1
|
Christmann J, Cao P, Becker J, Desiderato CK, Goldbeck O, Riedel CU, Kohlstedt M, Wittmann C. High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microb Cell Fact 2023; 22:41. [PMID: 36849884 PMCID: PMC9969654 DOI: 10.1186/s12934-023-02044-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efficient production. RESULTS Here, we optimized the fermentative production process. Following successful simplification of the production medium, we carefully investigated the impact of dissolved oxygen, pH value, and the presence of bivalent calcium ions on pediocin production. It turned out that the formation of the peptide was strongly supported by an acidic pH of 5.7 and microaerobic conditions at a dissolved oxygen level of 2.5%. Furthermore, elevated levels of CaCl2 boosted production. The IPTG-inducible producer C. glutamicum CR099 pXMJ19 Ptac pedACDCg provided 66 mg L-1 of pediocin PA-1 in a two-phase batch process using the optimized set-up. In addition, the novel constitutive strain Ptuf pedACDCg allowed successful production without the need for IPTG. CONCLUSIONS The achieved pediocin titer surpasses previous efforts in various microbes up to almost seven-fold, providing a valuable step to further explore and develop this important bacteriocin. In addition to its high biosynthetic performance C. glutamicum proved to be highly robust under the demanding producing conditions, suggesting its further use as host for bacteriocin production.
Collapse
Affiliation(s)
- Jens Christmann
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Peng Cao
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christian K. Desiderato
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Oliver Goldbeck
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Christian U. Riedel
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael Kohlstedt
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
2
|
Mizuno H, Tsuge Y. Elevated, non-proliferative temperatures change the profile of fermentation products in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 105:367-377. [PMID: 33242127 DOI: 10.1007/s00253-020-11024-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Although temperature is a crucial factor affecting enzymatic activity on biochemical and biofuel production, the reaction temperature for the generation of these products is usually set at the optimal growth temperature of the host strain, even under non-proliferative conditions. Given that the production of fermentation products only requires a fraction of the cell's metabolic pathways, the optimal temperatures for microbial growth and the fermentative production of a target compound may be different. Here, we investigated the effect of temperature on lactic and succinic acids production, and related enzymatic activities, in wild-type and succinic acid-overproducing strains of Corynebacterium glutamicum. Interestingly, fermentative production of lactic acid increased with the temperature in wild-type: production was 69% higher at 42.5 °C, a temperature that exceeded the upper limit for growth, than that at the optimal growth temperature (30 °C). Conversely, succinic acid production was decreased by 13% under the same conditions in wild-type. The specific activity of phosphoenolpyruvate carboxylase decreased with the increase in temperature. In contrast, the other glycolytic and reductive TCA cycle enzymes demonstrated increased or constant activity as the temperature was increased. When using a succinic acid over-producing strain, succinic acid production was increased by 34% at 42.5 °C. Our findings demonstrate that the profile of fermentation products is dependent upon temperature, which could be caused by the modulation of enzymatic activities. Moreover, we report that elevated temperatures, exceeding the upper limit for cell growth, can be used to increase the production of target compounds in C. glutamicum. KEY POINTS: • Lactate productivity was increased by temperature elevation. • Succinate productivity was increased by temperature elevation when lactate pathway was deleted. • Specific activity of phosphoenolpyruvate carboxylase was decreased by temperature elevation.
Collapse
Affiliation(s)
- Hikaru Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan. .,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
3
|
Sun L, Gong M, Lv X, Huang Z, Gu Y, Li J, Du G, Liu L. Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol 2020; 104:9109-9124. [DOI: 10.1007/s00253-020-10917-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
|
4
|
Murai K, Sasaki D, Kobayashi S, Yamaguchi A, Uchikura H, Shirai T, Sasaki K, Kondo A, Tsuge Y. Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in Corynebacterium glutamicum. ACS Synth Biol 2020; 9:1615-1622. [PMID: 32602337 DOI: 10.1021/acssynbio.0c00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose is metabolized through central metabolic pathways such as glycolysis and the pentose phosphate pathway (PPP) to synthesize downstream metabolites including amino acids. However, how the split ratio of carbon flux between glycolysis and PPP specifically affects the formation of downstream metabolites remains largely unclear. Here, we conducted a comprehensive metabolomic analysis to investigate the effect of the split ratio between glycolysis and the PPP on the intracellular concentration of amino acids and their derivatives in Corynebacterium glutamicum. The split ratio was varied by exchanging the promoter of a gene encoding glucose 6-phosphate isomerase (PGI). The ratio was correlated with the pgi transcription level and the enzyme activity. Concentrations of threonine and lysine-derivative 1,5-diaminopentane increased with an increase of the split ratio into the PPP. In contrast, concentrations of alanine, leucine, and valine were increased with an increase of the split ratio into glycolysis. These results could provide a new engineering target for improving the production of the amino acids and the derivatives.
Collapse
Affiliation(s)
- Katsuki Murai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shunsuke Kobayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Yamaguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroto Uchikura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
5
|
Uchikura H, Toyoda K, Matsuzawa H, Mizuno H, Ninomiya K, Takahashi K, Inui M, Tsuge Y. Anaerobic glucose consumption is accelerated at non-proliferating elevated temperatures through upregulation of a glucose transporter gene in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 104:6719-6729. [PMID: 32556410 DOI: 10.1007/s00253-020-10739-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022]
Abstract
Cell proliferation is achieved through numerous enzyme reactions. Temperature governs the activity of each enzyme, ultimately determining the optimal growth temperature. The synthesis of useful chemicals and fuels utilizes a fraction of available metabolic pathways, primarily central metabolic pathways including glycolysis and the tricarboxylic acid cycle. However, it remains unclear whether the optimal temperature for these pathways is correlated with that for cell proliferation. Here, we found that wild-type Corynebacterium glutamicum displayed increased glycolytic activity under non-growing anaerobic conditions at 42.5 °C, at which cells do not proliferate under aerobic conditions. At this temperature, glucose consumption was not inhibited and increased by 28% compared with that at the optimal growth temperature of 30 °C. Transcriptional analysis revealed that a gene encoding glucose transporter (iolT2) was upregulated by 12.3-fold compared with that at 30 °C, with concomitant upregulation of NCgl2954 encoding the iolT2-regulating transcription factor. Deletion of iolT2 decreased glucose consumption rate at 42.5 °C by 28%. Complementation of iolT2 restored glucose consumption rate, highlighting the involvement of iolT2 in the accelerating glucose consumption at an elevated temperature. This study shows that the optimal temperature for glucose metabolism in C. glutamicum under anaerobic conditions differs greatly from that for cell growth under aerobic conditions, being beyond the upper limit of the growth temperature. This is beneficial for fuel and chemical production not only in terms of increasing productivity but also for saving cooling costs. KEY POINTS: • C. glutamicum accelerated anaerobic glucose consumption at elevated temperature. • The optimal temperature for glucose consumption was above the upper limit for growth. • Gene expression involved in glucose transport was upregulated at elevated temperature. Graphical abstract.
Collapse
Affiliation(s)
- Hiroto Uchikura
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Koichi Toyoda
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Hiroki Matsuzawa
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hikaru Mizuno
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuaki Ninomiya
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Yota Tsuge
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
6
|
Hasegawa S, Jojima T, Suda M, Inui M. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner–Doudoroff pathway. Metab Eng 2020; 59:24-35. [DOI: 10.1016/j.ymben.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
7
|
Kobayashi S, Kawaguchi H, Shirai T, Ninomiya K, Takahashi K, Kondo A, Tsuge Y. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Corynebacterium glutamicum. ACS Synth Biol 2020; 9:814-826. [PMID: 32202411 DOI: 10.1021/acssynbio.9b00493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Controlling the carbon flux into a desired pathway is important for improving product yield in metabolic engineering. After entering a cell, glucose is channeled into glycolysis and the pentose phosphate pathway (PPP), which decreases the yield of target products whose synthesis relies on NADPH as a cofactor. Here, we demonstrate redirection of carbon flux into PPP under aerobic conditions in Corynebacterium glutamicum, achieved by replacing the promoter of glucose 6-phosphate isomerase gene (pgi) with an anaerobic-specific promoter of the lactate dehydrogenase gene (ldhA). The promoter replacement increased the split ratio of carbon flux into PPP from 39 to 83% under aerobic conditions. The titer, yield, and production rate of 1,5-diaminopentane, whose synthesis requires NADPH as a cofactor, were increased by 4.6-, 4.4-, and 2.6-fold, respectively. This is the largest improvement in the production of 1,5-diaminopentane or its precursor, lysine, reported to date. After aerobic cell growth, pgi expression was automatically induced under anaerobic conditions, altering the carbon flux from PPP to glycolysis, to produce succinate in a single metabolically engineered strain. Such an automatic redirection of metabolic pathway using an oxygen-responsive switch enables two-stage fermentation for efficient production of two different compounds by a single strain, potentially reducing the production costs and time for practical applications.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuaki Ninomiya
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
8
|
Uchikura H, Ninomiya K, Takahashi K, Tsuge Y. Requirement of de novo synthesis of pyruvate carboxylase in long-term succinic acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 104:4313-4320. [PMID: 32232530 DOI: 10.1007/s00253-020-10556-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022]
Abstract
Protein turnover through de novo synthesis is critical for sustainable cellular functions. We previously found that glucose consumption rate in Corynebacterium glutamicum under anaerobic conditions increased at temperature higher than the upper limit of growth temperature. Here, we showed that production of lactic and succinic acids increased at higher temperature for long-term (48 h) anaerobic reaction in metabolically engineered strains. At 42 °C, beyond the upper limit of growth temperature range, biomass-specific lactic acid production rate was 8% higher than that at 30 °C, the optimal growth temperature. In contrast, biomass-specific succinic acid production rate was highest at 36 °C, 28% higher than that at 30 °C, although the production at 42 °C was still 23% higher than that at 30 °C. As enzymes are usually unstable at high temperatures, we investigated whether protein turnover of metabolic enzymes is required for the production of lactic and succinic acids under these conditions. Interestingly, when de novo protein synthesis was inhibited by addition of chloramphenicol, after 6 h, only succinic acid production was inhibited. Because glycolytic enzymes are involved in both lactic and succinic acids synthesis, enzymes in the anaplerotic pathway and the tricarboxylic acid (TCA) cycle leading to succinic acid synthesis were likely to be responsible for its decreased production. Among the five enzymes examined, the specific activity of only pyruvate carboxylase was drastically decreased after 48 h at 42 °C. Thus, the de novo synthesis of pyruvate carboxylase is required for long-term production of succinic acid. Graphical abstract KEY POINTS: • Long-term reaction for organic acids can be improved at temperature beyond ideal growth conditions. • De novo synthesis of pyruvate carboxylase is required for long-term succinic acid production.
Collapse
Affiliation(s)
- Hiroto Uchikura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazuaki Ninomiya
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan. .,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
9
|
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R. Identifying the Growth Modulon of Corynebacterium glutamicum. Front Microbiol 2019; 10:974. [PMID: 31134020 PMCID: PMC6517550 DOI: 10.3389/fmicb.2019.00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
The growth rate (μ) of industrially relevant microbes, such as Corynebacterium glutamicum, is a fundamental property that indicates its production capacity. Therefore, understanding the mechanism underlying the growth rate is imperative for improving productivity and performance through metabolic engineering. Despite recent progress in the understanding of global regulatory interactions, knowledge of mechanisms directing cell growth remains fragmented and incomplete. The current study investigated RNA-Seq data of three growth rate transitions, induced by different pre-culture conditions, in order to identify transcriptomic changes corresponding to increasing growth rates. These transitions took place in minimal medium and ranged from 0.02 to 0.4 h-1 μ. This study enabled the identification of 447 genes as components of the growth modulon. Enrichment of genes within the growth modulon revealed 10 regulons exhibiting a significant effect over growth rate transition. In summary, central metabolism was observed to be regulated by a combination of metabolic and transcriptional activities orchestrating control over glycolysis, pentose phosphate pathway, and the tricarboxylic acid cycle. Additionally, major responses to changes in the growth rate were linked to iron uptake and carbon metabolism. In particular, genes encoding glycolytic enzymes and the glucose uptake system showed a positive correlation with the growth rate.
Collapse
Affiliation(s)
- Thorsten Haas
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Alexander Nieß
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.,Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Zhang X, Lai L, Xu G, Zhang X, Shi J, Koffas MAG, Xu Z. Rewiring the Central Metabolic Pathway for High‐Yieldl‐Serine Production inCorynebacterium glutamicumby Using Glucose. Biotechnol J 2019; 14:e1800497. [DOI: 10.1002/biot.201800497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaomei Zhang
- Laboratory of Pharmaceutical EngineeringSchool of Pharmaceutics Science, Jiangnan UniversityWuxi 214122 China
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
| | - Lianhe Lai
- Laboratory of Pharmaceutical EngineeringSchool of Pharmaceutics Science, Jiangnan UniversityWuxi 214122 China
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
| | - Guoqiang Xu
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityNo. 1800, Lihu Avenue Wuxi 214122 China
| | - Xiaojuan Zhang
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityNo. 1800, Lihu Avenue Wuxi 214122 China
| | - Jinsong Shi
- Laboratory of Pharmaceutical EngineeringSchool of Pharmaceutics Science, Jiangnan UniversityWuxi 214122 China
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
| | - Mattheos A. G. Koffas
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroy 12180 NY USA
- Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroy 12180 NY USA
| | - Zhenghong Xu
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityNo. 1800, Lihu Avenue Wuxi 214122 China
| |
Collapse
|
11
|
Tsuge Y, Kato N, Yamamoto S, Suda M, Jojima T, Inui M. Metabolic engineering of Corynebacterium glutamicum for hyperproduction of polymer-grade L- and D-lactic acid. Appl Microbiol Biotechnol 2019; 103:3381-3391. [PMID: 30877357 DOI: 10.1007/s00253-019-09737-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 01/22/2023]
Abstract
Strain development is critical for microbial production of bio-based chemicals. The stereo-complex form of polylactic acid, a complex of poly-L- and poly-D-lactic acid, is a promising polymer candidate due to its high thermotolerance. Here, we developed Corynebacterium glutamicum strains producing high amounts of L- and D-lactic acid through intensive metabolic engineering. Chromosomal overexpression of genes encoding the glycolytic enzymes, glucokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, triosephosphate isomerase, and enolase, increased L- and D-lactic acid concentration by 146% and 56%, respectively. Chromosomal integration of two genes involved in the Entner-Doudoroff pathway (6-phosphogluconate dehydratase and 2-dehydro-3-deoxyphosphogluconate aldolase), together with a gene encoding glucose-6-phosphate dehydrogenase from Zymomonas mobilis, to bypass the carbon flow from glucose, further increased L- and D-lactic acid concentration by 11% and 44%, respectively. Finally, additional chromosomal overexpression of a gene encoding NADH dehydrogenase to modulate the redox balance resulted in the production of 212 g/L L-lactic acid with a 97.9% yield and 264 g/L D-lactic acid with a 95.0% yield. The optical purity of both L- and D-lactic acid was 99.9%. Because the constructed metabolically engineered strains were devoid of plasmids and antibiotic resistance genes and were cultivated in mineral salts medium, these strains could contribute to the cost-effective production of the stereo-complex form of polylactic acid in practical scale.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Naoto Kato
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Shogo Yamamoto
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Toru Jojima
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan. .,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan.
| |
Collapse
|
12
|
Tsuge Y, Kato N, Yamamoto S, Suda M, Inui M. Enhanced production of d-lactate from mixed sugars in Corynebacterium glutamicum by overexpression of glycolytic genes encoding phosphofructokinase and triosephosphate isomerase. J Biosci Bioeng 2019; 127:288-293. [DOI: 10.1016/j.jbiosc.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/31/2018] [Accepted: 08/05/2018] [Indexed: 11/30/2022]
|
13
|
Tsuge Y, Kawaguchi H, Yamamoto S, Nishigami Y, Sota M, Ogino C, Kondo A. Metabolic engineering of Corynebacterium glutamicum for production of sunscreen shinorine. Biosci Biotechnol Biochem 2018; 82:1252-1259. [DOI: 10.1080/09168451.2018.1452602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Ultraviolet-absorbing chemicals are useful in cosmetics and skin care to prevent UV-induced skin damage. We demonstrate here that heterologous production of shinorine, which shows broad absorption maxima in the UV-A and UV-B region. A shinorine producing Corynebacterium glutamicum strain was constructed by expressing four genes from Actinosynnema mirum DSM 43827, which are responsible for the biosynthesis of shinorine from sedoheptulose-7-phosphate in the pentose phosphate pathway. Deletion of transaldolase encoding gene improved shinorine production by 5.2-fold. Among the other genes in pentose phosphate pathway, overexpression of 6-phosphogluconate dehydrogenase encoding gene further increased shinorine production by 60% (19.1 mg/L). The genetic engineering of the pentose phosphate pathway in C. glutamicum improved shinorine production by 8.3-fold in total, and could be applied to produce the other chemicals derived from sedoheptulose-7-phosphate.
Collapse
Affiliation(s)
- Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University , Kanazawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University , Kanazawa, Japan
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University , Kobe, Japan
| | | | | | | | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University , Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University , Kobe, Japan
| |
Collapse
|
14
|
Enhanced Glucose Consumption and Organic Acid Production by Engineered Corynebacterium glutamicum Based on Analysis of a pfkB1 Deletion Mutant. Appl Environ Microbiol 2017; 83:AEM.02638-16. [PMID: 27881414 DOI: 10.1128/aem.02638-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/17/2016] [Indexed: 02/08/2023] Open
Abstract
In the analysis of a carbohydrate metabolite pathway, we found interesting phenotypes in a mutant strain of Corynebacterium glutamicum deficient in pfkB1, which encodes fructose-1-phosphate kinase. After being aerobically cultivated with fructose as a carbon source, this mutant consumed glucose and produced organic acid, predominantly l-lactate, at a level more than 2-fold higher than that of the wild-type grown with glucose under conditions of oxygen deprivation. This considerably higher fermentation capacity was unique for the combination of pfkB1 deletion and cultivation with fructose. In the metabolome and transcriptome analyses of this strain, marked intracellular accumulation of fructose-1-phosphate and significant upregulation of several genes related to the phosphoenolpyruvate:carbohydrate phosphotransferase system, glycolysis, and organic acid synthesis were identified. We then examined strains overexpressing several of the identified genes and demonstrated enhanced glucose consumption and organic acid production by these engineered strains, whose values were found to be comparable to those of the model pfkB1 deletion mutant grown with fructose. l-Lactate production by the ppc deletion mutant of the engineered strain was 2,390 mM (i.e., 215 g/liter) after 48 h under oxygen deprivation, which was a 2.7-fold increase over that of the wild-type strain with a deletion of ppc IMPORTANCE: Enhancement of glycolytic flux is important for improving microbiological production of chemicals, but overexpression of glycolytic enzymes has often resulted in little positive effect. That is presumably because the central carbon metabolism is under the complex and strict regulation not only transcriptionally but also posttranscriptionally, for example, by the ATP/ADP ratio. In contrast, we studied a mutant strain of Corynebacterium glutamicum that showed markedly enhanced glucose consumption and organic acid production and, based on the findings, identified several genes whose overexpression was effective in enhancing glycolytic flux under conditions of oxygen deprivation. These results will further understanding of the regulatory mechanisms of glycolytic flux and can be widely applied to the improvement of the microbial production of useful chemicals.
Collapse
|
15
|
Kogure T, Kubota T, Suda M, Hiraga K, Inui M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab Eng 2016; 38:204-216. [DOI: 10.1016/j.ymben.2016.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022]
|
16
|
Jojima T, Inui M. Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance. Bioengineered 2016; 6:328-34. [PMID: 26513591 DOI: 10.1080/21655979.2015.1111493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The glycolytic pathway is a main driving force in the fermentation process as it produces energy, cell component precursors, and fermentation products. Given its importance, the glycolytic pathway can be considered as an attractive target for the metabolic engineering of industrial microorganisms. However, many attempts to enhance glycolytic flux, by overexpressing homologous or heterologous genes encoding glycolytic enzymes, have been unsuccessful. In contrast, significant enhancement in glycolytic flux has been observed in studies with bacteria, specifically, Corynebacterium glutamicum. Although there has been a recent increase in the number of successful applications of this technology, little is known about the mechanisms leading to the enhancement of glycolytic flux. To explore the rational applications of glycolytic pathway engineering in biocatalyst development, this review summarizes recent successful studies as well as past attempts.
Collapse
Affiliation(s)
- Toru Jojima
- a Research Institute of Innovative Technology for the Earth ; Kizugawa , Kyoto , Japan
| | - Masayuki Inui
- a Research Institute of Innovative Technology for the Earth ; Kizugawa , Kyoto , Japan
| |
Collapse
|
17
|
Improving Process Yield in Succinic Acid Production by Cell Recycling of Recombinant Corynebacterium glutamicum. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation2010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Tsuge Y, Kawaguchi H, Sasaki K, Kondo A. Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microb Cell Fact 2016; 15:19. [PMID: 26794242 PMCID: PMC4722748 DOI: 10.1186/s12934-016-0411-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/05/2016] [Indexed: 02/03/2023] Open
Abstract
Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.
Collapse
Affiliation(s)
- Yota Tsuge
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Hideo Kawaguchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Kengo Sasaki
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
19
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:2685-92. [PMID: 26541332 DOI: 10.1007/s00253-015-7115-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Lignocellulosic hydrolysates contain compounds that inhibit microbial growth and fermentation, thereby decreasing the productivity of biofuel and biochemical production. In particular, the heterocyclic aldehyde furfural is one of the most toxic compounds found in these hydrolysates. We previously demonstrated that Corynebacterium glutamicum converts furfural into the less toxic compounds furfuryl alcohol and 2-furoic acid. To date, however, the genes involved in these oxidation and reduction reactions have not been identified in the C. glutamicum genome. Here, we show that Cgl0331 (designated FudC) is mainly responsible for the reduction of furfural into furfuryl alcohol in C. glutamicum. Deletion of the gene encoding FudC markedly diminished the in vivo reduction of furfural to furfuryl alcohol. Purified His-tagged FudC protein from Escherichia coli was also shown to convert furfural into furfuryl alcohol in an in vitro reaction utilizing NADPH, but not NADH, as a cofactor. Kinetic measurements demonstrated that FudC has a high affinity for furfural but has a narrow substrate range for other aldehydes compared to the protein responsible for furfural reduction in E. coli.
Collapse
|
21
|
Tsuge Y, Yamamoto S, Kato N, Suda M, Vertès AA, Yukawa H, Inui M. Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 2015; 99:4679-89. [DOI: 10.1007/s00253-015-6546-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 12/26/2022]
|
22
|
Tsuge Y, Uematsu K, Yamamoto S, Suda M, Yukawa H, Inui M. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 2015; 99:5573-82. [PMID: 25808520 DOI: 10.1007/s00253-015-6540-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
Rapid sugar consumption is important for the microbial production of chemicals and fuels. Here, we show that overexpression of the NADH dehydrogenase gene (ndh) increased glucose consumption rate in Corynebacterium glutamicum under oxygen-deprived conditions through investigating the relationship between the glucose consumption rate and intracellular NADH/NAD(+) ratio in various mutant strains. The NADH/NAD(+) ratio was strongly repressed under oxygen deprivation when glucose consumption was accelerated by the addition of pyruvate or sodium hydrogen carbonate. Overexpression of the ndh gene in the wild-type strain under oxygen deprivation decreased the NADH/NAD(+) ratio from 0.32 to 0.13, whereas the glucose consumption rate increased by 27%. Similarly, in phosphoenolpyruvate carboxylase gene (ppc)- or malate dehydrogenase gene (mdh)-deficient strains, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.66 to 0.37 and 2.20 to 0.57, respectively, whereas the glucose consumption rate increased by 57 and 330%, respectively. However, in a lactate dehydrogenase gene (L-ldhA)-deficient strain, although the NADH/NAD(+) ratio decreased from 5.62 to 1.13, the glucose consumption rate was not markedly altered. In a tailored D-lactate-producing strain, which lacked ppc and L-ldhA genes, but expressed D-ldhA from Lactobacillus delbrueckii, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.77 to 0.56, and increased the glucose consumption rate by 50%. Overall, the glucose consumption rate was found to be inversely proportional to the NADH/NAD(+) ratio in C. glutamicum cultured under oxygen deprivation. These findings could provide an option to increase the productivity of chemicals and fuels under oxygen deprivation.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources. ACTA ACUST UNITED AC 2015; 42:375-89. [DOI: 10.1007/s10295-014-1538-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 02/02/2023]
Abstract
Abstract
Recent increasing attention to environmental issues and the shortage of oil resources have spurred political and industrial interest in the development of environmental friendly and cost-effective processes for the production of bio-based chemicals from renewable resources. Thus, microbial production of commercially important chemicals is viewed as a desirable way to replace current petrochemical production. Corynebacterium glutamicum, a Gram-positive soil bacterium, is one of the most important industrial microorganisms as a platform for the production of various amino acids. Recent research has explored the use of C. glutamicum as a potential cell factory for producing organic acids such as lactate and succinate, both of which are commercially important bulk chemicals. Here, we summarize current understanding in this field and recent metabolic engineering efforts to develop C. glutamicum strains that efficiently produce l- and d-lactate, and succinate from renewable resources.
Collapse
|
24
|
Tsuge Y, Hori Y, Kudou M, Ishii J, Hasunuma T, Kondo A. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 2014; 98:8675-83. [PMID: 25112225 DOI: 10.1007/s00253-014-5924-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022]
Abstract
The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.
Collapse
Affiliation(s)
- Yota Tsuge
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Reddy GK, Wendisch VF. Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiol 2014; 14:54. [PMID: 24593686 PMCID: PMC3996851 DOI: 10.1186/1471-2180-14-54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum cg1790/pgk encodes an enzyme active as a 3-phosphoglycerate kinase (PGK) (EC 2.7.2.3) catalyzing phosphoryl transfer from 1,3-biphosphoglycerate (bPG) to ADP to yield 3-phosphoglycerate (3-PG) and ATP in substrate chain phosphorylation. RESULTS C. glutamicum 3-phosphoglycerate kinase was purified to homogeneity from the soluble fraction of recombinant E. coli. PGK(His) was found to be active as a homodimer with molecular weight of 104 kDa. The enzyme preferred conditions of pH 7.0 to 7.4 and required Mg²⁺ for its activity. PGK(His) is thermo labile and it has shown maximal activity at 50-65°C. The maximal activity of PGK(His) was estimated to be 220 and 150 U mg-1 with KM values of 0.26 and 0.11 mM for 3-phosphoglycerate and ATP, respectively. A 3-phosphoglycerate kinase negative C. glutamicum strain ∆pgk was constructed and shown to lack the ability to grow under glycolytic or gluconeogenic conditions unless PGK was expressed from a plasmid to restore growth. When pgk was overexpressed in L-arginine and L-ornithine production strains the production increased by 8% and by 17.5%, respectively. CONCLUSION Unlike many bacterial PGKs, C. glutamicum PGK is active as a homodimer. PGK is essential for growth of C. glutamicum with carbon sources requiring glycolysis and gluconeogenesis. Competitive inhibition by ADP reveals the critical role of PGK in gluconeogenesis by energy charge. Pgk overexpression improved the productivity in L-arginine and L-ornithine production strains.
Collapse
Affiliation(s)
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Bielefeld 33615, Germany.
| |
Collapse
|
26
|
Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A. Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express 2013; 3:72. [PMID: 24342107 PMCID: PMC3917680 DOI: 10.1186/2191-0855-3-72] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/12/2013] [Indexed: 11/10/2022] Open
Abstract
We produced organic acids, including lactate and succinate, directly from soluble starch under anaerobic conditions using high cell-density cultures of Corynebacterium glutamicum displaying α-amylase (AmyA) from Streptococcus bovis 148 on the cell surface. Notably, reactions performed under anaerobic conditions at 35 and 40°C, which are higher than the optimal growth temperature of 30°C, showed 32% and 19%, respectively, higher productivity of the organic acids lactate, succinate, and acetate compared to that at 30°C. However, α-amylase was not stably anchored and released into the medium from the cell surface during reactions at these higher temperatures, as demonstrated by the 61% and 85% decreases in activity, respectively, from baseline, compared to the only 8% decrease at 30°C. The AmyA-displaying C. glutamicum cells retained their starch-degrading capacity during five 10 h reaction cycles at 30°C, producing 107.8 g/l of total organic acids, including 88.9 g/l lactate and 14.0 g/l succinate. The applicability of cell surface-engineering technology for the production of organic acids from biomass by high cell-density cultures of C. glutamicum under anaerobic conditions was demonstrated.
Collapse
|