• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4637602)   Today's Articles (1638)   Subscriber (50125)
For: Valdehuesa KNG, Liu H, Nisola GM, Chung WJ, Lee SH, Park SJ. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 2013;97:3309-21. [DOI: 10.1007/s00253-013-4802-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/28/2023]
Number Cited by Other Article(s)
1
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024;76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
2
Liang B, Zhang X, Meng C, Wang L, Yang J. Directed evolution of tripartite ATP-independent periplasmic transporter for 3-Hydroxypropionate biosynthesis. Appl Microbiol Biotechnol 2023;107:663-676. [PMID: 36525041 DOI: 10.1007/s00253-022-12330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
3
Liu W, Yuan S, Jin M, Xian M. Biocatalytic synthesis of 2-fluoro-3-hydroxypropionic acid. Front Bioeng Biotechnol 2022;10:969012. [PMID: 36061447 PMCID: PMC9428585 DOI: 10.3389/fbioe.2022.969012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022]  Open
4
Engineering of the Substrate Pocket of α-ketoglutaric Semialdehyde Dehydrogenase for Improving the Activity toward 3-hydroxypropanal. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
5
Son HF, Kim KJ. Structure Based Protein Engineering of Aldehyde Dehydrogenase from Azospirillum brasilense to Enhance Enzyme Activity against Unnatural 3-Hydroxypropionaldehyde. J Microbiol Biotechnol 2022;32:170-175. [PMID: 34866129 PMCID: PMC9628839 DOI: 10.4014/jmb.2110.10038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022]
6
Zhou D, Quiroga-Sánchez DL, Zhang X, Chang Y, Luo H. Coupled synthetic pathways improve the production of 3-hydroxypropionic acid in recombinant Escherichia coli strains. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022;3:25-31. [PMID: 39416444 PMCID: PMC11446351 DOI: 10.1016/j.biotno.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2024]
7
Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022;180:91-126. [DOI: 10.1007/10_2021_184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
8
Thi Nguyen T, Lama S, Kumar Ainala S, Sankaranarayanan M, Singh Chauhan A, Rae Kim J, Park S. Development of Pseudomonas asiatica as a host for the production of 3-hydroxypropionic acid from glycerol. BIORESOURCE TECHNOLOGY 2021;329:124867. [PMID: 33640696 DOI: 10.1016/j.biortech.2021.124867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
9
Pomraning KR, Dai Z, Munoz N, Kim YM, Gao Y, Deng S, Kim J, Hofstad BA, Swita MS, Lemmon T, Collett JR, Panisko EA, Webb-Robertson BJM, Zucker JD, Nicora CD, De Paoli H, Baker SE, Burnum-Johnson KE, Hillson NJ, Magnuson JK. Integration of Proteomics and Metabolomics Into the Design, Build, Test, Learn Cycle to Improve 3-Hydroxypropionic Acid Production in Aspergillus pseudoterreus. Front Bioeng Biotechnol 2021;9:603832. [PMID: 33898398 PMCID: PMC8058442 DOI: 10.3389/fbioe.2021.603832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022]  Open
10
Nguyen DTN, Lee OK, Nguyen TT, Lee EY. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol Adv 2021;47:107700. [PMID: 33548453 DOI: 10.1016/j.biotechadv.2021.107700] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
11
Nasir A, Ashok S, Shim JY, Park S, Yoo TH. Recent Progress in the Understanding and Engineering of Coenzyme B12-Dependent Glycerol Dehydratase. Front Bioeng Biotechnol 2020;8:500867. [PMID: 33224925 PMCID: PMC7674605 DOI: 10.3389/fbioe.2020.500867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/17/2020] [Indexed: 01/21/2023]  Open
12
Kim JW, Ko YS, Chae TU, Lee SY. High-level production of 3-hydroxypropionic acid from glycerol as a sole carbon source using metabolically engineered Escherichia coli. Biotechnol Bioeng 2020;117:2139-2152. [PMID: 32227471 DOI: 10.1002/bit.27344] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 11/09/2022]
13
Lebeau J, Efromson JP, Lynch MD. A Review of the Biotechnological Production of Methacrylic Acid. Front Bioeng Biotechnol 2020;8:207. [PMID: 32266236 PMCID: PMC7100375 DOI: 10.3389/fbioe.2020.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/22/2023]  Open
14
Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metab Eng 2020;59:142-150. [PMID: 32061966 DOI: 10.1016/j.ymben.2020.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022]
15
Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway. Catalysts 2020. [DOI: 10.3390/catal10020203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
16
Son HF, Kim S, Seo H, Hong J, Lee D, Jin KS, Park S, Kim KJ. Structural insight into bi-functional malonyl-CoA reductase. Environ Microbiol 2019;22:752-765. [PMID: 31814251 DOI: 10.1111/1462-2920.14885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022]
17
Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase. Appl Environ Microbiol 2019;85:AEM.00239-19. [PMID: 30926727 DOI: 10.1128/aem.00239-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2019] [Indexed: 11/20/2022]  Open
18
Zhang X, Mao Y, Wang B, Cui Z, Zhang Z, Wang Z, Chen T. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. J Ind Microbiol Biotechnol 2019;46:899-909. [PMID: 30963328 DOI: 10.1007/s10295-019-02174-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
19
Arenas-López C, Locker J, Orol D, Walter F, Busche T, Kalinowski J, Minton NP, Kovács K, Winzer K. The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16. BIOTECHNOLOGY FOR BIOFUELS 2019;12:150. [PMID: 31236137 PMCID: PMC6572756 DOI: 10.1186/s13068-019-1489-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/07/2019] [Indexed: 05/10/2023]
20
Ji RY, Ding Y, Shi TQ, Lin L, Huang H, Gao Z, Ji XJ. Metabolic Engineering of Yeast for the Production of 3-Hydroxypropionic Acid. Front Microbiol 2018;9:2185. [PMID: 30298059 PMCID: PMC6160737 DOI: 10.3389/fmicb.2018.02185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023]  Open
21
Park YS, Choi UJ, Nam NH, Choi SJ, Nasir A, Lee SG, Kim KJ, Jung GY, Choi S, Shim JY, Park S, Yoo TH. Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid. Sci Rep 2017;7:17155. [PMID: 29214999 PMCID: PMC5719400 DOI: 10.1038/s41598-017-15400-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022]  Open
22
Suyama A, Higuchi Y, Urushihara M, Maeda Y, Takegawa K. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains. J Biosci Bioeng 2017;124:392-399. [PMID: 28522285 DOI: 10.1016/j.jbiosc.2017.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/21/2017] [Indexed: 11/26/2022]
23
Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator. Sci Rep 2017;7:1724. [PMID: 28496205 PMCID: PMC5431877 DOI: 10.1038/s41598-017-01850-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022]  Open
24
Kalantari A, Chen T, Ji B, Stancik IA, Ravikumar V, Franjevic D, Saulou-Bérion C, Goelzer A, Mijakovic I. Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis. Front Microbiol 2017;8:638. [PMID: 28458661 PMCID: PMC5394112 DOI: 10.3389/fmicb.2017.00638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/28/2017] [Indexed: 11/13/2022]  Open
25
Son HF, Park S, Yoo TH, Jung GY, Kim KJ. Structural insights into the production of 3-hydroxypropionic acid by aldehyde dehydrogenase from Azospirillum brasilense. Sci Rep 2017;7:46005. [PMID: 28393833 PMCID: PMC5385487 DOI: 10.1038/srep46005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022]  Open
26
David Y, Oh YH, Baylon MG, Baritugo KA, Joo JC, Chae CG, Kim YJ, Park SJ. Microbial Production of 3-Hydroxypropionic Acid. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]  Open
27
Wang K, Tian P. Engineering Plasmid-Free Klebsiella Pneumoniae for Production of 3-Hydroxypropionic Acid. Curr Microbiol 2016;74:55-58. [PMID: 27787604 DOI: 10.1007/s00284-016-1153-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/21/2016] [Indexed: 11/28/2022]
28
Sheldon RA. Green chemistry, catalysis and valorization of waste biomass. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.01.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
29
Enzymatic synthesis of 3-hydroxypropionic acid at high productivity by using free or immobilized cells of recombinant Escherichia coli. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
30
Chen GQ, Hajnal I, Wu H, Lv L, Ye J. Engineering Biosynthesis Mechanisms for Diversifying Polyhydroxyalkanoates. Trends Biotechnol 2016;33:565-574. [PMID: 26409776 DOI: 10.1016/j.tibtech.2015.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/15/2022]
31
Jiang Y, Loos K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers (Basel) 2016;8:E243. [PMID: 30974520 PMCID: PMC6432488 DOI: 10.3390/polym8070243] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022]  Open
32
David F, Nielsen J, Siewers V. Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae. ACS Synth Biol 2016;5:224-33. [PMID: 26750662 DOI: 10.1021/acssynbio.5b00161] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
33
Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci U S A 2016;113:2388-93. [PMID: 26858408 DOI: 10.1073/pnas.1600375113] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]  Open
34
Chen Z, Liu D. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2016;9:205. [PMID: 27729943 PMCID: PMC5048440 DOI: 10.1186/s13068-016-0625-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/24/2016] [Indexed: 05/03/2023]
35
Chen Y, Nielsen J. Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 2015;37:165-172. [PMID: 26748037 DOI: 10.1016/j.copbio.2015.11.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022]
36
Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 2015;36:168-75. [DOI: 10.1016/j.copbio.2015.08.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022]
37
Development of a two-step process for production of 3-hydroxypropionic acid from glycerol using Klebsiella pneumoniae and Gluconobacter oxydans. Bioprocess Biosyst Eng 2015;38:2487-95. [DOI: 10.1007/s00449-015-1486-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/08/2015] [Indexed: 11/26/2022]
38
Tsuruno K, Honjo H, Hanai T. Enhancement of 3-hydroxypropionic acid production from glycerol by using a metabolic toggle switch. Microb Cell Fact 2015;14:155. [PMID: 26438162 PMCID: PMC4594890 DOI: 10.1186/s12934-015-0342-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/17/2015] [Indexed: 12/02/2022]  Open
39
Fink MJ, Mihovilovic MD. Non-hazardous Baeyer-Villiger oxidation of levulinic acid derivatives: alternative renewable access to 3-hydroxypropionates. Chem Commun (Camb) 2015;51:2874-7. [PMID: 25583122 DOI: 10.1039/c4cc08734h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Honjo H, Tsuruno K, Tatsuke T, Sato M, Hanai T. Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli. J Biosci Bioeng 2015;120:199-204. [PMID: 25650075 DOI: 10.1016/j.jbiosc.2014.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
41
Li Y, Tian P. Contemplating 3-Hydroxypropionic Acid Biosynthesis in Klebsiella pneumoniae. Indian J Microbiol 2015;55:131-9. [PMID: 25805899 DOI: 10.1007/s12088-015-0513-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/09/2015] [Indexed: 11/30/2022]  Open
42
Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 2015;28:223-239. [PMID: 25576747 DOI: 10.1016/j.ymben.2014.12.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 01/11/2023]
43
Burgé G, Flourat AL, Pollet B, Spinnler HE, Allais F. 3-Hydroxypropionaldehyde (3-HPA) quantification by HPLC using a synthetic acrolein-free 3-hydroxypropionaldehyde system as analytical standard. RSC Adv 2015. [DOI: 10.1039/c5ra18274c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
44
Liu P, Zhu X, Tan Z, Zhang X, Ma Y. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015;155:107-40. [PMID: 25577396 DOI: 10.1007/10_2014_294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
45
Su M, Li Y, Ge X, Tian P. 3-Hydroxypropionaldehyde-specific aldehyde dehydrogenase from Bacillus subtilis catalyzes 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol Lett 2014;37:717-24. [PMID: 25409630 DOI: 10.1007/s10529-014-1730-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
46
Kildegaard KR, Hallström BM, Blicher TH, Sonnenschein N, Jensen NB, Sherstyk S, Harrison SJ, Maury J, Herrgård MJ, Juncker AS, Forster J, Nielsen J, Borodina I. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 2014;26:57-66. [PMID: 25263954 DOI: 10.1016/j.ymben.2014.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022]
47
Sandström AG, Almqvist H, Portugal-Nunes D, Neves D, Lidén G, Gorwa-Grauslund MF. Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock? Appl Microbiol Biotechnol 2014;98:7299-318. [DOI: 10.1007/s00253-014-5866-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
48
Tokuyama K, Ohno S, Yoshikawa K, Hirasawa T, Tanaka S, Furusawa C, Shimizu H. Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb Cell Fact 2014;13:64. [PMID: 24885133 PMCID: PMC4019354 DOI: 10.1186/1475-2859-13-64] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/21/2014] [Indexed: 11/11/2022]  Open
49
Kim K, Kim SK, Park YC, Seo JH. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. BIORESOURCE TECHNOLOGY 2014;156:170-5. [PMID: 24502915 DOI: 10.1016/j.biortech.2014.01.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 05/15/2023]
50
Valdehuesa KNG, Liu H, Ramos KRM, Park SJ, Nisola GM, Lee WK, Chung WJ. Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA