1
|
He Q, Gong G, Wan T, Hu H, Yu P. An integrated transcriptomic and metabolic phenotype analysis to uncover the metabolic characteristics of a genetically engineered Candida utilis strain expressing δ-zein gene. Front Microbiol 2023; 14:1241462. [PMID: 37744922 PMCID: PMC10513430 DOI: 10.3389/fmicb.2023.1241462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Candida utilis (C. utilis) has been extensively utilized as human food or animal feed additives. With its ability to support heterologous gene expression, C. utilis proves to be a valuable platform for the synthesis of proteins and metabolites that possess both high nutritional and economic value. However, there remains a dearth of research focused on the characteristics of C. utilis through genomic, transcriptomic and metabolic approaches. Methods With the aim of unraveling the molecular mechanism and genetic basis governing the biological process of C. utilis, we embarked on a de novo sequencing endeavor to acquire comprehensive sequence data. In addition, an integrated transcriptomic and metabolic phenotype analysis was performed to compare the wild-type C. utilis (WT) with a genetically engineered strain of C. utilis that harbors the heterologous δ-zein gene (RCT). Results δ-zein is a protein rich in methionine found in the endosperm of maize. The integrated analysis of transcriptomic and metabolic phenotypes uncovered significant metabolic diversity between the WT and RCT C. utilis. A total of 252 differentially expressed genes were identified, primarily associated with ribosome function, peroxisome activity, arginine and proline metabolism, carbon metabolism, and fatty acid degradation. In the experimental setup using PM1, PM2, and PM4 plates, a total of 284 growth conditions were tested. A comparison between the WT and RCT C. utilis demonstrated significant increases in the utilization of certain carbon source substrates by RCT. Gelatin and glycogen were found to be significantly utilized to a greater extent by RCT compared to WT. Additionally, in terms of sulfur source substrates, RCT exhibited significantly increased utilization of O-Phospho-L-Tyrosine and L-Methionine Sulfone when compared to WT. Discussion The introduction of δ-zein gene into C. utilis may lead to significant changes in the metabolic substrates and metabolic pathways, but does not weaken the activity of the strain. Our study provides new insights into the transcriptomic and metabolic characteristics of the genetically engineered C. utilis strain harboring δ-zein gene, which has the potential to advance the utilization of C. utilis as an efficient protein feed in agricultural applications.
Collapse
Affiliation(s)
- Qiburi He
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Gaowa Gong
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Tingting Wan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - He Hu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Peng Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
2
|
Ding Q, Ye C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb Cell Fact 2023; 22:20. [PMID: 36717860 PMCID: PMC9885587 DOI: 10.1186/s12934-023-02025-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. RESULTS As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. CONCLUSIONS In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.
Collapse
Affiliation(s)
- Qiang Ding
- grid.252245.60000 0001 0085 4987School of Life Sciences, Anhui University, Hefei, 230601 China ,grid.252245.60000 0001 0085 4987Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601 Anhui China ,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
| | - Chao Ye
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
3
|
Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J Fungi (Basel) 2021; 7:36. [PMID: 33435379 PMCID: PMC7827542 DOI: 10.3390/jof7010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
The ploidy determination of the biotechnologically important yeast Candida utilis. J Appl Genet 2020; 61:275-286. [PMID: 31965459 DOI: 10.1007/s13353-020-00544-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
Yeast Candida utilis is considered to be a potentially advantageous expression system for production of recombinant proteins utilizable for industrial and pharmaceutical purposes. As the scientific literature is not consistent in the ploidy of this yeast, in this work, we focused on resolving the problem via several methods such as the copy number determination of maltase gene by multiplex PCR, measuring α-glucosidase activity, the characterization of maltase gene copy number in deletion mutants using qPCR and flow cytometry. In context with the published data and results obtained in this study about the copy number of the maltase gene on C. utilis genome, we attempted to hypothesise and made conclusion about the ploidy of C. utilis. The results of this work, besides the biotechnological aspect, contribute to the elementary knowledge of C. utilis. The exact information about the ploidy or more specifically about the copy number of appropriate gene is essential for expression cassette dosage determination integrated into the chromosome of the host. In this study, we come to the conclusion that the maltase gene is present in C. utilis genome in four alleles, and in combination with flow cytometry, published information and the published genome sequences, the observations support the theory about tetraploidy of C. utilis.
Collapse
|
5
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
6
|
Valero F. Recent Advances in Pichia pastoris as Host for Heterologous Expression System for Lipases: A Review. Methods Mol Biol 2018; 1835:205-216. [PMID: 30109654 DOI: 10.1007/978-1-4939-8672-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented.In this chapter, an overview of the new success in synthetic biology, with traditional molecular genetic techniques and bioprocess engineering in the last 5 years in the cell factory Pichia pastoris, the most promising host system for heterologous lipase production, is presented.The goals get on heterologous Candida antarctica, Rhizopus oryzae, and Candida rugosa lipases, three of the most common lipases used in biocatalysis, are showed. Finally, new cell factories producing heterologous lipases are presented.
Collapse
Affiliation(s)
- Francisco Valero
- Departament d'Enginyeria Química, Biològica i Ambiental. EE, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Combinatorial library strategy for strong overexpression of the lipase from Geobacillus thermocatenulatus on the cell surface of yeast Pichia pastoris. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Buerth C, Tielker D, Ernst JF. Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications. Appl Microbiol Biotechnol 2016; 100:6981-90. [DOI: 10.1007/s00253-016-7700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
|
9
|
Buerth C, Mausberg AK, Heininger MK, Hartung HP, Kieseier BC, Ernst JF. Oral Tolerance Induction in Experimental Autoimmune Encephalomyelitis with Candida utilis Expressing the Immunogenic MOG35-55 Peptide. PLoS One 2016; 11:e0155082. [PMID: 27159446 PMCID: PMC4861260 DOI: 10.1371/journal.pone.0155082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/24/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that attacks myelinated axons in the central nervous system. Induction of oral tolerance is a potent mechanism to prevent autoimmunity. The food yeast Candida utilis was used to test the therapeutic potential of oral tolerance induction in an animal model of human multiple sclerosis (MS). We constructed a C. utilis strain, which displays a fusion peptide composed of the encephalitogenic MOG35-55 peptide and the C. utilis Gas1 cell wall protein on its surface.By immunizing mice with MOG35-55 peptide experimental autoimmune encephalomyelitis (EAE) was induced in a mouse model. Feeding of mice with C. utilis that expresses MOG35-55 peptide on its surface was started seven days prior to immunization and was continued for ten days. Control animals were treated with wild-type fungus or left untreated. Untreated mice developed first clinical symptoms ten days post immunization (p. i.) with an ascending paralysis reaching maximal clinical disability at day 18 to 20 p. i.. Treatment with the wild-type strain demonstrated comparable clinical symptoms. In contrast, oral gavage of MOG35-55-presenting fungus ameliorated the development of EAE. In addition, incidence as well as maximal clinical disease severity were significantly reduced. Interestingly, reduction of disease severity also occurred in animals treated with heat-inactivated C. utilis cells indicating that tolerance induction was independent of fungal viability. Better disease outcome correlated with reduced demyelination and cellular inflammation in the spinal cord, lower T cell proliferation against rechallenge with MOG35-55 and more regulatory T cells in the lymph nodes. Our data demonstrate successful that using the food approved fungus C. utilis presenting the immunogenic MOG35-55 peptide on its surface induced an oral tolerance against this epitope in EAE. Further studies will reveal the nature and extent of an anti-inflammatory environment established by the treatment that prevents the development of an autoimmune disorder affecting the CNS.
Collapse
Affiliation(s)
- Christoph Buerth
- Institute of Molecular Mycology, Department Biology, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (CB); (AKM)
| | - Anne K. Mausberg
- Research Group for Clinical and Experimental Neuroimmunology, Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (CB); (AKM)
| | - Maximilian K. Heininger
- Research Group for Clinical and Experimental Neuroimmunology, Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Research Group for Clinical and Experimental Neuroimmunology, Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bernd C. Kieseier
- Research Group for Clinical and Experimental Neuroimmunology, Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Joachim F. Ernst
- Institute of Molecular Mycology, Department Biology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
10
|
The structure of the Cyberlindnera jadinii genome and its relation to Candida utilis analyzed by the occurrence of single nucleotide polymorphisms. J Biotechnol 2015; 211:20-30. [PMID: 26150016 DOI: 10.1016/j.jbiotec.2015.06.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
Abstract
The yeast Cyberlindnera jadinii is a close relative of Candida utilis that is being used in the food and feed industries. Here, we present the 12.7Mb genome sequence of C. jadinii strain CBS 1600 generated by next generation sequencing. The deduced draft genome sequence consists of seven large scaffolds analogous to the seven largest chromosomes of C. utilis. An automated annotation of the C. jadinii genome identified 6147 protein-coding sequences. The level of ploidy for both genomes was analyzed by calling single nucleotide polymorphisms (SNPs) and was verified measuring nuclear DNA contents by florescence activated cell sorting (FACS). Both analyses determined the level of ploidy to diploid for C. jadinii and to triploid for C. utilis. However, SNP calling for C. jadinii also identified scaffold regions that seem to be haploid, triploid or tetraploid.
Collapse
|
11
|
Kunigo M, Buerth C, Ernst JF. Secreted xylanase XynA mediates utilization of xylan as sole carbon source in Candida utilis. Appl Microbiol Biotechnol 2015; 99:8055-64. [PMID: 26051669 DOI: 10.1007/s00253-015-6703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/06/2015] [Accepted: 05/15/2015] [Indexed: 12/30/2022]
Abstract
The fodder yeast Candida utilis is able to use xylose mono- and oligomers as sources of carbon but not the abundant polymer xylan. C. utilis transformants producing the Penicillium simplicissimum xylanase XynA were constructed using expression vectors encoding fusions of the Saccharomyces cerevisiae Mfα1 pre-pro secretion leader to XynA. The Mfα1-XynA fusion was efficiently processed in transformants and XynA was secreted almost quantitatively into the culture medium. Secreted XynA was enzymatically active and allowed transformants to grow on xylan as the sole carbon source. Addition of a second expression unit for the heterologous green fluorescent protein (GFP) generated C. utilis transformants, which showed intracellular GFP fluorescence during growth on xylan. The results suggest that xylanase-producing C. utilis is suited as a cost-effective host organism for heterologous protein production and for other biotechnical applications.
Collapse
Affiliation(s)
- Maya Kunigo
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Universitätsstrasse 1/26.12.01, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
12
|
|
13
|
Pinheiro R, Lopes M, Belo I, Mota M. Candida utilis metabolism and morphology under increased air pressure up to 12bar. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|