cause the change in the material properties. It is necessary to regulate LA monomer fraction by appropriate methods. Based on synthetic biology and systems metabolic engineering, this review mainly focus on how did the different production strategies (such as enzyme engineering, fermentation engineering, etc.) of P(LA-co-3HB) optimize the chassis cells to efficiently produce it. In addition, the metabolic engineering strategies of some other lactate-based copolymers are also introduced in this article. These studies would facilitate to expand the application fields of the corresponding materials.
Collapse
Affiliation(s)
- Pengye Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
4
|
Ylinen A, Maaheimo H, Anghelescu-Hakala A, Penttilä M, Salusjärvi L, Toivari M. Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2021; 48:6253250. [PMID: 33899921 PMCID: PMC9113173 DOI: 10.1093/jimb/kuab028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022]
Abstract
Polyhydroxyalkanoates (PHAs) provide biodegradable and bio-based alternatives to conventional plastics. Incorporation of 2-hydroxy acid monomers into polymer, in addition to 3-hydroxy acids, offers possibility to tailor the polymer properties. In this study, poly(D-lactic acid) (PDLA) and copolymer P(LA-3HB) were produced and characterized for the first time in the yeast Saccharomyces cerevisiae. Expression of engineered PHA synthase PhaC1437Ps6–19, propionyl-CoA transferase Pct540Cp, acetyl-CoA acetyltransferase PhaA, and acetoacetyl-CoA reductase PhaB1 resulted in accumulation of 3.6% P(LA-3HB) and expression of engineered enzymes PhaC1Pre and PctMe resulted in accumulation of 0.73% PDLA of the cell dry weight (CDW). According to NMR, P(LA-3HB) contained D-lactic acid repeating sequences. For reference, expression of PhaA, PhaB1, and PHA synthase PhaC1 resulted in accumulation 11% poly(hydroxybutyrate) (PHB) of the CDW. Weight average molecular weights of these polymers were comparable to similar polymers produced by bacterial strains, 24.6, 6.3, and 1 130 kDa for P(LA-3HB), PDLA, and PHB, respectively. The results suggest that yeast, as a robust and acid tolerant industrial production organism, could be suitable for production of 2-hydroxy acid containing PHAs from sugars or from 2-hydroxy acid containing raw materials. Moreover, the wide substrate specificity of PHA synthase enzymes employed increases the possibilities for modifying copolymer properties in yeast in the future.
Collapse
Affiliation(s)
- Anna Ylinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | | | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
| | - Laura Salusjärvi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
5
|
Bhatia SK, Otari SV, Jeon JM, Gurav R, Choi YK, Bhatia RK, Pugazhendhi A, Kumar V, Rajesh Banu J, Yoon JJ, Choi KY, Yang YH. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. BIORESOURCE TECHNOLOGY 2021; 326:124733. [PMID: 33494006 DOI: 10.1016/j.biortech.2021.124733] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Biowaste management is a challenging job as it is high in nutrient content and its disposal in open may cause a serious environmental and health risk. Traditional technologies such as landfill, bio-composting, and incineration are used for biowaste management. To gain revenue from biowaste researchers around the world focusing on the integration of biowaste management with other commercial products such as volatile fatty acids (VFA), biohydrogen, and bioplastic (polyhydroxyalkanoates (PHA)), etc. PHA production from various biowastes such as lignocellulosic biomass, municipal waste, waste cooking oils, biodiesel industry waste, and syngas has been reported successfully. Various nutrient factors i.e., carbon and nitrogen source concentration and availability of dissolved oxygen are crucial factors for PHA production. This review is an attempt to summarize the recent advancements in PHA production from various biowaste, its downstream processing, and other challenges that need to overcome making bioplastic an alternate for synthetic plastic.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sachin V Otari
- Department of Biotechnology, Shivaji University, Vidyanagar Kolhapur 416004, Maharashtra, India
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
8
|
Synergy of valine and threonine supplementation on poly(2-hydroxybutyrate-block-3-hydroxybutyrate) synthesis in engineered Escherichia coli expressing chimeric polyhydroxyalkanoate synthase. J Biosci Bioeng 2019; 129:302-306. [PMID: 31635918 DOI: 10.1016/j.jbiosc.2019.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 01/06/2023]
Abstract
The engineered chimeric polyhydroxyalkanoate (PHA) synthase PhaCAR is composed of N-terminal portion of Aeromonas caviae PHA synthase and C-terminal portion of Ralstonia eutropha (Cupriavidus necator) PHA synthase. PhaCAR has a unique and useful capacity to synthesize the block PHA copolymer poly(2-hydroxybutyrate-block-3-hydroxybutyrate) [P(2HB-b-3HB)] in engineered Escherichia coli from exogenous 2HB and 3HB. In the present study, we initially attempted to incorporate the amino acid-derived 2-hydroxyalkanoate (2HA) units using PhaCAR and the 2HA-CoA-supplying enzymes lactate dehydrogenase (LdhA) and CoA transferase (HadA). Cells harboring the genes for PhaCAR, LdhA, and HadA, as well as for the 3HB-CoA-supplying enzymes β-ketothiolase and acetoacetyl-CoA reductase, were cultivated with supplementation of four hydrophobic amino acids, i.e., leucine, valine (Val), isoleucine (Ile), and phenylalanine, in the medium. No hydrophobic amino acid-derived monomers were incorporated into the polymer, which was most likely because of the strict substrate specificity of PhaCAR; however, P(2HB-co-3HB) was unexpectedly produced with Val supplementation. The copolymer was likely P(2HB-b-3HB) based on proton nuclear magnetic resonance analysis. Based on the endogenous pathways in E. coli, 2HB units are likely derived from threonine (Thr) through deamination and dihydroxylation. In fact, dual supplementation with Thr and Val showed synergy on the 2HB fraction of the polymer. Val supplementation promoted the 2HB synthesis likely by inhibiting the metabolism of 2-ketobutyrate into Ile and/or activating Thr dehydratase. In conclusion, the LdhA/HadA/PhaCAR pathway served as the system for the synthesis of P(2HB-b-3HB) from biomass-derived carbon sources.
Collapse
|
9
|
Zheng Y, Chen JC, Ma YM, Chen GQ. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab Eng 2019; 58:82-93. [PMID: 31302223 DOI: 10.1016/j.ymben.2019.07.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
Abstract
PHA, a family of natural biopolymers aiming to replace non-degradable plastics for short-term usages, has been developed to include various structures such as short-chain-length (scl) and medium-chain-length (mcl) monomers as well as their copolymers. However, PHA market has been grown slowly since 1980s due to limited variety with good mechanical properties and the high production cost. Here, we review most updated strategies or approaches including metabolic engineering, synthetic biology and morphology engineering on expanding PHA diversity, reducing production cost and enhancing PHA production. The extremophilic Halomonas spp. are taken as examples to show the feasibility and challenges to develop next generation industrial biotechnology (NGIB) for producing PHA more competitively.
Collapse
Affiliation(s)
- Yang Zheng
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Chun Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Ming Ma
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Center for Nano- and Micro-Mechanics, Tsinghua University, Beijing, 100084, China; Dept of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Choi SY, Cho IJ, Lee Y, Park S, Lee SY. Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms. Methods Enzymol 2019; 627:125-162. [PMID: 31630738 DOI: 10.1016/bs.mie.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactate), also called poly(lactic acid) or poly(lactide) [PLA], has been one of the most attractive bio-based polymers since it possesses desirable material properties for its use in general performance plastics in addition to biodegradability and biocompatibility. PLA has been produced by biological and chemical hybrid process comprising microbial fermentation for lactate (LA) production followed by purification and chemical polymerization process of LA. Recently, the direct one-step fermentative processes for production of PLA and several LA-containing polyesters have been developed by employing metabolically engineered microorganisms. Since natural microorganisms cannot produce the LA-containing polymers, several engineering strategies have been employed together based on the polyhydroxyalkanoate (PHA) biosynthesis system. In this chapter, we summarize strategies and procedures on developing the engineered microorganisms producing PLA and its copolymers, cultivating the cells, and extracting the polymers from the cells. Focuses were given on construction of enzymatic polymerization process of LA: design of metabolic pathway for PLA by mimicking PHA biosynthetic pathway, examination of possible enzymes, and engineering of the enzymes for better performances. This synthetic pathway has been established in a microorganism producing LA that enabled one-step fermentative production of LA-containing polyesters from carbohydrates derived from renewable biomass. Polymer production has been further enhanced by implementing strain engineering to concentrate the metabolic fluxes toward PLA formation. In addition, various monomers such as glycolate, 2-hydroxybutyrate, and phenyllactate have been copolymerized with LA by the microbial system. These fermentative production systems developed by using the engineered microorganisms can be versatile and sustainable platforms for the production of LA-containing polyesters and other non-natural polymers.
Collapse
Affiliation(s)
- So Young Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea; Applied Science Research Institute, KAIST, Daejeon, Republic of Korea
| | - In Jin Cho
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Youngjoon Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Seongjin Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea; Applied Science Research Institute, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Chek MF, Hiroe A, Hakoshima T, Sudesh K, Taguchi S. PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Appl Microbiol Biotechnol 2018; 103:1131-1141. [DOI: 10.1007/s00253-018-9538-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
|
12
|
Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol 2017; 37:56-62. [PMID: 28152442 DOI: 10.1016/j.cbpa.2016.12.023] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/29/2023]
Abstract
Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future.
Collapse
|
13
|
Ren Y, Meng D, Wu L, Chen J, Wu Q, Chen GQ. Microbial synthesis of a novel terpolyester P(LA-co-3HB-co-3HP) from low-cost substrates. Microb Biotechnol 2016; 10:371-380. [PMID: 27860284 PMCID: PMC5328817 DOI: 10.1111/1751-7915.12453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/17/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022] Open
Abstract
Polylactide (PLA) is a bio-based plastic commonly synthesized by chemical catalytic reaction using lactic acid (LA) as a substrate. Here, novel LA-containing terpolyesters, namely, P[LA-co-3-hydroxybutyrate (3HB)-co-3-hydroxypropionate (3HP)], short as PLBP, were successfully synthesized for the first time by a recombinant Escherichia coli harbouring polyhydroxyalkanoate (PHA) synthase from Pseudomonas stutzeri (PhaC1Ps ) with 4-point mutations at E130D, S325T, S477G and Q481K, and 3-hydroxypropionyl-CoA (3HP-CoA) synthesis pathway from glycerol, 3-hydroxybutyryl-CoA (3HB-CoA) as well as lactyl-CoA (LA-CoA) pathways from glucose. Combining these pathways with the PHA synthase mutant phaC1Ps (E130D S325T S477G Q481K), the random terpolyester P(LA-co-3HB-co-3HP), or PLBP, was structurally confirmed by nuclear magnetic resonance to consist of 2 mol% LA, 90 mol% 3HB, and 8 mol% 3HP respectively. Remarkably, the PLBP terpolyester was produced from low-cost sustainable glycerol and glucose. Monomer ratios of PLBP could be regulated by ratios of glycerol to glucose. Other terpolyester thermal and mechanical properties can be manipulated by adjusting the monomer ratios. More PLBP applications are to be expected.
Collapse
Affiliation(s)
- Yilin Ren
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dechuan Meng
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Linping Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Jinchun Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China.,MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Chae CG, Kim YJ, Lee SJ, Oh YH, Yang JE, Joo JC, Kang KH, Jang YA, Lee H, Park AR, Song BK, Lee SY, Park SJ. Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0749-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yang JE, Choi SY, Shin JH, Park SJ, Lee SY. Microbial production of lactate-containing polyesters. Microb Biotechnol 2013; 6:621-36. [PMID: 23718266 PMCID: PMC3815930 DOI: 10.1111/1751-7915.12066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022] Open
Abstract
Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed.
Collapse
Affiliation(s)
- Jung Eun Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Institute for the BioCentury, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Institute for the BioCentury, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Institute for the BioCentury, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Si Jae Park
- Department of Environmental Engineering and Energy (Undergraduate program), Myongji UniversitySan 38-2, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggido, 449-728, Korea
- Department of Energy Science and Technology (Graduate program), Myongji UniversitySan 38-2, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggido, 449-728, Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Institute for the BioCentury, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Department of Bio and Brain Engineering, Department of Biological Sciences, BioProcess Engineering Research Center, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
- Bioinformatics Research Center, KAIST291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| |
Collapse
|
16
|
Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab Eng 2013; 20:20-8. [DOI: 10.1016/j.ymben.2013.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/20/2013] [Accepted: 08/14/2013] [Indexed: 01/22/2023]
|
17
|
Tabata Y, Abe H. Effects of composition and sequential structure on thermal properties for copolymer of 3-hydroxybutyrate and lactate units. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2013.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Matsumoto K, Taguchi S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions. Appl Microbiol Biotechnol 2013; 97:8011-21. [DOI: 10.1007/s00253-013-5120-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
|