1
|
Ebrahimi V, Hashemi A. Optimizing recombinant production of L-asparaginase 1 from Saccharomyces cerevisiae using response surface methodology. Folia Microbiol (Praha) 2024; 69:1205-1219. [PMID: 38581537 DOI: 10.1007/s12223-024-01163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
L-asparaginase is an essential enzyme used in cancer treatment, but its production faces challenges like low yield, high cost, and immunogenicity. Recombinant production is a promising method to overcome these limitations. In this study, response surface methodology (RSM) was used to optimize the production of L-asparaginase 1 from Saccharomyces cerevisiae in Escherichia coli K-12 BW25113. The Box-Behnken design (BBD) was utilized for the RSM modeling, and a total of 29 experiments were conducted. These experiments aimed to examine the impact of different factors, including the concentration of isopropyl-b-LD-thiogalactopyranoside (IPTG), the cell density prior to induction, the duration of induction, and the temperature, on the expression level of L-asparaginase 1. The results revealed that while the post-induction temperature, cell density at induction time, and post-induction time all had a significant influence on the response, the post-induction time exhibited the greatest effect. The optimized conditions (induction at cell density 0.8 with 0.7 mM IPTG for 4 h at 30 °C) resulted in a significant amount of L-asparaginase with a titer of 93.52 μg/mL, which was consistent with the model-based prediction. The study concluded that RSM optimization effectively increased the production of L-asparaginase 1 in E. coli, which could have the potential for large-scale fermentation. Further research can explore using other host cells, optimizing the fermentation process, and examining the effect of other variables to increase production.
Collapse
Affiliation(s)
- Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Valiasr-Niayesh Junction, Vali-e-Asr Ave, Tehran 1991953381, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Valiasr-Niayesh Junction, Vali-e-Asr Ave, Tehran 1991953381, Iran.
| |
Collapse
|
2
|
Ingelman H, Heffernan JK, Harris A, Brown SD, Shaikh KM, Saqib AY, Pinheiro MJ, de Lima LA, Martinez KR, Gonzalez-Garcia RA, Hawkins G, Daleiden J, Tran L, Zeleznik H, Jensen RO, Reynoso V, Schindel H, Jänes J, Simpson SD, Köpke M, Marcellin E, Valgepea K. Autotrophic adaptive laboratory evolution of the acetogen Clostridium autoethanogenum delivers the gas-fermenting strain LAbrini with superior growth, products, and robustness. N Biotechnol 2024; 83:1-15. [PMID: 38871051 DOI: 10.1016/j.nbt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microbes able to convert gaseous one-carbon (C1) waste feedstocks are increasingly important to transition to the sustainable production of renewable chemicals and fuels. Acetogens are interesting biocatalysts since gas fermentation using Clostridium autoethanogenum has been commercialised. However, most acetogen strains need complex nutrients, display slow growth, and are not robust for bioreactor fermentations. In this work, we used three different and independent adaptive laboratory evolution (ALE) strategies to evolve the wild-type C. autoethanogenum to grow faster, without yeast extract and to be robust in operating continuous bioreactor cultures. Multiple evolved strains with improved phenotypes were isolated on minimal media with one strain, named "LAbrini", exhibiting superior performance regarding the maximum specific growth rate, product profile, and robustness in continuous cultures. Whole-genome sequencing of the evolved strains identified 25 mutations. Of particular interest are two genes that acquired seven different mutations across the three ALE strategies, potentially as a result of convergent evolution. Reverse genetic engineering of mutations in potentially sporulation-related genes CLAU_3129 (spo0A) and CLAU_1957 recovered all three superior features of our ALE strains through triggering significant proteomic rearrangements. This work provides a robust C. autoethanogenum strain "LAbrini" to accelerate phenotyping and genetic engineering and to better understand acetogen metabolism.
Collapse
Affiliation(s)
- Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | - Asfand Yar Saqib
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Marina J Pinheiro
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Karen Rodriguez Martinez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | - Ricardo A Gonzalez-Garcia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | | | | | | | | | - Jürgen Jänes
- Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | | | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
3
|
Moon SY, An NY, Oh SS, Lee JY. Coordinated reprogramming of ATP metabolism strongly enhances adipic acid production in Escherichia coli. Metab Eng 2024; 86:234-241. [PMID: 39454870 DOI: 10.1016/j.ymben.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Maintaining a delicate balance of adenosine-5'-triphosphate (ATP) is crucial not only for optimal cellular functions but also for improved metabolite production, indicating the need for careful regulation of ATP demands in metabolic engineering. This study explored the modification of ATP metabolism to enhance adipic acid production in Escherichia coli, focusing on the reverse adipate degradation pathway (RADP), and ATP-consuming cycles were fine-tuned by controlling the overexpression of genes (panK and acs) to balance ATP consumption and adipic acid production. As a result, we successfully achieved a significant increase (19.5-fold) in adipic acid production, reaching 1093.11 mg/L in a shake flask, compared to that in the control strain (wild-type E. coli harboring the RADP). Our transcriptomic analysis indicated that modulation of ATP metabolism, along with a balanced supply of pathway precursors, affects metabolic fluxes, enhancing adipic acid biosynthesis in E. coli. This study suggests the potential of metabolic reprogramming of ATP to meet biosynthetic demands, which may improve the production of adipic acid and other ATP-derived chemicals.
Collapse
Affiliation(s)
- Soo Young Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Nan Yeong An
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seung Soo Oh
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Ju Young Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Nwaokorie UJ, Reinmets K, de Lima LA, Pawar PR, Shaikh KM, Harris A, Köpke M, Valgepea K. Deletion of genes linked to the C 1-fixing gene cluster affects growth, by-products, and proteome of Clostridium autoethanogenum. Front Bioeng Biotechnol 2023; 11:1167892. [PMID: 37265994 PMCID: PMC10230548 DOI: 10.3389/fbioe.2023.1167892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Gas fermentation has emerged as a sustainable route to produce fuels and chemicals by recycling inexpensive one-carbon (C1) feedstocks from gaseous and solid waste using gas-fermenting microbes. Currently, acetogens that utilise the Wood-Ljungdahl pathway to convert carbon oxides (CO and CO2) into valuable products are the most advanced biocatalysts for gas fermentation. However, our understanding of the functionalities of the genes involved in the C1-fixing gene cluster and its closely-linked genes is incomplete. Here, we investigate the role of two genes with unclear functions-hypothetical protein (hp; LABRINI_07945) and CooT nickel binding protein (nbp; LABRINI_07950)-directly adjacent and expressed at similar levels to the C1-fixing gene cluster in the gas-fermenting model-acetogen Clostridium autoethanogenum. Targeted deletion of either the hp or nbp gene using CRISPR/nCas9, and phenotypic characterisation in heterotrophic and autotrophic batch and autotrophic bioreactor continuous cultures revealed significant growth defects and altered by-product profiles for both ∆hp and ∆nbp strains. Variable effects of gene deletion on autotrophic batch growth on rich or minimal media suggest that both genes affect the utilisation of complex nutrients. Autotrophic chemostat cultures showed lower acetate and ethanol production rates and higher carbon flux to CO2 and biomass for both deletion strains. Additionally, proteome analysis revealed that disruption of either gene affects the expression of proteins of the C1-fixing gene cluster and ethanol synthesis pathways. Our work contributes to a better understanding of genotype-phenotype relationships in acetogens and offers engineering targets to improve carbon fixation efficiency in gas fermentation.
Collapse
Affiliation(s)
- Ugochi Jennifer Nwaokorie
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kristina Reinmets
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Pratik Rajendra Pawar
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Brown AN, Anderson MT, Bachman MA, Mobley HLT. The ArcAB Two-Component System: Function in Metabolism, Redox Control, and Infection. Microbiol Mol Biol Rev 2022; 86:e0011021. [PMID: 35442087 PMCID: PMC9199408 DOI: 10.1128/mmbr.00110-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ArcAB, also known as the Arc system, is a member of the two-component system family of bacterial transcriptional regulators and is composed of sensor kinase ArcB and response regulator ArcA. In this review, we describe the structure and function of these proteins and assess the state of the literature regarding ArcAB as a sensor of oxygen consumption. The bacterial quinone pool is the primary modulator of ArcAB activity, but questions remain for how this regulation occurs. This review highlights the role of quinones and their oxidation state in activating and deactivating ArcB and compares competing models of the regulatory mechanism. The cellular processes linked to ArcAB regulation of central metabolic pathways and potential interactions of the Arc system with other regulatory systems are also reviewed. Recent evidence for the function of ArcAB under aerobic conditions is challenging the long-standing characterization of this system as strictly an anaerobic global regulator, and the support for additional ArcAB functionality in this context is explored. Lastly, ArcAB-controlled cellular processes with relevance to infection are assessed.
Collapse
Affiliation(s)
- Aric N. Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark T. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
de Lima LA, Ingelman H, Brahmbhatt K, Reinmets K, Barry C, Harris A, Marcellin E, Köpke M, Valgepea K. Faster Growth Enhances Low Carbon Fuel and Chemical Production Through Gas Fermentation. Front Bioeng Biotechnol 2022; 10:879578. [PMID: 35497340 PMCID: PMC9039284 DOI: 10.3389/fbioe.2022.879578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Gas fermentation offers both fossil carbon-free sustainable production of fuels and chemicals and recycling of gaseous and solid waste using gas-fermenting microbes. Bioprocess development, systems-level analysis of biocatalyst metabolism, and engineering of cell factories are advancing the widespread deployment of the commercialised technology. Acetogens are particularly attractive biocatalysts but effects of the key physiological parameter–specific growth rate (μ)—on acetogen metabolism and the gas fermentation bioprocess have not been established yet. Here, we investigate the μ-dependent bioprocess performance of the model-acetogen Clostridium autoethanogenum in CO and syngas (CO + CO2+H2) grown chemostat cultures and assess systems-level metabolic responses using gas analysis, metabolomics, transcriptomics, and metabolic modelling. We were able to obtain steady-states up to μ ∼2.8 day−1 (∼0.12 h−1) and show that faster growth supports both higher yields and productivities for reduced by-products ethanol and 2,3-butanediol. Transcriptomics data revealed differential expression of 1,337 genes with increasing μ and suggest that C. autoethanogenum uses transcriptional regulation to a large extent for facilitating faster growth. Metabolic modelling showed significantly increased fluxes for faster growing cells that were, however, not accompanied by gene expression changes in key catabolic pathways for CO and H2 metabolism. Cells thus seem to maintain sufficient “baseline” gene expression to rapidly respond to CO and H2 availability without delays to kick-start metabolism. Our work advances understanding of transcriptional regulation in acetogens and shows that faster growth of the biocatalyst improves the gas fermentation bioprocess.
Collapse
Affiliation(s)
- Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kush Brahmbhatt
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kristina Reinmets
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Craig Barry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | | | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
- *Correspondence: Kaspar Valgepea,
| |
Collapse
|
8
|
Xie M, Lu X, Zong H, Zhuge B. Strengthening the TCA cycle to alleviate metabolic stress due to blocking by-products synthesis pathway in Klebsiella pneumoniae. FEMS Microbiol Lett 2020; 367:5903268. [PMID: 32901814 DOI: 10.1093/femsle/fnaa148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 11/14/2022] Open
Abstract
1,3-Propanediol (1,3-PDO) is an important synthetic monomer for the production of polytrimethylene terephthalate (PTT). Here, we engineered Klebsiella pneumoniae by a multi-strategy to improve 1,3-PDO production and reduce by-products synthesis. First, the 2,3-butanediol (2,3-BDO) synthesis pathway was blocked by deleting the budB gene, resulting in a 74% decrease of 2,3-BDO titer. The synthesis of lactate was decreased by 79% via deleting the ldhA gene, leading to a 10% increase of 1,3-PDO titer. Further, reducing ethanol synthesis by deleting the aldA gene led to a 64% decrease of ethanol titer, and the 1,3-PDO titer and yield on glycerol increased by 12 and 10%, respectively. Strengthening the TCA cycle by overexpressing the mdh gene improved 1,3-PDO synthesis effectively. Under 5-L fed-batch fermentation conditions, compared to wild type strain, the production of 2,3-BDO, lactate and ethanol in the mutant strain decreased by 73, 65 and 50%, respectively. Finally, the production of 1,3-PDO was 73.5 g/L with a molar yield of 0.67 mol/mol glycerol, improved 16% and 20%, respectively. This work provides a combined strategy for improving 1,3-PDO production by strengthening the TCA cycle to relieve metabolic stress by deleting genes of by-products synthesis, which was also beneficial for the extraction and separation of downstream products.
Collapse
Affiliation(s)
- Mengmeng Xie
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Mauri M, Gouzé JL, de Jong H, Cinquemani E. Enhanced production of heterologous proteins by a synthetic microbial community: Conditions and trade-offs. PLoS Comput Biol 2020; 16:e1007795. [PMID: 32282794 PMCID: PMC7179936 DOI: 10.1371/journal.pcbi.1007795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/23/2020] [Accepted: 03/18/2020] [Indexed: 01/20/2023] Open
Abstract
Synthetic microbial consortia have been increasingly utilized in biotechnology and experimental evidence shows that suitably engineered consortia can outperform individual species in the synthesis of valuable products. Despite significant achievements, though, a quantitative understanding of the conditions that make this possible, and of the trade-offs due to the concurrent growth of multiple species, is still limited. In this work, we contribute to filling this gap by the investigation of a known prototypical synthetic consortium. A first E. coli strain, producing a heterologous protein, is sided by a second E. coli strain engineered to scavenge toxic byproducts, thus favoring the growth of the producer at the expense of diverting part of the resources to the growth of the cleaner. The simplicity of the consortium is ideal to perform an in depth-analysis and draw conclusions of more general interest. We develop a coarse-grained mathematical model that quantitatively accounts for literature data from different key growth phenotypes. Based on this, assuming growth in chemostat, we first investigate the conditions enabling stable coexistence of both strains and the effect of the metabolic load due to heterologous protein production. In these conditions, we establish when and to what extent the consortium outperforms the producer alone in terms of productivity. Finally, we show in chemostat as well as in a fed-batch scenario that gain in productivity comes at the price of a reduced yield, reflecting at the level of the consortium resource allocation trade-offs that are well-known for individual species. In nature, microorganisms occur in communities comprising a variety of mutually interacting species. Established through evolution, these interactions allow for the survival and growth of microorganisms in their natural environment, and give rise to complex dynamics that could not be exhibited by any of the species in isolation. The richness of microbial community dynamics has been leveraged to outperform individual species in biotechnological production processes and other processes of high societal value. Yet, in view of their complexity, natural communities are difficult to study and control. In order to overcome these issues, a rapidly growing research field concerns the rational design and engineering of synthetic microbial consortia. Despite the great potential of synthetic microbial consortia, and significant efforts devoted to their mathematical modelling and analysis, a detailed understanding of how enhanced production can be achieved, and at what cost, is still unavailable. In this work, based on a quantitative model of a prototypical synthetic microbial consortium, we determine precise conditions under which a consortium outperforms individual species in the production of a recombinant protein. Moreover, we identify the inherent trade-offs between productivity and efficiency of substrate utilization.
Collapse
Affiliation(s)
- Marco Mauri
- Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
| | - Jean-Luc Gouzé
- University Côte d’Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team, 06902 Sophia-Antipolis, France
| | - Hidde de Jong
- Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
- * E-mail: (HdJ); (EC)
| | - Eugenio Cinquemani
- Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
- * E-mail: (HdJ); (EC)
| |
Collapse
|
10
|
Cheng C, O’Brien EJ, McCloskey D, Utrilla J, Olson C, LaCroix RA, Sandberg TE, Feist AM, Palsson BO, King ZA. Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism. PLoS Comput Biol 2019; 15:e1007066. [PMID: 31158228 PMCID: PMC6564042 DOI: 10.1371/journal.pcbi.1007066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 06/13/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023] Open
Abstract
Growth rate and yield are fundamental features of microbial growth. However, we lack a mechanistic and quantitative understanding of the rate-yield relationship. Studies pairing computational predictions with experiments have shown the importance of maintenance energy and proteome allocation in explaining rate-yield tradeoffs and overflow metabolism. Recently, adaptive evolution experiments of Escherichia coli reveal a phenotypic diversity beyond what has been explained using simple models of growth rate versus yield. Here, we identify a two-dimensional rate-yield tradeoff in adapted E. coli strains where the dimensions are (A) a tradeoff between growth rate and yield and (B) a tradeoff between substrate (glucose) uptake rate and growth yield. We employ a multi-scale modeling approach, combining a previously reported coarse-grained small-scale proteome allocation model with a fine-grained genome-scale model of metabolism and gene expression (ME-model), to develop a quantitative description of the full rate-yield relationship for E. coli K-12 MG1655. The multi-scale analysis resolves the complexity of ME-model which hindered its practical use in proteome complexity analysis, and provides a mechanistic explanation of the two-dimensional tradeoff. Further, the analysis identifies modifications to the P/O ratio and the flux allocation between glycolysis and pentose phosphate pathway (PPP) as potential mechanisms that enable the tradeoff between glucose uptake rate and growth yield. Thus, the rate-yield tradeoffs that govern microbial adaptation to new environments are more complex than previously reported, and they can be understood in mechanistic detail using a multi-scale modeling approach. This study reconciles multiple existing microbial rate-yield tradeoff theories with experimental data. There is great interest in developing quantitative descriptions of the relationship between growth rate and growth yield [1]. However, some reported experiments [2–4] in the literature do not agree with existing theories [5–7]. Specifically, overflow metabolism in E. coli can either be coupled [5, 8] or decoupled [2–4] from growth rate. We found that adaptive laboratory evolution (ALE) experiments of E. coli reveal a two-dimensional rate-yield tradeoff in adapted strains where the dimensions are (i) a tradeoff between growth rate and growth yield, previously reported by [5], and (ii) a tradeoff between substrate uptake rate and growth yield. The appearance of this two-dimensional tradeoff during adaptation suggests that microorganisms adapting to new environments are subject to a more complex set of rate-yield tradeoffs than previously reported [5, 6]. In this study, the two-dimensional rate-yield tradeoff is quantitatively explained through our multi-scale modeling approach, combining a previously reported small-scale proteome allocation model [5] with a genome-scale model of metabolism and gene-expression (ME-model) [9]. The modeling approach is also instrumental to future studies.
Collapse
Affiliation(s)
- Chuankai Cheng
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Edward J. O’Brien
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Douglas McCloskey
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jose Utrilla
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Connor Olson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Ryan A. LaCroix
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Troy E. Sandberg
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Adam M. Feist
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Pediatrics, Univerity of California San Diego, La Jolla, California, United States of America
| | - Zachary A. King
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Nitta K, Laviña WA, Pontrelli S, Liao JC, Putri SP, Fukusaki E. Metabolome analysis revealed the knockout of glyoxylate shunt as an effective strategy for improvement of 1-butanol production in transgenic Escherichia coli. J Biosci Bioeng 2019; 127:301-308. [DOI: 10.1016/j.jbiosc.2018.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
12
|
Niu H, Li R, Gao J, Fan X, Li Q, Gu P. Different performance of Escherichia coli mutants with defects in the phosphoenolpyruvate: carbohydrate phosphotransferase system under low glucose condition. 3 Biotech 2019; 9:50. [PMID: 30729074 DOI: 10.1007/s13205-019-1584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/17/2019] [Indexed: 11/26/2022] Open
Abstract
In Escherichia coli, the transport and phosphorylation of glucose is mainly accomplished by the phosphoenolpyruvate-dependent glucose-specific phosphotransferase system (PTSGlc), which is, therefore, frequently selected as a target for engineering to increase the intracellular level of phosphoenolpyruvate. Here we characterized the effects of a low glucose concentration on the growth, glucose consumption, and acetate secretion of individual strains with a single PTSGlc mutation. We found that most mutants accumulated similar amounts of biomass, consumed glucose at lower rates, and secreted less acetate compared with the wild-type parental strain. The exception was the growth-impaired strain MG1655I harboring a ptsI deletion. In summary, the fermentation performance of mutant strains under 5 g/L glucose was obviously different with those strains under 20 g/L glucose. This study is a good complement to the knowledge of PTSGlc in E. coli and indicates that engineering the components of PTSGlc should be carefully optimized, particularly during fermentation in the presence of low concentrations of glucose.
Collapse
Affiliation(s)
- Hao Niu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Ruirui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| |
Collapse
|
13
|
Liu H, Song R, Liang Y, Zhang T, Deng L, Wang F, Tan T. Genetic manipulation of Escherichia coli central carbon metabolism for efficient production of fumaric acid. BIORESOURCE TECHNOLOGY 2018; 270:96-102. [PMID: 30212779 DOI: 10.1016/j.biortech.2018.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 05/06/2023]
Abstract
Fumaric acid is one of the top 12-biomass building-block chemicals. In this study, we reported manipulation of E. coli central carbon metabolism with the aim to decrease the by-products and improve fumaric acid production. PEP-dependent glucose phosphotransferase system was replaced with a galactose translocation system to minimize the consumption of phosphoenolpyruvate. Engineering anaplerotic pathway (phosphoenolpyruvate carboxylase) was employed to redistribute carbon flux from glycolysis to Krebs cycle. Deletion of malate dehydrogenase and overexpression of acetyl-CoA synthase could decrease the byproducts malic acid and acetic acid. The combined strategies led to fumaric acid yield up to 1.53 g/g dry cell weight, a 50% increase compared with the parental strain. The result demonstrated that these genetic modifications were effective strategies for improving the production of fumaric acid and the engineered strain may serve a platform microbial cell factory for efficient production of fumaric acid or other dicarboxylic acids.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ruirui Song
- Institute of Food and Agriculture Standardization, China National Institute of Standardization, Beijing 100191, PR China
| | - Yue Liang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ting Zhang
- Comprehensive Liver Cancer Center, the 302 Hospital of PLA, Beijing 100039, PR China
| | - Li Deng
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
14
|
Novak K, Flöckner L, Erian AM, Freitag P, Herwig C, Pflügl S. Characterizing the effect of expression of an acetyl-CoA synthetase insensitive to acetylation on co-utilization of glucose and acetate in batch and continuous cultures of E. coli W. Microb Cell Fact 2018; 17:109. [PMID: 29986728 PMCID: PMC6036698 DOI: 10.1186/s12934-018-0955-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Due to its high stress tolerance and low acetate secretion, Escherichia coli W is reported to be a good production host for several metabolites and recombinant proteins. However, simultaneous co-utilization of glucose and other substrates such as acetate remains a challenge. The activity of acetyl-CoA-synthetase, one of the key enzymes involved in acetate assimilation is tightly regulated on a transcriptional and post-translational level. The aim of this study was to engineer E. coli W for overexpression of an acetylation insensitive acetyl-CoA-synthetase and to characterize this strain in batch and continuous cultures using glucose, acetate and during co-utilization of both substrates. RESULTS Escherichia coli W engineered to overexpress an acetylation-insensitive acetyl-CoA synthetase showed a 2.7-fold increase in acetate uptake in a batch process containing glucose and high concentrations of acetate compared to a control strain, indicating more efficient co-consumption of glucose and acetate. When acetate was used as the carbon source, batch duration could significantly be decreased in the overexpression strain, possibly due to alleviation of acetate toxicity. Chemostat cultivations with different dilution rates using glucose revealed only minor differences between the overexpression and control strain. Accelerostat cultivations using dilution rates between 0.20 and 0.70 h-1 indicated that E. coli W is naturally capable of efficiently co-utilizing glucose and acetate over a broad range of specific growth rates. Expression of acetyl-CoA synthetase resulted in acetate and glucose accumulation at lower dilution rates compared to the control strain. This observation can possibly be attributed to a higher ratio between acs and pta-ackA in the overexpression strain as revealed by gene expression analysis. This would result in enhanced energy dissipation caused by an imbalance in the Pta-AckA-Acs cycle. Furthermore, yjcH and actP, genes co-transcribed with acetyl-CoA synthetase showed significant down-regulation at elevated dilution rates. CONCLUSIONS Escherichia coli W expressing an acetylation-insensitive acetyl-CoA synthetase was shown to be a promising candidate for mixed feed processes using glucose and acetate. Comparison between batch and continuous cultures revealed distinct differences in glucose-acetate co-utilization behavior, requiring additional investigations such as multi-omics analysis and further engineering towards even more efficient co-utilization strains of E. coli W.
Collapse
Affiliation(s)
- Katharina Novak
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Lukas Flöckner
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Anna Maria Erian
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Philipp Freitag
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
15
|
Lim HG, Lee JH, Noh MH, Jung GY. Rediscovering Acetate Metabolism: Its Potential Sources and Utilization for Biobased Transformation into Value-Added Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3998-4006. [PMID: 29637770 DOI: 10.1021/acs.jafc.8b00458] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the great advantages of microbial fermentation is the capacity to convert various carbon compounds into value-added chemicals. In this regard, there have been many efforts to engineer microorganisms to facilitate utilization of abundant carbon sources. Recently, the potential of acetate as a feedstock has been discovered; efforts have been made to produce various biochemicals from acetate based on understanding of its metabolism. In this review, we discuss the potential sources of acetate and summarized the recent progress to improve acetate utilization with microorganisms. Furthermore, we also describe representative studies that engineered microorganisms for the production of biochemicals from acetate.
Collapse
|
16
|
Lee JE, Vadlani PV, Guragain YN, San KY, Min DH. Production of free fatty acids from switchgrass using recombinant Escherichia coli. Biotechnol Prog 2017; 34:91-98. [DOI: 10.1002/btpr.2569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/24/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Jung-Eun Lee
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
| | - Praveen V. Vadlani
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
- Department of Chemical Engineering; Kansas State University; Manhattan Kansas
| | - Yadhu N. Guragain
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
| | - Ka-Yiu San
- Department of Bioengineering; Rice University; Houston Texas
- Department of Chemical and Molecular Engineering; Rice University; Houston Texas
| | - Doo-Hong Min
- Department of Agronomy; Kansas State University; Manhattan Kansas
| |
Collapse
|
17
|
Yu S, Lai B, Plan MR, Hodson MP, Lestari EA, Song H, Krömer JO. Improved performance ofPseudomonas putidain a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase. Biotechnol Bioeng 2017; 115:145-155. [DOI: 10.1002/bit.26433] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Shiqin Yu
- Centre for Microbial Electrochemical Systems (CEMES); The University of Queensland; St Lucia Brisbane Australia
- Advanced Water Management Centre (AWMC); The University of Queensland; St Lucia Brisbane Australia
| | - Bin Lai
- Centre for Microbial Electrochemical Systems (CEMES); The University of Queensland; St Lucia Brisbane Australia
- Advanced Water Management Centre (AWMC); The University of Queensland; St Lucia Brisbane Australia
- Systems Biotechnology Group, Department for Solar Materials (SOMA); Helmholtz Centre for Environmental Research UFZ; Leipzig Germany
| | - Manuel R. Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN); The University of Queensland; St Lucia Brisbane Australia
- Metabolomics Australia (Queensland Node); The University of Queensland; St Lucia Brisbane Australia
| | - Mark P. Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN); The University of Queensland; St Lucia Brisbane Australia
- Metabolomics Australia (Queensland Node); The University of Queensland; St Lucia Brisbane Australia
| | - Endah A. Lestari
- School of Chemical and Molecular Biosciences; The University of Queensland; St Lucia Brisbane Australia
| | - Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering & Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin University; Tianjin China
| | - Jens O. Krömer
- Centre for Microbial Electrochemical Systems (CEMES); The University of Queensland; St Lucia Brisbane Australia
- Advanced Water Management Centre (AWMC); The University of Queensland; St Lucia Brisbane Australia
- Systems Biotechnology Group, Department for Solar Materials (SOMA); Helmholtz Centre for Environmental Research UFZ; Leipzig Germany
| |
Collapse
|
18
|
Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cell Syst 2017; 4:505-515.e5. [PMID: 28527885 DOI: 10.1016/j.cels.2017.04.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/12/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Acetogens are promising cell factories for producing fuels and chemicals from waste feedstocks via gas fermentation, but quantitative characterization of carbon, energy, and redox metabolism is required to guide their rational metabolic engineering. Here, we explore acetogen gas fermentation using physiological, metabolomics, and transcriptomics data for Clostridium autoethanogenum steady-state chemostat cultures grown on syngas at various gas-liquid mass transfer rates. We observe that C. autoethanogenum shifts from acetate to ethanol production to maintain ATP homeostasis at higher biomass concentrations but reaches a limit at a molar acetate/ethanol ratio of ∼1. This regulatory mechanism eventually leads to depletion of the intracellular acetyl-CoA pool and collapse of metabolism. We accurately predict growth phenotypes using a genome-scale metabolic model. Modeling revealed that the methylene-THF reductase reaction was ferredoxin reducing. This work provides a reference dataset to advance the understanding and engineering of arguably the first carbon fixation pathway on Earth.
Collapse
|
19
|
Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RDSP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 2017; 41:202-211. [PMID: 28442386 DOI: 10.1016/j.ymben.2017.04.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/10/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
Acetogens are attractive organisms for the production of chemicals and fuels from inexpensive and non-food feedstocks such as syngas (CO, CO2 and H2). Expanding their product spectrum beyond native compounds is dictated by energetics, particularly ATP availability. Acetogens have evolved sophisticated strategies to conserve energy from reduction potential differences between major redox couples, however, this coupling is sensitive to small changes in thermodynamic equilibria. To accelerate the development of strains for energy-intensive products from gases, we used a genome-scale metabolic model (GEM) to explore alternative ATP-generating pathways in the gas-fermenting acetogen Clostridium autoethanogenum. Shadow price analysis revealed a preference of C. autoethanogenum for nine amino acids. This prediction was experimentally confirmed under heterotrophic conditions. Subsequent in silico simulations identified arginine (ARG) as a key enhancer for growth. Predictions were experimentally validated, and faster growth was measured in media containing ARG (tD~4h) compared to growth on yeast extract (tD~9h). The growth-boosting effect of ARG was confirmed during autotrophic growth. Metabolic modelling and experiments showed that acetate production is nearly abolished and fast growth is realised by a three-fold increase in ATP production through the arginine deiminase (ADI) pathway. The involvement of the ADI pathway was confirmed by metabolomics and RNA-sequencing which revealed a ~500-fold up-regulation of the ADI pathway with an unexpected down-regulation of the Wood-Ljungdahl pathway. The data presented here offer a potential route for supplying cells with ATP, while demonstrating the usefulness of metabolic modelling for the discovery of native pathways for stimulating growth or enhancing energy availability.
Collapse
Affiliation(s)
- Kaspar Valgepea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Kim Q Loi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | | | - Renato de S P Lemgruber
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Manuel Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia; Metabolomics Australia, AIBN, The University of Queensland, Brisbane, Australia
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia; Metabolomics Australia, AIBN, The University of Queensland, Brisbane, Australia; School of Pharmacy, The University of Queensland, Brisbane, Australia
| | | | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.
| |
Collapse
|
20
|
Liu C, Ding Y, Xian M, Liu M, Liu H, Ma Q, Zhao G. Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis. Crit Rev Biotechnol 2017; 37:933-941. [PMID: 28078904 DOI: 10.1080/07388551.2016.1272093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Hydroxypropionate (3HP) is an attractive platform chemical, serving as a precursor to a variety of commodity chemicals like acrylate and acrylamide, as well as a monomer of a biodegradable plastic. To establish a sustainable way to produce these commercially important chemicals and materials, fermentative production of 3HP is widely investigated in recent years. It is reported that 3HP can be produced from several intermediates, such as glycerol, malonyl-CoA, and β-alanine. Among all these biosynthetic routes, the malonyl-CoA pathway has some distinct advantages, including a broad feedstock spectrum, thermodynamic feasibility, and redox neutrality. To date, this pathway has been successfully constructed in various species including Escherichia coli, yeast and cyanobacteria, and optimized through carbon flux redirection, enzyme screening and engineering, and an increasing supply of energy and cofactors, resulting in significantly enhanced 3HP titer up to 40 g/L. These results show the feasibility of commercial manufacturing of 3HP and its derivatives in the future.
Collapse
Affiliation(s)
- Changshui Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Yamei Ding
- b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Mo Xian
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Min Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Huizhou Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Qingjun Ma
- b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Guang Zhao
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| |
Collapse
|
21
|
Gudelj I, Kinnersley M, Rashkov P, Schmidt K, Rosenzweig F. Stability of Cross-Feeding Polymorphisms in Microbial Communities. PLoS Comput Biol 2016; 12:e1005269. [PMID: 28036324 PMCID: PMC5201250 DOI: 10.1371/journal.pcbi.1005269] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Cross-feeding, a relationship wherein one organism consumes metabolites excreted by another, is a ubiquitous feature of natural and clinically-relevant microbial communities and could be a key factor promoting diversity in extreme and/or nutrient-poor environments. However, it remains unclear how readily cross-feeding interactions form, and therefore our ability to predict their emergence is limited. In this paper we developed a mathematical model parameterized using data from the biochemistry and ecology of an E. coli cross-feeding laboratory system. The model accurately captures short-term dynamics of the two competitors that have been observed empirically and we use it to systematically explore the stability of cross-feeding interactions for a range of environmental conditions. We find that our simple system can display complex dynamics including multi-stable behavior separated by a critical point. Therefore whether cross-feeding interactions form depends on the complex interplay between density and frequency of the competitors as well as on the concentration of resources in the environment. Moreover, we find that subtly different environmental conditions can lead to dramatically different results regarding the establishment of cross-feeding, which could explain the apparently unpredictable between-population differences in experimental outcomes. We argue that mathematical models are essential tools for disentangling the complexities of cross-feeding interactions.
Collapse
Affiliation(s)
- Ivana Gudelj
- Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Peter Rashkov
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Karen Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
22
|
Bernal V, Castaño-Cerezo S, Cánovas M. Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond. Appl Microbiol Biotechnol 2016; 100:8985-9001. [DOI: 10.1007/s00253-016-7832-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022]
|
23
|
Madeira JP, Omer H, Alpha-Bazin B, Armengaud J, Duport C. Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics. J Proteomics 2016; 146:25-33. [PMID: 27321915 DOI: 10.1016/j.jprot.2016.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/22/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED The pathogen, Bacillus cereus, is able to adapt its metabolism to various environmental conditions. The reference strain, Bacillus cereus ATCC 14579, harbors a linear plasmid, pBClin15, which displays a cryptic prophage behavior. Here, we studied the impact of pBClin15 on the aerobic respiratory metabolism of B. cereus by curing its host strain. We compared, by means of a high-throughput shotgun proteomic approach, both the cellular proteome and the exoproteome of B. cereus ATCC 14579 in the presence and absence of pBClin15 at the early, late and stationary growth phases. The results were visualized through a hierarchical cluster analysis of proteomic data. We found that pBClin15 contributes significantly to the metabolic efficiency of B. cereus by restricting the production of chromosome-encoded phage proteins in the extracellular milieu. The data also revealed intricate regulatory mechanisms between pBClin15 and its host. Finally, we show that pBClin15 provides benefit to its host to adapt to different ecologic niches. BIOLOGICAL SIGNIFICANCE Bacteria belonging to the Bacillus cereus group include B. cereus, a notorious food borne pathogen which causes gastroenteritis. The B. cereus type, strain ATCC 14579, harbors a linear plasmid, pBClin15, which displays cryptic prophage behavior. Here, we present data supporting the idea that pBClin15 may have a much greater role in B. cereus metabolism that has hitherto been suspected. Specifically, our comparative proteomic analyses reveal that pBClin15 manages B. cereus central metabolism to optimize energy and carbon utilization through the repression of several chromosome-encoded phage proteins. These results suggest that pBClin15 provides benefit to the host for surviving adverse environmental conditions.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France; CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Hélène Omer
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France; CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Béatrice Alpha-Bazin
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France.
| |
Collapse
|
24
|
Lin J, Zhang Y, Xu D, Xiang G, Jia Z, Fu S, Gong H. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae. Appl Microbiol Biotechnol 2015; 100:2775-84. [DOI: 10.1007/s00253-015-7237-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/29/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022]
|
25
|
Peebo K, Valgepea K, Maser A, Nahku R, Adamberg K, Vilu R. Proteome reallocation in Escherichia coli with increasing specific growth rate. MOLECULAR BIOSYSTEMS 2015; 11:1184-93. [PMID: 25712329 DOI: 10.1039/c4mb00721b] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells usually respond to changing growth conditions with a change in the specific growth rate (μ) and adjustment of their proteome to adapt and maintain metabolic efficiency. Description of the principles behind proteome resource allocation is important for understanding metabolic regulation in response to changing μ. Thus, we analysed the proteome resource allocation dynamics of Escherichia coli into different metabolic processes in response to changing μ. E. coli was grown on minimal and defined rich media in steady state continuous cultures at different μ and characterised combining two LC-MS/MS-based proteomics methods: stable isotope labelling by amino acids in cell culture (SILAC) and intensity based label-free absolute quantification. We detected slowly growing cells investing more proteome resources in energy generation and carbohydrate transport and metabolism whereas for achieving faster growth cells needed to devote most resources to translation and processes closely related to the protein synthesis pipeline. Furthermore, down-regulation of energy generation and carbohydrate metabolism proteins with faster growth displayed very similar expression dynamics with the global transcriptional regulator CRP (cyclic AMP receptor protein), pointing to a dominant protein resource allocating role of this protein. Our data also suggest that acetate overflow may be the result of global proteome resource optimisation as cells saved proteome resources by switching from fully respiratory to respiro-fermentative growth. The presented results give a quantitative overview of how E. coli adjusts its proteome to achieve faster growth and in future could contribute to the design of more efficient cell factories through proteome optimisation.
Collapse
Affiliation(s)
- Karl Peebo
- Tallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|
26
|
Adamberg K, Valgepea K, Vilu R. Advanced continuous cultivation methods for systems microbiology. Microbiology (Reading) 2015. [DOI: 10.1099/mic.0.000146] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kaarel Adamberg
- Tallinn University of Technology, Department of Food Processing, Ehitajate tee 5, 19086 Tallinn, Estonia
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Kaspar Valgepea
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Raivo Vilu
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
- Tallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
27
|
Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proc Natl Acad Sci U S A 2015; 112:10810-5. [PMID: 26261351 DOI: 10.1073/pnas.1501384112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.
Collapse
|
28
|
Acetate Exposure Determines the Diauxic Behavior of Escherichia coli during the Glucose-Acetate Transition. J Bacteriol 2015. [PMID: 26216845 DOI: 10.1128/jb.00128-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Growth of Escherichia coli on glucose in batch culture is accompanied by the excretion of acetate, which is consumed by the cells when glucose is exhausted. This glucose-acetate transition is classically described as a diauxie (two successive growth stages). Here, we investigated the physiological and metabolic properties of cells after glucose exhaustion through the analysis of growth parameters and gene expression. We found that E. coli cells grown on glucose in batch culture produce acetate and consume it after glucose exhaustion but do not grow on acetate. Acetate is catabolized, but key anabolic genes--such as the genes encoding enzymes of the glyoxylate shunt--are not upregulated, hence preventing growth. Both the induction of the latter anabolic genes and growth were observed only after prolonged exposure to low concentrations of acetate and could be accelerated by high acetate concentrations. We postulate that such decoupling between acetate catabolism and acetate anabolism might be an advantage for the survival of E. coli in the ever-changing environment of the intestine. IMPORTANCE The glucose-acetate transition is a valuable experimental model for comprehensive investigations of metabolic adaptation and a current paradigm for developing modeling approaches in systems microbiology. Yet, the work reported in our paper demonstrates that the metabolic behavior of Escherichia coli during the glucose-acetate transition is much more complex than what has been reported so far. A decoupling between acetate catabolism and acetate anabolism was observed after glucose exhaustion, which has not been reported previously. This phenomenon could represent a strategy for optimal utilization of carbon resources during colonization and persistence of E. coli in the gut and is also of significant interest for biotechnological applications.
Collapse
|
29
|
Kerkhoven EJ, Lahtvee PJ, Nielsen J. Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast Res 2015; 15:1-13. [PMID: 25156867 DOI: 10.1111/1567-1364.12199] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/28/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022] Open
Abstract
Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods have been developed and applied extensively. Many of these rely on balancing of intracellular metabolites, redox, and energy fluxes, using genome-scale models (GEMs) that in combination with appropriate objective functions and constraints can be used to predict potential gene targets for obtaining a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications.
Collapse
Affiliation(s)
- Eduard J Kerkhoven
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Petri-Jaan Lahtvee
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
30
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|