1
|
Cho ES, Hwang CY, Seo MJ. Optimized production of bacterioruberin from "Haloferax marinum" using one-factor-at-a-time and central composite design approaches. BIORESOUR BIOPROCESS 2024; 11:111. [PMID: 39699698 DOI: 10.1186/s40643-024-00834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
Haloarchaea represents a unique group of microorganisms that have adapted to thrive in high-salt environments. These microbes produce distinctive biomolecules, some of which exhibit extraordinary properties. One such biomolecule is bacterioruberin, a prominent red-pigmented C50 carotenoid commonly found in halophilic archaea, renowned for its antioxidant properties and potential as a functional resource. This study aimed to enhance the culture conditions for optimal production of C50 carotenoids, primarily bacterioruberin, using "Haloferax marinum" MBLA0078. The optimization process involved a combination of one-factor-at-a-time (OFAT) and statistical methodology. Under OFAT-optimized conditions, fed-batch fermentation, and response surface methodology (RSM) optimization, carotenoid production reached 0.954 mg/L, 2.80 mg/L, and 2.16 mg/L, respectively, in a 7-L laboratory-scale fermenter. Notably, RSM-optimized conditions led to a 12-fold increase in productivity (0.72 mg/L/day) compared to the basal DBCM2 medium (0.06 mg/L/day). These findings suggest that strain MBLA0078 holds significant promise for commercial-scale production of bacterioruberin.
Collapse
Affiliation(s)
- Eui-Sang Cho
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
2
|
Palanisamy M, Ramalingam S. Microbial Bacterioruberin: A Comprehensive Review. Indian J Microbiol 2024; 64:1477-1501. [PMID: 39678945 PMCID: PMC11645389 DOI: 10.1007/s12088-024-01312-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/11/2024] [Indexed: 12/17/2024] Open
Abstract
Bacterioruberin (BR) is a fat-soluble, dipolar, reddish pigment predominantly found in halophilic archaea. BR is a rare C50 carotenoid from the xanthophyll family, and it has been extensively studied for its potent antioxidant properties, such as its ability to protect cells from oxidative stress. In addition, several studies have shown that BR-rich extracts and its derivatives exhibit significant antiviral, antidiabetic, antibacterial, and anti-inflammatory effects, making them ideal candidates for the development of novel therapeutic interventions against various diseases. Although it possesses remarkable biological properties, studies related to the regulatory aspects of biosynthesis, in vitro and in vivo studies of purified BR have been rare. However, investigations are needed to explore the potential application of BR in various industries. Additionally, optimization of the culture conditions of BR-producing haloarchaea could pave the way for their sustainable production and utilization. The current review provides comprehensive information on BR, which includes the sources of this compound and its bioproduction, extraction, stability, toxicity, and biological activities in relation to its commercial applications. This review also discusses the potential challenges and limitations associated with BR bioproduction and its utilization in various industries. In addition, this treatise highlights the need for further research to optimize production and extraction methods and explore avenues for novel applications of BR in various sectors, such as pharmaceuticals, food, and cosmetics. Graphical Abstract
Collapse
Affiliation(s)
- Mouliraj Palanisamy
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
3
|
Zhao S, Guo T, Yao Y, Dong B, Zhao G. Research advancements in the maintenance mechanism of Sporidiobolus pararoseus enhancing the quality of soy sauce during fermentation. Int J Food Microbiol 2024; 417:110690. [PMID: 38581832 DOI: 10.1016/j.ijfoodmicro.2024.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Soy sauce is a traditional condiment that undergoes microbial fermentation of various ingredients to achieve its desired color, scent, and flavor. Sporidiobolus pararoseus, which is a type of Rhodocerevisiae, shows promising potential as a source of lipids, carotenoids, and enzymes that can enrich the taste and color of soy sauce. However, there is currently a lack of systematic and comprehensive studies on the functions and mechanisms of action of S. pararoseus during soy sauce fermentation. In this review, it is well established that S. pararoseus produces lipids that are abundant in unsaturated fatty acids, particularly oleic acid, as well as various carotenoids, such as β-carotene, torulene, and torularhodin. These pigments are synthesized through the mevalonic acid pathway and possess remarkable antioxidant properties, acting as natural colorants. The synthesis of carotenoids is stimulated by high salt concentrations, which induces oxidative stress caused by NaCl. This stress further activates crucial enzymes involved in carotenoid production, ultimately leading to pigment formation. Moreover, S. pararoseus can produce high-quality enzymes that aid in the efficient utilization of soy sauce substrates during fermentation. Furthermore, this review focused on the impact of S. pararoseus on the color and quality of soy sauce and comprehensively analyzed its characteristics and ingredients. Thus, this review serves as a basis for screening high-quality oleaginous red yeast strains and improving the quality of industrial soy sauce production through the wide application of S. pararoseus.
Collapse
Affiliation(s)
- Shuoshuo Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bin Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Amoah OJ, Thapa SB, Ma SY, Nguyen HT, Zakaria MM, Sohng JK. Biosynthesis of Apigenin Glucosides in Engineered Corynebacterium glutamicum. J Microbiol Biotechnol 2024; 34:1154-1163. [PMID: 38563097 PMCID: PMC11180926 DOI: 10.4014/jmb.2401.01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/04/2024]
Abstract
Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and bio-fuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4'-O-β-glucoside) at 25°C, and 0.6 mM of APG2 (apigenin-7-O-β-glucoside), 1.7 mM of APG3 (apigenin-4',7-O-β-diglucoside) and 2.1 mM of APG4 (apigenin-4',5-O-β-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37°C. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.
Collapse
Affiliation(s)
- Obed Jackson Amoah
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Samir Bahadur Thapa
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Su Yeong Ma
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Morshed Md Zakaria
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan-si 31460, Republic of Korea
| |
Collapse
|
5
|
Zhan Z, Chen X, Ye Z, Zhao M, Li C, Gao S, Sinskey AJ, Yao L, Dai J, Jiang Y, Zheng X. Expanding the CRISPR Toolbox for Engineering Lycopene Biosynthesis in Corynebacterium glutamicum. Microorganisms 2024; 12:803. [PMID: 38674747 PMCID: PMC11052027 DOI: 10.3390/microorganisms12040803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Lycopene represents one of the central compounds in the carotenoid pathway and it exhibits a potent antioxidant ability with wide potential applications in medicine, food, and cosmetics. The microbial production of lycopene has received increasing concern in recent years. Corynebacterium glutamicum (C. glutamicum) is considered to be a safe and beneficial industrial production platform, naturally endowed with the ability to produce lycopene. However, the scarcity of efficient genetic tools and the challenge of identifying crucial metabolic genes impede further research on C. glutamicum for achieving high-yield lycopene production. To address these challenges, a novel genetic editing toolkit, CRISPR/MAD7 system, was established and developed. By optimizing the promoter, ORI and PAM sequences, the CRISPR/MAD7 system facilitated highly efficient gene deletion and exhibited a broad spectrum of PAM sites. Notably, 25 kb of DNA from the genome was successfully deleted. In addition, the CRISPR/MAD7 system was effectively utilized in the metabolic engineering of C. glutamicum, allowing for the simultaneous knockout of crtEb and crtR genes in one step to enhance the accumulation of lycopene by blocking the branching pathway. Through screening crucial genes such as crtE, crtB, crtI, idsA, idi, and cg0722, an optimal carotenogenic gene combination was obtained. Particularly, cg0722, a membrane protein gene, was found to play a vital role in lycopene production. Therefore, the CBIEbR strain was obtained by overexpressing cg0722, crtB, and crtI while strategically blocking the by-products of the lycopene pathway. As a result, the final engineered strain produced lycopene at 405.02 mg/L (9.52 mg/g dry cell weight, DCW) in fed-batch fermentation, representing the highest reported lycopene yield in C. glutamicum to date. In this study, a powerful and precise genetic tool was used to engineer C. glutamicum for lycopene production. Through the modifications between the host cell and the carotenogenic pathway, the lycopene yield was stepwise improved by 102-fold as compared to the starting strain. This study highlights the usefulness of the CRISPR/MAD7 toolbox, demonstrating its practical applications in the metabolic engineering of industrially robust C. glutamicum.
Collapse
Affiliation(s)
- Zhimin Zhan
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Zhifang Ye
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Ming Zhao
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA;
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.L.); (A.J.S.)
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.L.); (A.J.S.)
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Yiming Jiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Z.Z.); (X.C.); (Z.Y.); (L.Y.); (J.D.); (Y.J.)
| |
Collapse
|
6
|
Göttl VL, Meyer F, Schmitt I, Persicke M, Peters-Wendisch P, Wendisch VF, Henke NA. Enhancing astaxanthin biosynthesis and pathway expansion towards glycosylated C40 carotenoids by Corynebacterium glutamicum. Sci Rep 2024; 14:8081. [PMID: 38582923 PMCID: PMC10998873 DOI: 10.1038/s41598-024-58700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024] Open
Abstract
Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher β-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the β-carotene hydroxylase gene crtZ and β-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-β-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.
Collapse
Affiliation(s)
- Vanessa L Göttl
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Ina Schmitt
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Marcus Persicke
- CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
- Omics Core Facility - Proteom-Metabolom Unit (In Development), Bielefeld University, 33615, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
- CZS Junior Research Group, Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
7
|
Göttl VL, Pucker B, Wendisch VF, Henke NA. Screening of Structurally Distinct Lycopene β-Cyclases for Production of the Cyclic C40 Carotenoids β-Carotene and Astaxanthin by Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7765-7776. [PMID: 37162369 DOI: 10.1021/acs.jafc.3c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lycopene β-cyclase (EC 5.5.1.19) is one of the key enzymes in the biosynthesis of β-carotene and derived carotenoids. It catalyzes isomerase reactions to form β-carotene from lycopene by β-cyclization of both of its ψ-ends. Lycopene β-cyclases are widespread in nature. We systematically analyzed the phylogeny of lycopene β-cyclases from all kingdoms of life and predicted their transmembrane structures. To this end, a collection of previously characterized lycopene β-cyclase polypeptide sequences served as bait sequences to identify their closest homologues in a range of bacteria, archaea, fungi, algae, and plant species. Furthermore, a DeepTMHMM scan was applied to search for the presence of transmembrane domains. A phylogenetic tree suggests at least five distinct clades, and the DeepTMHMM scan revealed that lycopene β-cyclases are a group of structurally different proteins: membrane-bound and cytosolic enzymes. Representative lycopene β-cyclases were screened in the lycopene-overproducing Corynebacterium glutamicum strain for β-carotene and astaxanthin production. This systematic screening facilitates the identification of new enzymes for carotenoid production. Higher astaxanthin production and less reduction of total carotenoids were achieved with the cytosolic lycopene β-cyclase CrtL from Synechococcus elongatus and the membrane-bound heterodimeric lycopene β-cyclase CrtYcd from Brevibacterium linens.
Collapse
Affiliation(s)
- Vanessa L Göttl
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Boas Pucker
- Institute of Plant Biology & BRICS, TU Braunschweig, 38106 Braunschweig, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Ma SY, Amoah OJ, Nguyen HT, Sohng JK. Glucosylation of Isoeugenol and Monoterpenes in Corynebacterium glutamicum by YdhE from Bacillus lichenformis. Molecules 2023; 28:molecules28093789. [PMID: 37175199 PMCID: PMC10180135 DOI: 10.3390/molecules28093789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Corynebacterium glutamicum has been regarded as a food-grade microorganism. In recent years, the research to improve the activities of beneficial therapeutics and pharmaceutical substances has resulted in the engineering of the therapeutically favorable cell factory system of C. glutamicum. In this study, we successfully glucosylated isoeugenol and other monoterpene derivatives in C. glutamicum using a promiscuous YdhE, which is a glycosyltransferase from Bacillus lichenformis. For efficient glucosylation, cultivation conditions such as the production time, substrate concentration, carbon source, and culture medium were optimized. Our system successfully converted about 93% of the isoeugenol to glucosylated compounds in the culture. The glucoside compounds were then purified, analyzed, and identified as isoeugenol-1-O-β-d-glucoside and isoeugenol-1-O-β-d-(2″-acetyl)-glucoside.
Collapse
Affiliation(s)
- Su Yeong Ma
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Obed Jackson Amoah
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| |
Collapse
|
9
|
Shi S, Chang Y, Yu J, Chen H, Wang Q, Bi Y. Identification and Functional Analysis of Two Novel Genes-Geranylgeranyl Pyrophosphate Synthase Gene ( AlGGPPS) and Isopentenyl Pyrophosphate Isomerase Gene ( AlIDI)-from Aurantiochytrium limacinum Significantly Enhance De Novo β-Carotene Biosynthesis in Escherichia coli. Mar Drugs 2023; 21:md21040249. [PMID: 37103388 PMCID: PMC10141969 DOI: 10.3390/md21040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
Precursor regulation has been an effective strategy to improve carotenoid production and the availability of novel precursor synthases facilitates engineering improvements. In this work, the putative geranylgeranyl pyrophosphate synthase encoding gene (AlGGPPS) and isopentenyl pyrophosphate isomerase encoding gene (AlIDI) from Aurantiochytrium limacinum MYA-1381 were isolated. We applied the excavated AlGGPPS and AlIDI to the de novo β-carotene biosynthetic pathway in Escherichia coli for functional identification and engineering application. Results showed that the two novel genes both functioned in the synthesis of β-carotene. Furthermore, AlGGPPS and AlIDI performed better than the original or endogenous one, with 39.7% and 80.9% increases in β-carotene production, respectively. Due to the coordinated expression of the 2 functional genes, β-carotene content of the modified carotenoid-producing E. coli accumulated a 2.99-fold yield of the initial EBIY strain in 12 h, reaching 10.99 mg/L in flask culture. This study helped to broaden current understanding of the carotenoid biosynthetic pathway in Aurantiochytrium and provided novel functional elements for carotenoid engineering improvements.
Collapse
Affiliation(s)
- Shitao Shi
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yi Chang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinhui Yu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuping Bi
- School of Life Sciences, Shandong University, Qingdao 266237, China
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
10
|
Cerrato A, Aita SE, Cannazza G, Capriotti AL, Cavaliere C, Citti C, Bosco CD, Gentili A, Montone CM, Paris R, Laganà A. Evaluation of the carotenoid and fat-soluble vitamin profile of industrial hemp inflorescence by liquid chromatography coupled to mass spectrometry and photodiode-array detection. J Chromatogr A 2023; 1692:463838. [PMID: 36745961 DOI: 10.1016/j.chroma.2023.463838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Industrial hemp (Cannabis sativa L.) is a plant matrix whose use is recently spreading for pharmaceutical and nutraceutical purposes. Detailed characterization of hemp composition is needed for future research that further exploits the beneficial effects of hemp compounds on human health. Among minor constituents, carotenoids and fat-soluble vitamins have largely been neglected to date despite carrying out several biological activities and regulatory functions. In the present paper, 22 target carotenoids and fat-soluble vitamins were analyzed in the inflorescences of seven Italian industrial hemp varieties cultivated outdoor. The analytes were extracted by cold saponification to avoid artifacts and analyzed by high-performance liquid chromatography coupled with Selected reaction monitoring mass spectrometry. Phytoene, phytofluene, and all-trans-β-carotene were the most abundant in all analyzed samples (31-55 µg g-1, 11.6-29 µg g-1, and 7.3-53 µg g-1, respectively). Besides the target analytes, liquid chromatography coupled with photodiode-array detection allowed us to tentatively identify several other carotenoids based on their retention behavior and UV-vis spectra with the support of theoretical rules and data in the literature. To the best of our knowledge, this is the first comprehensive characterization of carotenoids and fat-soluble vitamins in industrial hemp inflorescence.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Citti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Paris
- CREA - Research Centre for Cereal and Industrial Crops, Via di Corticella 133, Bologna, 40128, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Schmitt I, Meyer F, Krahn I, Henke NA, Peters-Wendisch P, Wendisch VF. From Aquaculture to Aquaculture: Production of the Fish Feed Additive Astaxanthin by Corynebacterium glutamicum Using Aquaculture Sidestream. Molecules 2023; 28:molecules28041996. [PMID: 36838984 PMCID: PMC9958746 DOI: 10.3390/molecules28041996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Circular economy holds great potential to minimize the use of finite resources, and reduce waste formation by the creation of closed-loop systems. This also pertains to the utilization of sidestreams in large-scale biotechnological processes. A flexible feedstock concept has been established for the industrially relevant Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin. In this study, we aimed to use a preprocessed aquaculture sidestream for production of carotenoids, including the fish feed ingredient astaxanthin by C. glutamicum. The addition of a preprocessed aquaculture sidestream to the culture medium did not inhibit growth, obviated the need for addition of several components of the mineral salt's medium, and notably enhanced production of astaxanthin by an engineered C. glutamicum producer strain. Improved astaxanthin production was scaled to 2 L bioreactor fermentations. This strategy to improve astaxanthin production was shown to be transferable to production of several native and non-native carotenoids. Thus, this study provides a proof-of-principle for improving carotenoid production by C. glutamicum upon supplementation of a preprocessed aquaculture sidestream. Moreover, in the case of astaxanthin production it may be a potential component of a circular economy in aquaculture.
Collapse
|
12
|
Park J, Woo HM. Co-production of l-Lysine and Heterologous Squalene in CRISPR/dCas9-Assisted Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14755-14760. [PMID: 36374274 DOI: 10.1021/acs.jafc.2c05562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Corynebacterium glutamicum is widely used for a large-scale industrial producer of feed additive amino acids, such as l-lysine. Moreover, C. glutamicum has been engineered for producing various non-native chemicals, including terpenes. For the first time, C. glutamicum was engineered for co-production of l-lysine and heterologous squalene. To control metabolic fluxes for either the l-lysine biosynthesis pathway or the squalene biosynthesis pathway, pyruvate, an intermediate in the central metabolism, a node was regulated by a clustered regularly interspaced short palindromic repeat (CRISPR) interference system. Repressing pyc encoding for pyruvate carboxylase in the l-lysine producer (DM1919) and its derivatives resulted in 99.24 ± 7.63 mg/L total squalene and 6.25 ± 0.20 g/L extracellular lysine at 120 h. Furthermore, various oil overlays were tested for efficient co-productions. In situ extraction with corn oil (10%, v/v) exhibited a separation of 99.75% (w/v) of total squalene (intra- and extracellular squalene), while l-lysine can be secreted in the medium. This co-production strategy will help a potential bioprocess of amino acid production with various terpenes.
Collapse
Affiliation(s)
- Jaehyun Park
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Liu J, Xu JZ, Rao ZM, Zhang WG. An enzymatic colorimetric whole-cell biosensor for high-throughput identification of lysine overproducers. Biosens Bioelectron 2022; 216:114681. [PMID: 36087402 DOI: 10.1016/j.bios.2022.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
L-lysine is a crucial nutrient for both humans and animals, and its main commercial use is as a supplement in animal feed to promote chicken and other animal growth. Fluorescence biosensors based on the transcriptional regulator have been developed for high-throughput screening of L-lysine producers. However, due to its inability to specifically detect lysine, this fluorescent biosensor cannot be employed to screen high-yielding strains. Here, we present a novel technique for observing L-lysine concentrations within individual Corynebacterium glutamicum cells. The transcriptional regulator LysG and its binding site, as well as the phytoene desaturase that catalyzes the synthesis of the red pigment, make up the functional core of the biosensor. The lysine-sensitive mutant LysG(E123Y, E125A), which improved the sensitivity of biosensors, was generated by site-directed saturation mutagenesis. In addition, we increased the lysine-induced chromogenic biosensor response to 320 mM by optimizing the L-lysine export mechanism and the pathway for the synthesis of lycopene precursors. The direct identification of producers with elevated L-lysine accumulation is thus made straightforward by colorimetric screening. Lys-8, a lysine producer with a maximum lysine titer of 316.2 mM, was sorted out based on the biosensor. The enzymatic colorimetric biosensor constructed here is a simple tool with great potential for the development of high-level lysine-producing C. glutamicum.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#)Lihu Road, WuXi, 214122, PR China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#)Lihu Road, WuXi, 214122, PR China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#)Lihu Road, WuXi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800(#)Lihu Road, WuXi, 214122, PR China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#)Lihu Road, WuXi, 214122, PR China.
| |
Collapse
|
14
|
Dufossé L. Back to nature, microbial production of pigments and colorants for food use. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:93-122. [PMID: 36064297 DOI: 10.1016/bs.afnr.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pigments-producing microorganisms are quite common in Nature. However, there is a long journey from the Petri dish to the market place. Twenty-five years ago, scientists wondered if such productions would remain a scientific oddity or become an industrial reality. The answer is not straightforward as processes using fungi, bacteria or yeasts can now indeed provide carotenoids or phycocyanin at an industrial level. Another production factor to consider is peculiar as Monascus red colored food is consumed by more than one billion Asian people; however, still banned in many other countries. European and American consumers will follow as soon as "100%-guaranteed" toxin-free strains (molecular engineered strains, citrinin gene deleted strains) will be developed and commercialized at a world level. For other pigmented biomolecules, some laboratories and companies invested and continue to invest a lot of money as any combination of new source and/or new pigment requires a lot of experimental work, process optimization, toxicological studies, and regulatory approval. Time will tell whether investments in pigments such as azaphilones or anthraquinones were justified. Future trends involve combinatorial engineering, gene knock-out, and the production of niche pigments not found in plants such as C50 carotenoids or aryl carotenoids.
Collapse
Affiliation(s)
- Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, Ile de La Réunion, France.
| |
Collapse
|
15
|
Amoah OJ, Nguyen HT, Sohng JK. N-Glucosylation in Corynebacterium glutamicum with YdhE from Bacillus lichenformis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113405. [PMID: 35684346 PMCID: PMC9182490 DOI: 10.3390/molecules27113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Corynebacterium glutamicum is traditionally known as a food-grade microorganism due to its high ability to produce amino acids and its endotoxin-free recombinant protein expression factory. In recent years, studies to improve the activities of useful therapeutics and pharmaceutical compounds have led to the engineering of the therapeutically advantageous C. glutamicum cell factory system. One of the well-studied ways to improve the activities of useful compounds is glucosylation with glycosyltransferases. In this study, we successfully and efficiently glycosylated therapeutic butyl-4-aminobenzoate and other N-linked compounds in C. glutamicum using a promiscuous YdhE, which is a glycosyltransferase from Bacillus lichenformis. For efficient glucosylation, components, such as promoter, codons sequence, expression temperatures, and substrate and glucose concentrations were optimized. With glucose as the sole carbon source, we achieved a conversion rate of almost 96% of the glycosylated products in the culture medium. The glycosylated product of high concentration was successfully purified by a simple purification method, and subjected to further analysis. This is a report of the in vivo cultivation and glucosylation of N-linked compounds in C. glutamicum.
Collapse
Affiliation(s)
- Obed Jackson Amoah
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea; (O.J.A.); (H.T.N.)
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea; (O.J.A.); (H.T.N.)
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea; (O.J.A.); (H.T.N.)
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Chungnam, Korea
- Correspondence: ; Tel.: +82-(41)-530-2246; Fax: +82-(41)-530-8229
| |
Collapse
|
16
|
Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production. Metabolites 2022; 12:metabo12050428. [PMID: 35629932 PMCID: PMC9145305 DOI: 10.3390/metabo12050428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a lipid-soluble compound with important physiological functions and is sought after in the food and cosmetic industries owing to its antioxidant properties. In our previous proof of concept, we engineered for CoQ10 biosynthesis the industrially relevant Corynebacterium glutamicum, which does not naturally synthesize any CoQ. Here, liquid chromatography–mass spectrometry (LC–MS) analysis identified two metabolic bottlenecks in the CoQ10 production, i.e., low conversion of the intermediate 10-prenylphenol (10P-Ph) to CoQ10 and the accumulation of isoprenologs with prenyl chain lengths of not only 10, but also 8 to 11 isopentenyl units. To overcome these limitations, the strain was engineered for expression of the Ubi complex accessory factors UbiJ and UbiK from Escherichia coli to increase flux towards CoQ10, and by replacement of the native polyprenyl diphosphate synthase IspB with a decaprenyl diphosphate synthase (DdsA) to select for prenyl chains with 10 isopentenyl units. The best strain UBI6-Rs showed a seven-fold increased CoQ10 content and eight-fold increased CoQ10 titer compared to the initial strain UBI4-Pd, while the abundance of CoQ8, CoQ9, and CoQ11 was significantly reduced. This study demonstrates the application of the recent insight into CoQ biosynthesis to improve metabolic engineering of a heterologous CoQ10 production strain.
Collapse
|
17
|
Kang DH, Ko SC, Heo YB, Lee HJ, Woo HM. RoboMoClo: A Robotics-Assisted Modular Cloning Framework for Multiple Gene Assembly in Biofoundry. ACS Synth Biol 2022; 11:1336-1348. [PMID: 35167276 DOI: 10.1021/acssynbio.1c00628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient and versatile DNA assembly frameworks have had an impact on promoting synthetic biology to build complex biological systems. To accelerate system development, laboratory automation (or biofoundry) provides an opportunity to construct organisms and DNA assemblies via computer-aided design. However, a modular cloning (MoClo) system for multiple DNA assemblies limits the biofoundry workflow in terms of simplicity and feasibility by preparing the number of cloning materials such as destination vectors prior to the automation process. Herein, we propose robot-assisted MoClo (RoboMoClo) to accelerate a synthetic biology project with multiple gene expressions at the biofoundry. The architecture of the RoboMoClo framework provides a hybrid strategy of hierarchical gene assembly and iterative gene assembly, and fewer destination vectors compared with other MoClo systems. An industrial bacterium, Corynebacterium glutamicum, was used as a model host for RoboMoClo. After building a biopart library (promoter and terminator; level 0) and evaluating its features (level 1), various transcriptional directions in multiple gene assemblies (level 2) were studied using the RoboMoClo vectors. Among the constructs, the convergent construct exhibited potential transcriptional interference through the collision of RNA polymerases. To study design of experiment-guided lycopene biosynthesis in C. glutamicum (levels 1, 2, and 3), the biofoundry-assisted multiple gene assembly was demonstrated as a proof-of-concept by constructing various sub-pathway units (level 2) and pathway units (level 3) for C. glutamicum. The RoboMoClo framework provides an improved MoClo toolkit for laboratory automation in a synthetic biology application.
Collapse
Affiliation(s)
- Dong Hun Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sung Cheon Ko
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yu Been Heo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
18
|
Kim W, Kim M, Hong M, Park W. Killing effect of deinoxanthins on cyanobloom-forming Microcystis aeruginosa: Eco-friendly production and specific activity of deinoxanthins. ENVIRONMENTAL RESEARCH 2021; 200:111455. [PMID: 34118245 DOI: 10.1016/j.envres.2021.111455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacterial blooms caused mainly by Microcystis aeruginosa could be controlled using chemical and biological agents such as H2O2, antagonistic bacteria, and enzymes. Little is known about the possible toxic effects of bacterial membrane pigments on M. aeruginosa cells. Deinococcus metallilatus MA1002 cultured under light increased the production of several carotenoid-like compounds by upregulating two deinoxanthin biosynthesis genes: crtO and cruC. The deinoxanthin compounds were identified using thin-layer chromatography, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. D. metallilatus was cultured with agricultural by-products under light to produce the deinoxanthin compounds. Soybean meal, from six tested agricultural by-products, was selected as the single factor for making an economical medium to produce deinoxanthin compounds. The growth of axenic M. aeruginosa PCC7806, as well as other xenic cyanobacteria such as Cyanobium gracile, Trichormus variabilis, and Dolichospermum circinale, were inhibited by the deinoxanthin compounds. Scanning electron microscopic images showed the complete collapse of M. aeruginosa cells under deinoxanthin treatment, probably due to its interference with cyanobacterial membrane synthesis during cellular elongation. Deinoxanthins appeared to be nontoxic to other non-cyanobacteria such as Acinetobacter, Pseudomonas, Methylobacterium, and Bacillus species, suggesting that it can be a novel candidate for preventing cyanobacterial blooms through its specific activity against cyanobacteria.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minyoung Hong
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
19
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Mitra M, Nguyen KMAK, Box TW, Berry TL, Fujita M. Isolation and characterization of a heavy metal- and antibiotic-tolerant novel bacterial strain from a contaminated culture plate of Chlamydomonas reinhardtii, a green micro-alga. F1000Res 2021; 10:533. [PMID: 34540203 PMCID: PMC8424464 DOI: 10.12688/f1000research.53779.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/04/2023] Open
Abstract
Background:Chlamydomonas reinhardtii, a green micro-alga, is normally cultured in laboratories in Tris-Acetate Phosphate (TAP), a medium which contains acetate as the sole carbon source. Acetate in TAP can lead to occasional bacterial and fungal contamination. We isolated a yellow-pigmented bacterium from a Chlamydomonas TAP plate. It was named Clip185 based on the Chlamydomonas strain plate it was isolated from. In this article we present our work on the isolation, taxonomic identification and physiological and biochemical characterizations of Clip185. Methods: We measured sensitivities of Clip185 to five antibiotics and performed standard microbiological tests to characterize it. We partially sequenced the 16S rRNA gene of Clip185. We identified the yellow pigment of Clip185 by spectrophotometric analyses. We tested tolerance of Clip185 to six heavy metals by monitoring its growth on Lysogeny Broth (LB) media plates containing 0.5 mM -10 mM concentrations of six different heavy metals. Results: Clip185 is an aerobic, gram-positive rod, oxidase-negative, mesophilic, alpha-hemolytic bacterium. It can ferment glucose, sucrose and mannitol. It is starch hydrolysis-positive. It is very sensitive to vancomycin but resistant to penicillin and other bacterial cell membrane- and protein synthesis-disrupting antibiotics. Clip185 produces a C50 carotenoid, decaprenoxanthin, which is a powerful anti-oxidant with a commercial demand. Decaprenoxanthin production is induced in Clip185 under light. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of Clip185 revealed a 99% sequence identity to that of Microbacterium binotii strain PK1-12M and Microbacterium sp. strain MDP6. Clip185 is able to tolerate toxic concentrations of six heavy metals. Conclusions: Our results show that Clip185 belongs to the genus Microbacterium. In the future, whole genome sequencing of Clip185 will clarify if Clip185 is a new Microbacterium species or a novel strain of Microbacterium binotii, and will reveal its genes involved in antibiotic-resistance, heavy-metal tolerance and regulation of decaprenoxanthin biosynthesis.
Collapse
Affiliation(s)
- Mautusi Mitra
- Department of Mathematics, Sciences and Technology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Kevin Manoap-Anh-Khoa Nguyen
- Department of Mathematics, Sciences and Technology, University of West Georgia, Carrollton, Georgia, 30118, USA
- Department of Mechanical Engineering, Kennesaw State University, Marietta, Georgia, 30060, USA
| | - Taylor Wayland Box
- Department of Mathematics, Sciences and Technology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Taylor Lynne Berry
- Carrollton High School, Carrollton, Georgia, 30117, USA
- Department of Chemistry and Biochemistry, University of North Georgia, Dahlonega, Georgia, 30597, USA
| | - Megumi Fujita
- Department of Mathematics, Sciences and Technology, University of West Georgia, Carrollton, Georgia, 30118, USA
| |
Collapse
|
21
|
Mitra M, Nguyen KMAK, Box TW, Berry TL, Fujita M. Isolation and characterization of a heavy metal- and antibiotic-tolerant novel bacterial strain from a contaminated culture plate of Chlamydomonas reinhardtii, a green micro-alga. F1000Res 2021; 10:533. [PMID: 34540203 PMCID: PMC8424464 DOI: 10.12688/f1000research.53779.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background:Chlamydomonas reinhardtii, a green micro-alga, is normally cultured in laboratories in Tris-Acetate Phosphate (TAP), a medium which contains acetate as the sole carbon source. Acetate in TAP can lead to occasional bacterial and fungal contamination. We isolated a yellow-pigmented bacterium from a Chlamydomonas TAP plate. It was named Clip185 based on the Chlamydomonas strain plate it was isolated from. In this article we present our work on the isolation, taxonomic identification and physiological and biochemical characterizations of Clip185. Methods: We measured sensitivities of Clip185 to five antibiotics and performed standard microbiological tests to characterize it. We partially sequenced the 16S rRNA gene of Clip185. We identified the yellow pigment of Clip185 by spectrophotometric analyses. We tested tolerance of Clip185 to six heavy metals by monitoring its growth on Lysogeny Broth (LB) media plates containing 0.5 mM -10 mM concentrations of six different heavy metals. Results: Clip185 is an aerobic, gram-positive rod, oxidase-negative, mesophilic, alpha-hemolytic bacterium. It can ferment glucose, sucrose and mannitol. It is starch hydrolysis-positive. It is very sensitive to vancomycin but resistant to penicillin and other bacterial cell membrane- and protein synthesis-disrupting antibiotics. Clip185 produces a C50 carotenoid, decaprenoxanthin, which is a powerful anti-oxidant with a commercial demand. Decaprenoxanthin production is induced in Clip185 under light. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of Clip185 revealed a 99% sequence identity to that of Microbacterium binotii strain PK1-12M and Microbacterium sp. strain MDP6. Clip185 is able to tolerate toxic concentrations of six heavy metals. Conclusions: Our results show that Clip185 belongs to the genus Microbacterium. In the future, whole genome sequencing of Clip185 will clarify if Clip185 is a new Microbacterium species or a novel strain of Microbacterium binotii, and will reveal its genes involved in antibiotic-resistance, heavy-metal tolerance and regulation of decaprenoxanthin biosynthesis.
Collapse
Affiliation(s)
- Mautusi Mitra
- Department of Mathematics, Sciences and Technology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Kevin Manoap-Anh-Khoa Nguyen
- Department of Mathematics, Sciences and Technology, University of West Georgia, Carrollton, Georgia, 30118, USA
- Department of Mechanical Engineering, Kennesaw State University, Marietta, Georgia, 30060, USA
| | - Taylor Wayland Box
- Department of Mathematics, Sciences and Technology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Taylor Lynne Berry
- Carrollton High School, Carrollton, Georgia, 30117, USA
- Department of Chemistry and Biochemistry, University of North Georgia, Dahlonega, Georgia, 30597, USA
| | - Megumi Fujita
- Department of Mathematics, Sciences and Technology, University of West Georgia, Carrollton, Georgia, 30118, USA
| |
Collapse
|
22
|
Kerbs A, Mindt M, Schwardmann L, Wendisch VF. Sustainable Production of N-methylphenylalanine by Reductive Methylamination of Phenylpyruvate Using Engineered Corynebacterium glutamicum. Microorganisms 2021; 9:microorganisms9040824. [PMID: 33924554 PMCID: PMC8070496 DOI: 10.3390/microorganisms9040824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
N-alkylated amino acids occur widely in nature and can also be found in bioactive secondary metabolites such as the glycopeptide antibiotic vancomycin and the immunosuppressant cyclosporine A. To meet the demand for N-alkylated amino acids, they are currently produced chemically; however, these approaches often lack enantiopurity, show low product yields and require toxic reagents. Fermentative routes to N-alkylated amino acids like N-methyl-l-alanine or N-methylantranilate, a precursor of acridone alkaloids, have been established using engineered Corynebacterium glutamicum, which has been used for the industrial production of amino acids for decades. Here, we describe metabolic engineering of C. glutamicum for de novo production of N-methylphenylalanine based on reductive methylamination of phenylpyruvate. Pseudomonas putida Δ-1-piperideine-2-carboxylate reductase DpkA containing the amino acid exchanges P262A and M141L showed comparable catalytic efficiencies with phenylpyruvate and pyruvate, whereas the wild-type enzyme preferred the latter substrate over the former. Deletion of the anthranilate synthase genes trpEG and of the genes encoding branched-chain amino acid aminotransferase IlvE and phenylalanine aminotransferase AroT in a strain engineered to overproduce anthranilate abolished biosynthesis of l-tryptophan and l-phenylalanine to accumulate phenylpyruvate. Upon heterologous expression of DpkAP262A,M141L, N-methylphenylalanine production resulted upon addition of monomethylamine to the medium. In glucose-based minimal medium, an N-methylphenylalanine titer of 0.73 ± 0.05 g L−1, a volumetric productivity of 0.01 g L−1 h−1 and a yield of 0.052 g g−1 glucose were reached. When xylose isomerase gene xylA from Xanthomonas campestris and the endogenous xylulokinase gene xylB were expressed in addition, xylose as sole carbon source supported production of N-methylphenylalanine to a titer of 0.6 ± 0.04 g L−1 with a volumetric productivity of 0.008 g L−1 h−1 and a yield of 0.05 g g−1 xylose. Thus, a fermentative route to sustainable production of N-methylphenylalanine by recombinant C. glutamicum has been established.
Collapse
Affiliation(s)
- Anastasia Kerbs
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
| | - Melanie Mindt
- BU Bioscience, Wagenigen University and Research, 6700AA Wageningen, The Netherlands;
| | - Lynn Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (L.S.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
23
|
Burgardt A, Moustafa A, Persicke M, Sproß J, Patschkowski T, Risse JM, Peters-Wendisch P, Lee JH, Wendisch VF. Coenzyme Q 10 Biosynthesis Established in the Non-Ubiquinone Containing Corynebacterium glutamicum by Metabolic Engineering. Front Bioeng Biotechnol 2021; 9:650961. [PMID: 33859981 PMCID: PMC8042324 DOI: 10.3389/fbioe.2021.650961] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. For the microbial production, so far only bacteria have been used that naturally synthesize CoQ10 or a related CoQ species. Since the whole pathway involves many enzymatic steps and has not been fully elucidated yet, the set of genes required for transfer of CoQ10 synthesis to a bacterium not naturally synthesizing CoQ species remained unknown. Here, we established CoQ10 biosynthesis in the non-ubiquinone-containing Gram-positive Corynebacterium glutamicum by metabolic engineering. CoQ10 biosynthesis involves prenylation and, thus, requires farnesyl diphosphate as precursor. A carotenoid-deficient strain was engineered to synthesize an increased supply of the precursor molecule farnesyl diphosphate. Increased farnesyl diphosphate supply was demonstrated indirectly by increased conversion to amorpha-4,11-diene. To provide the first CoQ10 precursor decaprenyl diphosphate (DPP) from farnesyl diphosphate, DPP synthase gene ddsA from Paracoccus denitrificans was expressed. Improved supply of the second CoQ10 precursor, para-hydroxybenzoate (pHBA), resulted from metabolic engineering of the shikimate pathway. Prenylation of pHBA with DPP and subsequent decarboxylation, hydroxylation, and methylation reactions to yield CoQ10 was achieved by expression of ubi genes from Escherichia coli. CoQ10 biosynthesis was demonstrated in shake-flask cultivation and verified by liquid chromatography mass spectrometry analysis. To the best of our knowledge, this is the first report of CoQ10 production in a non-ubiquinone-containing bacterium.
Collapse
Affiliation(s)
- Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Ayham Moustafa
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jens Sproß
- Industrial Organic Chemistry and Biotechnology, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Thomas Patschkowski
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Joe Max Risse
- Fermentation Technology, Technical Faculty and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jin-Ho Lee
- Major in Food Science & Biotechnology, School of Food Biotechnology & Nutrition, Kyungsung University, Busan, South Korea
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
24
|
Göttl VL, Schmitt I, Braun K, Peters-Wendisch P, Wendisch VF, Henke NA. CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by Corynebacterium glutamicum. Microorganisms 2021; 9:670. [PMID: 33805131 PMCID: PMC8064071 DOI: 10.3390/microorganisms9040670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023] Open
Abstract
Corynebacterium glutamicum is a prominent production host for various value-added compounds in white biotechnology. Gene repression by dCas9/clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) allows for the identification of target genes for metabolic engineering. In this study, a CRISPRi-based library for the repression of 74 genes of C. glutamicum was constructed. The chosen genes included genes encoding enzymes of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, regulatory genes, as well as genes of the methylerythritol phosphate and carotenoid biosynthesis pathways. As expected, CRISPRi-mediated repression of the carotenogenesis repressor gene crtR resulted in increased pigmentation and cellular content of the native carotenoid pigment decaprenoxanthin. CRISPRi screening identified 14 genes that affected decaprenoxanthin biosynthesis when repressed. Carotenoid biosynthesis was significantly decreased upon CRISPRi-mediated repression of 11 of these genes, while repression of 3 genes was beneficial for decaprenoxanthin production. Largely, but not in all cases, deletion of selected genes identified in the CRISPRi screen confirmed the pigmentation phenotypes obtained by CRISPRi. Notably, deletion of pgi as well as of gapA improved decaprenoxanthin levels 43-fold and 9-fold, respectively. The scope of the designed library to identify metabolic engineering targets, transfer of gene repression to stable gene deletion, and limitations of the approach were discussed.
Collapse
Affiliation(s)
| | | | | | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (V.L.G.); (I.S.); (K.B.); (P.P.-W.); (N.A.H.)
| | | |
Collapse
|
25
|
Foong LC, Loh CWL, Ng HS, Lan JCW. Recent development in the production strategies of microbial carotenoids. World J Microbiol Biotechnol 2021; 37:12. [DOI: 10.1007/s11274-020-02967-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
|
26
|
Yeluri. Jonnala BR, McSweeney PL, Cotter PD, Zhong S, Sheehan JJ, Kopec RE. Comparison of the carotenoid profiles of commonly consumed smear-ripened cheeses. Lebensm Wiss Technol 2021; 135:110241. [PMID: 33446941 PMCID: PMC7802757 DOI: 10.1016/j.lwt.2020.110241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to identify the carotenoids imparting the orange colour to the rind, and pale yellow color to the core, of selected smear-ripened cheeses. The cheeses investigated were Charloe, Ashbrook, Taleggio, and Limburger, and were sourced from artisanal markets. Samples of the rind and core were extracted using non-polar solvents, followed by saponification to hydrolyze triglycerides to remove fatty acids, and to release carotenoid esters. Extracts were tested using ultra-high pressure liquid chromatograph-diode array detector-high resolution mass spectrometry (UHPLC-DAD-MS and -MS/MS), and identities of α- and β-carotene, lycopene, and β-cryptoxanthin confirmed with authentic standards. β-Carotene was the predominant species in both the rind and core, absorbing ~70% of the signal at 450 nm in all cheese extracts tested, as well as minor quantities of β-cryptoxanthin and α-carotene. Carotenoids unique to the rind included lycopene as well as the rare bacterial carotenoids previously identified in bacterial isolates of cheeses (i.e. decaprenoxanthin, sarcinaxanthin, and echinenone). This is the first detailed characterisation of carotenoids extracted directly from smear-ripened cheeses, and reveals that smear-ripened cheese can contribute both provitamin A carotenoids as well as C50 carotenoids to the human diet.
Collapse
Affiliation(s)
- Bhagya R. Yeluri. Jonnala
- Teagasc Food Research Centre, Moorepark, Fermoy Co.Cork, Ireland. P61C996
- School of Food and Nutrition, University College Cork, Cork, Ireland
| | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy Co.Cork, Ireland. P61C996
- APC Microbiome, UCC, Cork, Ireland
| | - Siqiong Zhong
- Human Nutrition Program, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
| | | | - Rachel E. Kopec
- Human Nutrition Program, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
- Foods for Health Discovery Theme, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
| |
Collapse
|
27
|
Henke NA, Austermeier S, Grothaus IL, Götker S, Persicke M, Peters-Wendisch P, Wendisch VF. Corynebacterium glutamicum CrtR and Its Orthologs in Actinobacteria: Conserved Function and Application as Genetically Encoded Biosensor for Detection of Geranylgeranyl Pyrophosphate. Int J Mol Sci 2020; 21:E5482. [PMID: 32751941 PMCID: PMC7432914 DOI: 10.3390/ijms21155482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/03/2022] Open
Abstract
Carotenoid biosynthesis in Corynebacteriumglutamicum is controlled by the MarR-type regulator CrtR, which represses transcription of the promoter of the crt operon (PcrtE) and of its own gene (PcrtR). Geranylgeranyl pyrophosphate (GGPP), and to a lesser extent other isoprenoid pyrophosphates, interfere with the binding of CrtR to its target DNA in vitro, suggesting they act as inducers of carotenoid biosynthesis. CrtR homologs are encoded in the genomes of many other actinobacteria. In order to determine if and to what extent the function of CrtR, as a metabolite-dependent transcriptional repressor of carotenoid biosynthesis genes responding to GGPP, is conserved among actinobacteria, five CrtR orthologs were characterized in more detail. EMSA assays showed that the CrtR orthologs from Corynebacteriumcallunae, Acidipropionibacteriumjensenii, Paenarthrobacternicotinovorans, Micrococcusluteus and Pseudarthrobacterchlorophenolicus bound to the intergenic region between their own gene and the divergently oriented gene, and that GGPP inhibited these interactions. In turn, the CrtR protein from C. glutamicum bound to DNA regions upstream of the orthologous crtR genes that contained a 15 bp DNA sequence motif conserved between the tested bacteria. Moreover, the CrtR orthologs functioned in C. glutamicum in vivo at least partially, as they complemented the defects in the pigmentation and expression of a PcrtE_gfpuv transcriptional fusion that were observed in a crtR deletion mutant to varying degrees. Subsequently, the utility of the PcrtE_gfpuv transcriptional fusion and chromosomally encoded CrtR from C. glutamicum as genetically encoded biosensor for GGPP was studied. Combined FACS and LC-MS analysis demonstrated a correlation between the sensor fluorescent signal and the intracellular GGPP concentration, and allowed us to monitor intracellular GGPP concentrations during growth and differentiate between strains engineered to accumulate GGPP at different concentrations.
Collapse
Affiliation(s)
- Nadja A. Henke
- Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (S.A.); (I.L.G.); (S.G.); (P.P.-W.)
| | - Sophie Austermeier
- Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (S.A.); (I.L.G.); (S.G.); (P.P.-W.)
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Isabell L. Grothaus
- Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (S.A.); (I.L.G.); (S.G.); (P.P.-W.)
- Faculty of Production Engineering, Bremen University, 28359 Bremen, Germany
| | - Susanne Götker
- Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (S.A.); (I.L.G.); (S.G.); (P.P.-W.)
| | - Marcus Persicke
- Faculty of CeBiTec, Bielefeld University, 33615 Bielefeld, Germany;
| | - Petra Peters-Wendisch
- Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (S.A.); (I.L.G.); (S.G.); (P.P.-W.)
| | - Volker F. Wendisch
- Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (S.A.); (I.L.G.); (S.G.); (P.P.-W.)
| |
Collapse
|
28
|
Fermentative N-Methylanthranilate Production by Engineered Corynebacterium glutamicum. Microorganisms 2020; 8:microorganisms8060866. [PMID: 32521697 PMCID: PMC7356990 DOI: 10.3390/microorganisms8060866] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
The N-functionalized amino acid N-methylanthranilate is an important precursor for bioactive compounds such as anticancer acridone alkaloids, the antinociceptive alkaloid O-isopropyl N-methylanthranilate, the flavor compound O-methyl-N-methylanthranilate, and as a building block for peptide-based drugs. Current chemical and biocatalytic synthetic routes to N-alkylated amino acids are often unprofitable and restricted to low yields or high costs through cofactor regeneration systems. Amino acid fermentation processes using the Gram-positive bacterium Corynebacterium glutamicum are operated industrially at the million tons per annum scale. Fermentative processes using C. glutamicum for N-alkylated amino acids based on an imine reductase have been developed, while N-alkylation of the aromatic amino acid anthranilate with S-adenosyl methionine as methyl-donor has not been described for this bacterium. After metabolic engineering for enhanced supply of anthranilate by channeling carbon flux into the shikimate pathway, preventing by-product formation and enhancing sugar uptake, heterologous expression of the gene anmt encoding anthranilate N-methyltransferase from Ruta graveolens resulted in production of N-methylanthranilate (NMA), which accumulated in the culture medium. Increased SAM regeneration by coexpression of the homologous adenosylhomocysteinase gene sahH improved N-methylanthranilate production. In a test bioreactor culture, the metabolically engineered C. glutamicum C1* strain produced NMA to a final titer of 0.5 g·L−1 with a volumetric productivity of 0.01 g·L−1·h−1 and a yield of 4.8 mg·g−1 glucose.
Collapse
|
29
|
Ruwe M, Persicke M, Busche T, Müller B, Kalinowski J. Physiology and Transcriptional Analysis of (p)ppGpp-Related Regulatory Effects in Corynebacterium glutamicum. Front Microbiol 2019; 10:2769. [PMID: 31849906 PMCID: PMC6892785 DOI: 10.3389/fmicb.2019.02769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The alarmone species ppGpp and pppGpp are elementary components of bacterial physiology as they both coordinate the bacterial stress response and serve as fine-tuners of general metabolism during conditions of balanced growth. Since the regulation of (p)ppGpp metabolism and the effects of (p)ppGpp on cellular processes are highly complex and show massive differences between bacterial species, the underlying molecular mechanisms have so far only been insufficiently investigated for numerous microorganisms. In this study, (p)ppGpp physiology in the actinobacterial model organism Corynebacterium glutamicum was analyzed by phenotypic characterization and RNAseq-based transcriptome analysis. Total nutrient starvation was identified as the most effective method to induce alarmone production, whereas traditional induction methods such as the addition of serine hydroxamate (SHX) or mupirocin did not show a strong accumulation of (p)ppGpp. The predominant alarmone in C. glutamicum represents guanosine tetraphosphate, whose stress-associated production depends on the presence of the bifunctional RSH enzyme Rel. Interestingly, in addition to ppGpp, another substance yet not identified accumulated strongly under inducing conditions. A C. glutamicum triple mutant (Δrel,ΔrelS,ΔrelH) unable to produce alarmones [(p)ppGpp0 strain] exhibited unstable growth characteristics and interesting features such as an influence of illumination on its physiology, production of amino acids as well as differences in vitamin and carotenoid production. Differential transcriptome analysis using RNAseq provided numerous indications for the molecular basis of the observed phenotype. An evaluation of the (p)ppGpp-dependent transcriptional regulation under total nutrient starvation revealed a complex interplay with the involvement of ribosome-mediated transcriptional attenuation, the stress-responsive sigma factors σB and σH and transcription factors such as McbR, the master regulator of sulfur metabolism. In addition to the differential regulation of genes connected with various cell functions, the transcriptome analysis revealed conserved motifs within the promoter regions of (p)ppGpp-dependently and independently regulated genes. In particular, the representatives of translation-associated genes are both (p)ppGpp-dependent transcriptionally downregulated and show a highly conserved and so far unknown TTTTG motif in the -35 region, which is also present in other actinobacterial genera.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
30
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
31
|
Improved Astaxanthin Production with Corynebacterium glutamicum by Application of a Membrane Fusion Protein. Mar Drugs 2019; 17:md17110621. [PMID: 31683510 PMCID: PMC6891673 DOI: 10.3390/md17110621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin is one of the strongest natural antioxidants and a red pigment occurring in nature. This C40 carotenoid is used in a broad range of applications such as a colorant in the feed industry, an antioxidant in cosmetics or as a supplement in human nutrition. Natural astaxanthin is on the rise and, hence, alternative production systems are needed. The natural carotenoid producer Corynebacterium glutamicum is a potent host for industrial fermentations, such as million-ton scale amino acid production. In C. glutamicum, astaxanthin production was established through heterologous overproduction of the cytosolic lycopene cyclase CrtY and the membrane-bound β-carotene hydroxylase and ketolase, CrtZ and CrtW, in previous studies. In this work, further metabolic engineering strategies revealed that the potential of this GRAS organism for astaxanthin production is not fully exploited yet. It was shown that the construction of a fusion protein comprising the membrane-bound β-carotene hydroxylase and ketolase (CrtZ~W) significantly increased astaxanthin production under high glucose concentration. An evaluation of used carbon sources indicated that a combination of glucose and acetate facilitated astaxanthin production. Moreover, additional overproduction of cytosolic carotenogenic enzymes increased the production of this high value compound. Taken together, a seven-fold improvement of astaxanthin production was achieved with 3.1 mg/g CDW of astaxanthin.
Collapse
|
32
|
Leszczewicz M, Walczak P. Selection of Thermotolerant Corynebacterium glutamicum Strains for Organic Acid Biosynthesis. Food Technol Biotechnol 2019; 57:249-259. [PMID: 31537974 PMCID: PMC6718964 DOI: 10.17113/ftb.57.02.19.5980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, Corynebacterium glutamicum has been considered as producer of many valuable chemical compounds. Among them, organic acids such as l-lactic and succinic acids are the most important ones. It is known that the wild-type C. glutamicum grows well in the temperature range between 25 and 37 °C. Above 40 °C, the biomass growth usually abruptly stops; however, the bacteria remain metabolically active. High temperature affects the metabolic activity of C. glutamicum cells and can lead to changes in the composition and quantity of the fermentation products. Therefore, in a series of subsequent selection steps, we tried to obtain prototrophic strains capable of growing at 44 °C from the culture of homoserine auxotroph C. glutamicum ATCC 13287. During selection, we used complex and mineral media containing succinic and citric acids. As a result, we obtained 47 clones able to grow at elevated temperature. Moreover, the estimated optimal growth temperature for several of them was about 40 °C or higher. Under oxygen limitation conditions, C. glutamicum strains produce organic acids. Regardless of the tested clone, l-lactic acid was the main product. However, its concentration was the highest in the cultures performed at 44 °C. The elevated temperature also affected the biosynthesis of other organic acids. Compared to the parental strain, the concentration of acetic acid increased, and of succinic acid decreased in the cultures of thermotolerant strains. Strain RCG44.3 exhibited interesting properties; it was able to synthesise 27.1 g/L l-lactic acid, with production yield of 0.57 g/g, during 24 h of fermentation at 44 °C.
Collapse
Affiliation(s)
- Martyna Leszczewicz
- Industrial Biotechnology Laboratory, "Bionanopark" Ltd., Dubois 114/116, 93-465 Łódź, Poland.,Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| | - Piotr Walczak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| |
Collapse
|
33
|
Dias Rodrigues TV, Amore TD, Teixeira EC, de Medeiros Burkert JF. Carotenoid Production by Rhodotorula mucilaginosa in Batch and Fed-Batch Fermentation Using Agroindustrial Byproducts. Food Technol Biotechnol 2019; 57:388-398. [PMID: 31866752 PMCID: PMC6902290 DOI: 10.17113/ftb.57.03.19.6068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 06/17/2019] [Indexed: 01/16/2023] Open
Abstract
Carotenoids are natural pigments that can be produced through biotechnological processes. However, the costs are relatively high and can be minimized by using lower-cost substrates as alternative nutrient sources. The fed-batch fermentation is one of the techniques used to obtain a high biomass concentration and/or maximum production. Thus, the aim of this work is to produce carotenoids in batch and fed-batch fermentation with the yeast Rhodotorula mucilaginosa CCT 7688 using agroindustrial byproducts in the culture medium. Carotenoid production was increased using experimental designs, which modified the concentration of the agroindustrial medium. In batch production the highest concentrations of total carotenoids (1248.5 μg/L) and biomass (7.9 g/L) were obtained in the medium containing 70 g/L sugar cane molasses and 3.4 g/L corn steep liquor at 25 °C and 180 rpm in 168 h, demonstrating an increase of 17% when compared to the standard yeast malt medium (1200 μg/L). In the fed-batch production, different feeding strategies were tested with 30 g/L sugar cane molasses and 6.5 g/L corn steep liquor, reaching a total carotenoid production of 3726 μg/L and biomass concentration of 16 g/L. Therefore, the strategy of the fed-batch process resulted in an increase in the carotenoid production of approx. 400% compared to that in the batch process (740.3 μg/L). Thus, the R. mucilaginosa strain has the potential to produce carotenoids in agroindustrial medium.
Collapse
Affiliation(s)
| | - Thalita D. Amore
- School of Chemistry and Food, Federal University of Rio Grande, 96203-900 Rio Grande, Brazil
| | - Erika Carvalho Teixeira
- School of Chemistry and Food, Federal University of Rio Grande, 96203-900 Rio Grande, Brazil
| | | |
Collapse
|
34
|
Li C, Li B, Zhang N, Wang Q, Wang W, Zou H. Comparative transcriptome analysis revealed the improved β-carotene production in Sporidiobolus pararoseus yellow mutant MuY9. J GEN APPL MICROBIOL 2019; 65:121-128. [PMID: 30542003 DOI: 10.2323/jgam.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids are ubiquitous constituents of living organisms. These structurally diverse pigments have received considerable attention due to their biotechnological applications and potential beneficial effects on human health. In this study, we characterized an over-producing β-carotene mutant of Sporidiobolus pararoseus, obtained by ultraviolet mutagenesis, named MuY9. We compared the transcriptome between the wild-type and MuY9. A total of 348 differential expressed genes (DEGs) were found, and only one DEG crtYB is involved in carotenoid biosynthesis. The overproduction of β-carotene in MuY9 should be attributed to the up-regulation of crtYB. Functional identification of crtYB was performed using heterologous complementation in Escherichia coli. Our findings indicate that the enzymatic conversions of geranylgeranyl pyrophosphate to phytoene, as well as lycopene to β-carotene, are catalyzed by this CrtYB. Furthermore, our insights into the crtYB gene should facilitate a more detailed understanding of the carotenogenic pathway in S. pararoseus, and advance the development of the genetic engineering for the bio-production of carotenoids.
Collapse
Affiliation(s)
- Chunji Li
- College of Land and Environment, Shenyang Agricultural University
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University
| | - Qifan Wang
- College of Land and Environment, Shenyang Agricultural University
| | - Wenjing Wang
- College of Land and Environment, Shenyang Agricultural University
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University
| |
Collapse
|
35
|
Silva TR, Tavares RSN, Canela-Garayoa R, Eras J, Rodrigues MVN, Neri-Numa IA, Pastore GM, Rosa LH, Schultz JAA, Debonsi HM, Cordeiro LRG, Oliveira VM. Chemical Characterization and Biotechnological Applicability of Pigments Isolated from Antarctic Bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:416-429. [PMID: 30874930 DOI: 10.1007/s10126-019-09892-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Considering the global trend in the search for alternative natural compounds with antioxidant and sun protection factor (SPF) boosting properties, bacterial carotenoids represent an opportunity for exploring pigments of natural origin which possess high antioxidant activity, lower toxicity, no residues, and no environmental risk and are readily decomposable. In this work, three pigmented bacteria from the Antarctic continent, named Arthrobacter agilis 50cyt, Zobellia laminarie 465, and Arthrobacter psychrochitiniphilus 366, were able to withstand UV-B and UV-C radiation. The pigments were extracted and tested for UV absorption, antioxidant capacity, photostability, and phototoxicity profile in murine fibroblasts (3T3 NRU PT-OECD TG 432) to evaluate their further potential use as UV filters. Furthermore, the pigments were identified by ultra-high-performance liquid chromatography-photodiode array detector-mass spectrometry (UPLC-PDA-MS/MS). The results showed that all pigments presented a very high antioxidant activity and good stability under exposure to UV light. However, except for a fraction of the A. agilis 50cyt pigment, they were shown to be phototoxic. A total of 18 different carotenoids were identified from 23 that were separated on a C18 column. The C50 carotenes bacterioruberin and decaprenoxanthin (including its variations) were confirmed for A. agilis 50cyt and A. psychrochitiniphilus 366, respectively. All-trans-bacterioruberin was identified as the pigment that did not express phototoxic activity in the 3T3 NRU PT assay (MPE < 0.1). Zeaxanthin, β-cryptoxanthin, β-carotene, and phytoene were detected in Z. laminarie 465. In conclusion, carotenoids identified in this work from Antarctic bacteria open perspectives for their further biotechnological application towards a more sustainable and environmentally friendly way of pigment exploitation.
Collapse
Affiliation(s)
- Tiago R Silva
- Institute of Biology, Campinas State University (UNICAMP), P.O. Box: 6109, Campinas, SP, Brazil.
- Division of Microbial Resources, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University, Campinas, Brazil.
| | - Renata S N Tavares
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Ramon Canela-Garayoa
- Department of Chemistry, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Jordi Eras
- Department of Chemistry, ETSEA, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Marili V N Rodrigues
- Department of Organic Chemistry; Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University, Campinas, Brazil
| | - Iramaia A Neri-Numa
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Glaucia M Pastore
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiz H Rosa
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Hosana M Debonsi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Lorena R G Cordeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Valeria M Oliveira
- Division of Microbial Resources, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), Campinas State University, Campinas, Brazil
| |
Collapse
|
36
|
Maresca JA, Keffer JL, Hempel PP, Polson SW, Shevchenko O, Bhavsar J, Powell D, Miller KJ, Singh A, Hahn MW. Light Modulates the Physiology of Nonphototrophic Actinobacteria. J Bacteriol 2019; 201:e00740-18. [PMID: 30692175 PMCID: PMC6482932 DOI: 10.1128/jb.00740-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information have been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light. Based on the action spectrum of the growth effect and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.IMPORTANCE Sunlight provides information about both place and time. In sunlit aquatic environments, primary producers release organic carbon and nitrogen along with other growth factors during the day. The ability of Actinobacteria to coordinate organic carbon uptake and utilization with production of photosynthate enables them to grow more efficiently in the daytime, and it potentially gives them a competitive advantage over heterotrophs that constitutively produce carbohydrate transporters, which is energetically costly, or produce transporters only after detection of the substrate(s), which delays their response. Understanding how light cues the transport of organic carbon and its conversion to biomass is key to understanding biochemical mechanisms within the carbon cycle, the fluxes through it, and the variety of mechanisms by which light enhances growth.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Priscilla P Hempel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Olga Shevchenko
- Sequencing and Genotyping Center, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jaysheel Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Deborah Powell
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Kelsey J Miller
- Department of Biology, University of Delaware, Newark, Delaware, USA
| | - Archana Singh
- Department of Biology, University of Delaware, Newark, Delaware, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
37
|
Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, Öhrlein J, Grund B, Hüser A, Takors R, Blombach B. Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:65. [PMID: 30962820 PMCID: PMC6432763 DOI: 10.1186/s13068-019-1410-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND l-Histidine biosynthesis is embedded in an intertwined metabolic network which renders microbial overproduction of this amino acid challenging. This is reflected in the few available examples of histidine producers in literature. Since knowledge about the metabolic interplay is limited, we systematically perturbed the metabolism of Corynebacterium glutamicum to gain a holistic understanding in the metabolic limitations for l-histidine production. We, therefore, constructed C. glutamicum strains in a modularized metabolic engineering approach and analyzed them with LC/MS-QToF-based systems metabolic profiling (SMP) supported by flux balance analysis (FBA). RESULTS The engineered strains produced l-histidine, equimolar amounts of glycine, and possessed heavily decreased intracellular adenylate concentrations, despite a stable adenylate energy charge. FBA identified regeneration of ATP from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as crucial step for l-histidine production and SMP identified strong intracellular accumulation of inosine monophosphate (IMP) in the engineered strains. Energy engineering readjusted the intracellular IMP and ATP levels to wild-type niveau and reinforced the intrinsic low ATP regeneration capacity to maintain a balanced energy state of the cell. SMP further indicated limitations in the C1 supply which was overcome by expression of the glycine cleavage system from C. jeikeium. Finally, we rerouted the carbon flux towards the oxidative pentose phosphate pathway thereby further increasing product yield to 0.093 ± 0.003 mol l-histidine per mol glucose. CONCLUSION By applying the modularized metabolic engineering approach combined with SMP and FBA, we identified an intrinsically low ATP regeneration capacity, which prevents to maintain a balanced energy state of the cell in an l-histidine overproduction scenario and an insufficient supply of C1 units. To overcome these limitations, we provide a metabolic engineering strategy which constitutes a general approach to improve the production of ATP and/or C1 intensive products.
Collapse
Affiliation(s)
- Andreas Schwentner
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - André Feith
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Eugenia Münch
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Judith Stiefelmaier
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ira Lauer
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lorenzo Favilli
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Christoph Massner
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | - Bastian Grund
- Evonik Creavis GmbH, Paul-Baumann-Straße 1, 45772 Marl, Germany
| | - Andrea Hüser
- Evonik Nutrition & Care GmbH, Kantstraße 2, 33790 Halle, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| |
Collapse
|
38
|
Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. ACTA ACUST UNITED AC 2019; 21:e00306. [PMID: 30705834 PMCID: PMC6348148 DOI: 10.1016/j.btre.2019.e00306] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Carotenoids are isoprenoid pigments used by pharmaceutical, cosmetic, food and feed industry as antioxidants and colorants. Although traditional sources of carotenoids are fruits, vegetables and chemical synthesis, prospecting for alternative sinks of common and/or unusual carotenoids is important for the development of natural carotenoid industry. In this work, 30 pigmented bacterial strains from Fildes Peninsula in King George Island, Antarctica, were isolated and identified by 16S rRNA gene sequencing and classified in three phyla, Bacteroidetes, Firmicutes and Actinobacteria. After cells extraction, ten different carotenoids were identified based on the chromatographic and spectroscopic characteristic obtained by HPLC-PDA and HPLC-PDA-APCI-MS analyses. Strains assigned to Bacteroidetes affiliated to Flavobacterium, Chryseobacterium and Zobellia genera, presented a pigment profile composed of zeaxanthin, β-cryptoxanthin and β-carotene. Firmicutes strains of Planococcus genus produced a C50 carotenoid, identified as C.p. 450 glucoside. Actinobacteria isolates were mainly assigned to Arthrobacter genus, and few to Salinibacterium and Cryobacterium genera. Arthrobacter strains produced C50 carotenoids such as decaprenoxanthin and its glucosylated derivatives, as well as some C40 carotenoids such as lycopene which is used as synthesis precursors of the C50 carotenoids. Salinibacterium and Cryobacterium genera produced C.p. 450 free form and its glucosylated derivatives. Although most isolates produce carotenoids similar in diversity and quantity than those already reported in the literature, novel sources for C50 carotenoids results from this work. According to their carotenoid content, all isolates could be promising candidates for carotenoids production.
Collapse
|
39
|
Park J, Yu BJ, Choi JI, Woo HM. Heterologous Production of Squalene from Glucose in Engineered Corynebacterium glutamicum Using Multiplex CRISPR Interference and High-Throughput Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:308-319. [PMID: 30558416 DOI: 10.1021/acs.jafc.8b05818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sustainable production of squalene has driven the development of microbial cell factories due to the limitation of low-yielding bioprocesses from plants and illegal harvesting shark liver. We report the metabolic engineering of Corynebacterium glutamicum to produce squalene from glucose. Combinatorial metabolic engineering strategies for precursor rebalancing, redox balancing, and blocking the competing pathway for the isopentenyl diphosphate availabilities were applied by repressing the target genes using the CRISPR interference. The best engineered strain using high-throughput fermentation produced squalene from glucose at 5.4 ± 0.3 mg/g dry cell weight (DCW) and 105.3 ± 3.0 mg/L, which was a 5.2-fold increase over the parental strain. In addition, flask cultivation of C. glutamicum overexpressing the dxs and idi genes with squalene synthase gene and repressing the idsA gene resulted in production of squalene at 5.8 ± 0.4 mg/g DCW and 82.8 ± 6.2 mg/L, which was a 3.4-fold increase over the parental strain.
Collapse
Affiliation(s)
- Jaehyun Park
- Department of Food Science and Biotechnology , Sungkyunkwan University (SKKU) , 2066 Seobu-ro , Jangan-gu, Suwon 16419 , Republic of Korea
| | - Byung Jo Yu
- Intelligent Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System , Korea Institute of Industrial Technology , 89 Yangdaegiro-gil , Ipjang-myeon, Seobuk-gu, Cheonan 31056 , Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering , Chonnam National University , 77 Yongbong-ro , Buk-gu, Gwangju 61186 , Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology , Sungkyunkwan University (SKKU) , 2066 Seobu-ro , Jangan-gu, Suwon 16419 , Republic of Korea
| |
Collapse
|
40
|
Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica. J Biotechnol 2019; 289:46-54. [DOI: 10.1016/j.jbiotec.2018.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/26/2023]
|
41
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
42
|
Zhao N, Qian L, Luo G, Zheng S. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:9517-9529. [DOI: 10.1007/s00253-018-9358-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
43
|
Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Appl Microbiol Biotechnol 2018; 102:8685-8705. [DOI: 10.1007/s00253-018-9289-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
|
44
|
Xie L, Zhang L, Wang C, Wang X, Xu YM, Yu H, Wu P, Li S, Han L, Gunatilaka AAL, Wei X, Lin M, Molnár I, Xu Y. Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E4980-E4989. [PMID: 29760061 PMCID: PMC5984488 DOI: 10.1073/pnas.1716046115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycosylation is a prominent strategy to optimize the pharmacokinetic and pharmacodynamic properties of drug-like small-molecule scaffolds by modulating their solubility, stability, bioavailability, and bioactivity. Glycosyltransferases applicable for "sugarcoating" various small-molecule acceptors have been isolated and characterized from plants and bacteria, but remained cryptic from filamentous fungi until recently, despite the frequent use of some fungi for whole-cell biocatalytic glycosylations. Here, we use bioinformatic and genomic tools combined with heterologous expression to identify a glycosyltransferase-methyltransferase (GT-MT) gene pair that encodes a methylglucosylation functional module in the ascomycetous fungus Beauveria bassiana The GT is the founding member of a family nonorthologous to characterized fungal enzymes. Using combinatorial biosynthetic and biocatalytic platforms, we reveal that this GT is a promiscuous enzyme that efficiently modifies a broad range of drug-like substrates, including polyketides, anthraquinones, flavonoids, and naphthalenes. It yields both O- and N-glucosides with remarkable regio- and stereospecificity, a spectrum not demonstrated for other characterized fungal enzymes. These glucosides are faithfully processed by the dedicated MT to afford 4-O-methylglucosides. The resulting "unnatural products" show increased solubility, while representative polyketide methylglucosides also display increased stability against glycoside hydrolysis. Upon methylglucosidation, specific polyketides were found to attain cancer cell line-specific antiproliferative or matrix attachment inhibitory activities. These findings will guide genome mining for fungal GTs with novel substrate and product specificities, and empower the efficient combinatorial biosynthesis of a broad range of natural and unnatural glycosides in total biosynthetic or biocatalytic formats.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- Natural Products Center, University of Arizona, Tucson, AZ 85706
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Xiaojing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- Natural Products Center, University of Arizona, Tucson, AZ 85706
| | - Ya-Ming Xu
- Natural Products Center, University of Arizona, Tucson, AZ 85706
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, 100069 Beijing, People's Republic of China
| | - Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Shenglan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, 100069 Beijing, People's Republic of China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | | | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China;
| | - István Molnár
- Natural Products Center, University of Arizona, Tucson, AZ 85706;
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China;
| |
Collapse
|
45
|
Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum. Genes (Basel) 2018; 9:genes9040219. [PMID: 29673223 PMCID: PMC5924561 DOI: 10.3390/genes9040219] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/25/2022] Open
Abstract
Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i) construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii) prevention of carotenoid-like byproduct formation; (iii) overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP)-pathway to increase precursor supply; and (iv) heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.
Collapse
|
46
|
Abdel-Mawgoud AM, Stephanopoulos G. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering. Synth Syst Biotechnol 2018; 3:3-19. [PMID: 29911195 PMCID: PMC5884252 DOI: 10.1016/j.synbio.2017.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Accepted: 12/04/2017] [Indexed: 01/15/2023] Open
Abstract
Glycosylated lipids (GLs) are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME) of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.
Collapse
Affiliation(s)
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
47
|
Henke NA, Wiebe D, Pérez-García F, Peters-Wendisch P, Wendisch VF. Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2018; 247:744-752. [PMID: 30060409 DOI: 10.1016/j.biortech.2017.09.167] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 06/08/2023]
Abstract
Corynebacterium glutamicum is used for production of the food and feed amino acids l-glutamate and l-lysine at the million-ton-scale. One feed formulation of l-lysine simply involves spray-drying of the fermentation broth, thus, including secreted l-lysine and C. glutamicum cells which are pigmented by the C50 carotenoid decaprenoxanthin. C. glutamicum has been engineered for overproduction of various compounds including carotenoids. In this study, C. glutamicum was engineered for coproduction of a secreted amino acid with a cell-bound carotenoid. Asa proof of principle, coproduction of l-glutamate with the industrially relevant astaxanthin was shown. This strategy was applied to engineer l-lysine overproducing strains for combined overproduction of secreted l-lysine with the cell-bound carotenoids decaprenoxanthin, lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin. By fed-batch fermentation 48g/Ll-lysine and 10mg/L astaxanthin were coproduced. Moreover, C. glutamicum was engineered for coproduction of l-lysine and β-carotene from xylose and arabinose as alternative feedstocks.
Collapse
Affiliation(s)
- Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany
| | - Daniela Wiebe
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany
| | - Fernando Pérez-García
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany.
| |
Collapse
|
48
|
Lee JH, Wendisch VF. Production of amino acids - Genetic and metabolic engineering approaches. BIORESOURCE TECHNOLOGY 2017; 245:1575-1587. [PMID: 28552565 DOI: 10.1016/j.biortech.2017.05.065] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/22/2023]
Abstract
The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Major in Food Science & Biotechnology, School of Food Biotechnology & Nutrition, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan 48434, Republic of Korea
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
49
|
Moses T, Mehrshahi P, Smith AG, Goossens A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4074. [PMID: 28449101 DOI: 10.1093/jxb/erx119] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner.
Collapse
Affiliation(s)
- Tessa Moses
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
50
|
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum. Front Microbiol 2017; 8:633. [PMID: 28484430 PMCID: PMC5401885 DOI: 10.3389/fmicb.2017.00633] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/28/2017] [Indexed: 11/29/2022] Open
Abstract
Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin.
Collapse
Affiliation(s)
- Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Sabine A E Heider
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Silvin Hannibal
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| |
Collapse
|