1
|
Yan X, Deng P, Ding T, Zhang Z, Li X, Wu Z. Effect of Temperature on Anaerobic Fermentation of Poplar Ethanol Wastewater: Performance and Microbial Communities. ACS OMEGA 2023; 8:5486-5496. [PMID: 36816634 PMCID: PMC9933484 DOI: 10.1021/acsomega.2c06721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Temperature plays an important role in anaerobic digestion (AD), and different substrates have different optimum temperatures in AD. However, the effect of temperature on the performance of AD when cellulosic ethanol wastewater was used as a substrate was rarely reported. Therefore, the digestion characteristics of cellulosic ethanol wastewater at 25, 35, 45, and 55 °C were investigated, and the microbial communities of the sludge sample were analyzed after fermentation. The results showed that the cumulative methane production was the highest at 55 °C, 906.40 ± 50.67 mL/g VS, which was 81.06, 72.42, and 13.33% higher than that at 25, 35, and 45 °C, respectively. The content of methane was 68.13, 49.26, 70.46, and 85.84% at the terminal period of fermentation at temperatures of 25, 35, 45, and 55 °C, respectively. The testing of volatile fatty acids (VFAs) indicated that the accumulation of VFAs did not occur when the fermentation was carried out at 25, 35, and 45 °C; however, the VFA content at 55 °C was much larger than that in the three groups (25, 35, and 45 °C), and the ratio of propionic acid to acetic acid was larger than 1.4 at the late stage of fermentation, so it inhibited the fermentation. The diversity of the microbial community indicated that the floral structure and metabolic pathway of fermentation were alike at 25 and 35 °C. Firmicutes and Proteobacteria were the main flora covering the 25-55 °C-based phylum or below it. The relative abundance of Methanosaeta was the highest when fermentation temperatures were 25 and 35 °C; however, its relative abundance decreased sharply and the relative abundance of Methanosarcina increased substantially when the temperature increased from 35 to 45 °C, which indicated that Methanosarcina can exist in higher temperatures. At the same time, hydrogenotrophic methanogens such as Methanoculleus and Methanothermobacter were dominant when fermentation temperatures were 45 and 55 °C, which indicated that the metabolic pathway changed from acetoclastic methanogenesis to hydrogenotrophic methanogenesis.
Collapse
|
2
|
Barrena R, Vargas-García MDC, Capell G, Barańska M, Puntes V, Moral-Vico J, Sánchez A, Font X. Sustained effect of zero-valent iron nanoparticles under semi-continuous anaerobic digestion of sewage sludge: Evolution of nanoparticles and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145969. [PMID: 33676214 DOI: 10.1016/j.scitotenv.2021.145969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The effects of adding zero-valent iron nanoparticles (nZVI) on the physicochemical, biological and biochemical responses of a semi-continuous anaerobic digestion of sewage sludge have been assessed. Two sets of consecutive experiments of 103 and 116 days, respectively, were carried out in triplicate. nZVI were magnetically retained in the reactors, and the effect of punctual doses (from 0.27 to 4.33 g L-1) over time was studied. Among the different parameters monitored, only methane content in the biogas was significantly higher when nZVI was added. However, this effect was progressively lost after the addition, and in 5-7 days, the methane content returned to initial values. The increase in the oxidation state of nanoparticles seems to be related to the loss of effect over time. Higher dose (4.33 g L-1) sustained positive effects for a longer time along with higher methane content, but this fact seems to be related to microbiome acclimation. Changes in microbial community structure could also play a role in the mechanisms involved in methane enhancement. In this sense, the microbial consortium analysis reported a shift in the balance among acetogenic eubacterial communities, and a marked increase in the relative abundance of members assigned to Methanothrix genus, recognized as acetoclastic species showing high affinity for acetate, which explain the rise in methane content in the biogas. This research demonstrates that biogas methane enrichment in semicontinuous anaerobic digesters can be achieved by using nZVI nanoparticles, thus increasing energy production or reducing costs of a later biogas upgrading process.
Collapse
Affiliation(s)
- Raquel Barrena
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - María Del Carmen Vargas-García
- Department of Biology and Geology, CITE II-B, Universidad de Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - Georgina Capell
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Maja Barańska
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Victor Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), P. Lluís Companys 23, 08010 Barcelona, Spain
| | - Javier Moral-Vico
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Antoni Sánchez
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Xavier Font
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
3
|
Aho VTE, Tolonen T, Haverinen J, Jaakkola M, Paulin L, Auvinen P, Laine MM. Survey of microbes in industrial-scale second-generation bioethanol production for better process knowledge and operation. Appl Microbiol Biotechnol 2020; 104:8049-8064. [PMID: 32785760 DOI: 10.1007/s00253-020-10818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022]
Abstract
The microbes present in bioethanol production processes have been previously studied in laboratory-scale experiments, but there is a lack of information on full-scale industrial processes. In this study, the microbial communities of three industrial bioethanol production processes were characterized using several methods. The samples originated from second-generation bioethanol plants that produce fuel ethanol from biowaste, food industry side streams, or sawdust. Amplicon sequencing targeting bacteria, archaea, and fungi was used to explore the microbes present in biofuel production and anaerobic digestion of wastewater and sludge. Biofilm-forming lactic acid bacteria and wild yeasts were identified in fermentation samples of a full-scale plant that uses biowaste as feedstock. During the 20-month monitoring period, the anaerobic digester adapted to the bioethanol process waste with a shift in methanogen profile indicating acclimatization to high concentrations of ammonia. Amplicon sequencing does not specifically target living microbes. The same is true for indirect parameters, such as low pH, metabolites, or genes of lactic acid bacteria. Since rapid identification of living microbes would be indispensable for process management, a commercial method was tested that detects them by measuring the rRNA of selected microbial groups. Small-scale testing indicated that the method gives results comparable with plate counts and microscopic counting, especially for bacterial quantification. The applicability of the method was verified in an industrial bioethanol plant, inspecting the clean-in-place process quality and detecting viability during yeast separation. The results supported it as a fast and promising tool for monitoring microbes throughout industrial bioethanol processes.
Collapse
Affiliation(s)
- Velma T E Aho
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Tiina Tolonen
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, Kajaani, Finland
| | - Jasmiina Haverinen
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, Kajaani, Finland
| | - Mari Jaakkola
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, Kajaani, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
4
|
Fischer MA, Ulbricht A, Neulinger SC, Refai S, Waßmann K, Künzel S, Schmitz RA. Immediate Effects of Ammonia Shock on Transcription and Composition of a Biogas Reactor Microbiome. Front Microbiol 2019; 10:2064. [PMID: 31555248 PMCID: PMC6742706 DOI: 10.3389/fmicb.2019.02064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
The biotechnological process of biogas production from organic material is carried out by a diverse microbial community under anaerobic conditions. However, the complex and sensitive microbial network present in anaerobic degradation of organic material can be disturbed by increased ammonia concentration introduced into the system by protein-rich substrates and imbalanced feeding. Here, we report on a simulated increase of ammonia concentration in a fed batch lab-scale biogas reactor experiment. Two treatment conditions were used simulating total ammonia nitrogen concentrations of 4.9 and 8.0 g/L with four replicate reactors. Each reactor was monitored concerning methane generation and microbial composition using 16S rRNA gene amplicon sequencing, while the transcriptional activity of the overall process was investigated by metatranscriptomic analysis. This allowed investigating the response of the microbial community in terms of species composition and transcriptional activity to a rapid upshift to high ammonia conditions. Clostridia and Methanomicrobiales dominated the microbial community throughout the entire experiment under both experimental conditions, while Methanosarcinales were only present in minor abundance. Transcription analysis demonstrated clostridial dominance with respect to genes encoding for enzymes of the hydrolysis step (cellulase, EC 3.2.1.4) as well as dominance of key genes for enzymes of the methanogenic pathway (methyl-CoM reductase, EC 2.8.4.1; heterodisulfide reductase, EC 1.8.98.1). Upon ammonia shock, the selected marker genes showed significant changes in transcriptional activity. Cellulose hydrolysis as well as methanogenesis were significantly reduced at high ammonia concentrations as indicated by reduced transcription levels of the corresponding genes. Based on these experiments we concluded that, apart from the methanogenic archaea, hydrolytic cellulose-degrading microorganisms are negatively affected by high ammonia concentrations. Further, Acholeplasma and Erysipelotrichia showed lower abundance under increased ammonia concentrations and thus might serve as indicator species for an earlier detection in order to counteract against ammonia crises.
Collapse
Affiliation(s)
- Martin A. Fischer
- Department of Biology, Institute of General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andrea Ulbricht
- Department of Biology, Institute of General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Sven C. Neulinger
- Department of Biology, Institute of General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Sarah Refai
- Department of Biology, Institut für Mikrobiologie und Biotechnologie, University Bonn, Bonn, Germany
| | - Kati Waßmann
- Department of Biology, Institut für Mikrobiologie und Biotechnologie, University Bonn, Bonn, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Ruth A. Schmitz
- Department of Biology, Institute of General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
5
|
Park JG, Lee B, Kwon HJ, Jun HB. Contribution analysis of methane production from food waste in bulk solution and on bio-electrode in a bio-electrochemical anaerobic digestion reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:741-751. [PMID: 30909050 DOI: 10.1016/j.scitotenv.2019.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Quantitative evaluation of methane production either in bulk sludge or biofilm on electrodes was performed in a bio-electrochemical anaerobic digestion (BEAD) reactor with a lower electrode surface area/reactor working volume (A/V) ratio (7.0 m2/m3). Methane production by electrochemical reaction was also evaluated in the BEAD reactor with a biofilm-free electrode under the same conditions as in other experimental sets. The contributions of bulk sludge, biofilms on the electrodes, and electrochemical reactions in the BEAD reactor, on methane production, were 70.2%, 29.8%, and 0%, respectively. The principal methane-producing reactions occurred in the bulk sludge facilitated by H2-dependent methylotrophic and hydrogenotrophic methanogens. Hydrogenotrophic methanogenesis was also the main methane-producing reaction in the biofilms attached to the bio-electrodes. Quantitative analysis of methane production (29.8%) in the biofilm revealed that bio-electrochemical processes involving H2 and direct bio-electrochemical methane production contributed 8.7% and less than 0.1%, respectively. Interestingly, biochemical processes (21.1%) contributed the most to the overall production of methane in the biofilm. Bulk sludge contributed more to methane production than the biofilm, but the methane production per unit mass of volatile solid on the electrodes was about 1.6-times higher than that of bulk sludge. Methane was not produced in the BEAD reactor with biofilm-free electrodes. Therefore, formation and maintenance of biofilms on the electrodes are essential for improved methane production in BEAD reactors.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Republic of Korea.
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Republic of Korea
| | - Hye-Jeong Kwon
- Department of Environmental Engineering, Chungbuk National University, Republic of Korea
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Republic of Korea.
| |
Collapse
|
6
|
Shaw GTW, Weng CY, Chen CY, Weng FCH, Wang D. A systematic approach re-analyzing the effects of temperature disturbance on the microbial community of mesophilic anaerobic digestion. Sci Rep 2019; 9:6560. [PMID: 31024021 PMCID: PMC6484075 DOI: 10.1038/s41598-019-42987-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Microbial communities are key drivers of ecosystem processes, but their behavior in disturbed environments is difficult to measure. How microbial community composition and function respond disturbances is a common challenge in biomedical, environmental, agricultural, and bioenergy research. A novel way to solve this problem is to use a systems-level perspective and describe microbial communities as networks. Based on a mesophilic anaerobic digestion system of swine manure as a tool, we propose a simple framework to investigate changes in microbial communities via compositions, metabolic pathways, genomic properties and interspecies relationships in response to a long-term temperature disturbance. After temperature disturbance, microbial communities tend towards a competitive interaction network with higher GC content and larger genome size. Based on microbial interaction networks, communities responded to the disturbance by showing a transition from acetotrophic (Methanotrichaceae and Methanosarcinaceae) to methylotrophic methanogens (Methanomassiliicoccaceae and Methanobacteriaceae) and a fluctuation in rare biosphere taxa. To conclude, this study may be important for exploring the dynamic relationships between disturbance and microbial communities as a whole, as well as for providing researchers with a better understanding of how changes in microbial communities relate to ecological processes.
Collapse
Affiliation(s)
| | - Chieh-Yin Weng
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | - Daryi Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
7
|
Fischer MA, Güllert S, Refai S, Künzel S, Deppenmeier U, Streit WR, Schmitz RA. Long-term investigation of microbial community composition and transcription patterns in a biogas plant undergoing ammonia crisis. Microb Biotechnol 2019; 12:305-323. [PMID: 30381904 PMCID: PMC6390037 DOI: 10.1111/1751-7915.13313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 02/01/2023] Open
Abstract
Ammonia caused disturbance of biogas production is one of the most frequent incidents in regular operation of biogas reactors. This study provides a detailed insight into the microbial community of a mesophilic, full-scale biogas reactor (477 kWh h-1 ) fed with maize silage, dried poultry manure and cow manure undergoing initial process disturbance by increased ammonia concentration. Over a time period of 587 days, the microbial community of the reactor was regularly monitored on a monthly basis by high-throughput amplicon sequencing of the archaeal and bacterial 16S rRNA genes. During this sampling period, the total ammonia concentrations varied between 2.7 and 5.8 g l-1 [NH4 + -N]. To gain further inside into the active metabolic pathways, for selected time points metatranscriptomic shotgun analysis was performed allowing the quantification of marker genes for methanogenesis, hydrolysis and syntrophic interactions. The results obtained demonstrated a microbial community typical for a mesophilic biogas plant. However in response to the observed changing process conditions (e.g. increasing NH4 + levels, changing feedstock composition), the microbial community reacted highly flexible by changing and adapting the community composition. The Methanosarcina-dominated archaeal community was shifted to a Methanomicrobiales-dominated archaeal community in the presence of increased ammonia conditions. A similar trend as in the phylogenetic composition was observed in the transcription activity of genes coding for enzymes involved in acetoclastic methanogenesis and syntrophic acetate oxidations (Codh/Acs and Fthfs). In accordance, Clostridia simultaneously increased under elevated ammonia concentrations in abundance and were identified as the primary syntrophic interaction partner with the now Methanomicrobiales-dominated archaeal community. In conclusion, overall stable process performance was maintained during increased ammonia concentration in the studied reactor based on the microbial communities' ability to flexibly respond by reorganizing the community composition while remaining functionally stable.
Collapse
MESH Headings
- Ammonia/metabolism
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Biofuels/microbiology
- Bioreactors/microbiology
- Cluster Analysis
- Culture Media/chemistry
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Longitudinal Studies
- Microbiota
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Martin Alexander Fischer
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
| | - Simon Güllert
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
- Institute of Microbiology & BiotechnologyUniversity HamburgBiozentrum Klein FlottbekHamburgGermany
| | - Sarah Refai
- Institute of Microbiology & BiotechnologyUniversity BonnMeckenheimer Allee 16853115BonnGermany
| | - Sven Künzel
- Max‐Planck‐Institute of Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
| | - Uwe Deppenmeier
- Institute of Microbiology & BiotechnologyUniversity BonnMeckenheimer Allee 16853115BonnGermany
| | - Wolfgang R. Streit
- Institute of Microbiology & BiotechnologyUniversity HamburgBiozentrum Klein FlottbekHamburgGermany
| | - Ruth Anne Schmitz
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
| |
Collapse
|
8
|
A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Mulat DG, Huerta SG, Kalyani D, Horn SJ. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:19. [PMID: 29422947 PMCID: PMC5787918 DOI: 10.1186/s13068-018-1025-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/13/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). RESULTS Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. CONCLUSION Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Daniel Girma Mulat
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| | - Silvia Greses Huerta
- Department of Chemical Engineering, University of Valencia, P.O.Box 46100, Valencia, Spain
| | - Dayanand Kalyani
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| |
Collapse
|
10
|
Towards a sustainable biobased industry - Highlighting the impact of extremophiles. N Biotechnol 2017; 40:144-153. [PMID: 28512003 DOI: 10.1016/j.nbt.2017.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/28/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022]
Abstract
The transition of the oil-based economy towards a sustainable economy completely relying on biomass as renewable feedstock requires the concerted action of academia, industry, politics and civil society. An interdisciplinary approach of various fields such as microbiology, molecular biology, chemistry, genetics, chemical engineering and agriculture in addition to cross-sectional technologies such as economy, logistics and digitalization is necessary to meet the future global challenges. The genomic era has contributed significantly to the exploitation of naturés biodiversity also from extreme habitats. By applying modern technologies it is now feasible to deliver robust enzymes (extremozymes) and robust microbial systems that are active at temperatures up to 120°C, at pH 0 and 12 and at 1000bar. In the post-genomic era, different sophisticated "omics" analyses will allow the identification of countless novel enzymes regardless of the lack of cultivability of most microorganisms. Furthermore, elaborate protein-engineering methods are clearing the way towards tailor-made robust biocatalysts. Applying environmentally friendly and efficient biological processes, terrestrial and marine biomass can be converted to high value products e.g. chemicals, building blocks, biomaterials, pharmaceuticals, food, feed and biofuels. Thus, further application of extremophiles has the potential to improve sustainability of existing biotechnological processes towards a greener biobased industry.
Collapse
|
11
|
Jiang LL, Zhou JJ, Quan CS, Xiu ZL. Advances in industrial microbiome based on microbial consortium for biorefinery. BIORESOUR BIOPROCESS 2017; 4:11. [PMID: 28251041 PMCID: PMC5306255 DOI: 10.1186/s40643-017-0141-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/13/2017] [Accepted: 01/29/2017] [Indexed: 01/09/2023] Open
Abstract
One of the important targets of industrial biotechnology is using cheap biomass resources. The traditional strategy is microbial fermentations with single strain. However, cheap biomass normally contains so complex compositions and impurities that it is very difficult for single microorganism to utilize availably. In order to completely utilize the substrates and produce multiple products in one process, industrial microbiome based on microbial consortium draws more and more attention. In this review, we first briefly described some examples of existing industrial bioprocesses involving microbial consortia. Comparison of 1,3-propanediol production by mixed and pure cultures were then introduced, and interaction relationships between cells in microbial consortium were summarized. Finally, the outlook on how to design and apply microbial consortium in the future was also proposed.
Collapse
Affiliation(s)
- Li-Li Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| | - Jin-Jie Zhou
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| | - Chun-Shan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Minzu University, Liaohe West Road 18, Jinzhou New District, Dalian, 116600 Liaoning Province China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| |
Collapse
|
12
|
Long Y, Yi H, Chen S, Zhang Z, Cui K, Bing Y, Zhuo Q, Li B, Xie S, Guo Q. Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19570-9. [PMID: 27392623 DOI: 10.1007/s11356-016-7166-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/28/2016] [Indexed: 05/12/2023]
Abstract
Both bacteria and archaeal communities can play important roles in biogeochemical processes in constructed wetland (CW) system. However, the influence of plant type on microbial community in surface water CW remains unclear. The present study investigated bacterial and archaeal communities in five surface water CW systems with different plant species. The abundance, richness, and diversity of both bacterial and archaeal communities considerably differed in these five CW systems. Compared with the other three CW systems, the CW systems planted with Vetiveria zizanioides or Juncus effusus L. showed much higher bacterial abundance but lower archaeal abundance. Bacteria outnumbered archaea in each CW system. Moreover, the CW systems planted with V. zizanioides or J. effusus L. had relatively lower archaeal but higher bacterial richness and diversity. In each CW system, bacterial community displayed much higher richness and diversity than archaeal community. In addition, a remarkable difference of both bacterial and archaeal community structures was observed in the five studied CW systems. Proteobacteria was the most abundant bacterial group (accounting for 33-60 %). Thaumarchaeota organisms (57 %) predominated in archaeal communities in CW systems planted with V. zizanioides or J. effusus L., while Woesearchaeota (23 or 24 %) and Euryarchaeota (23 or 15 %) were the major archaeal groups in CW systems planted with Cyperus papyrus or Canna indica L. Archaeal community in CW planted with Typha orientalis Presl was mainly composed of unclassified archaea. Therefore, plant type exerted a considerable influence on microbial community in surface water CW system.
Collapse
Affiliation(s)
- Yan Long
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Hao Yi
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China
| | - Zhengke Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China
| | - Kai Cui
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China
| | - Yongxin Bing
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China
| | - Qiongfang Zhuo
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China
| | - Bingxin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China.
| |
Collapse
|
13
|
Wong MT, Wang W, Lacourt M, Couturier M, Edwards EA, Master ER. Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus). Front Microbiol 2016; 7:961. [PMID: 27446004 PMCID: PMC4914502 DOI: 10.3389/fmicb.2016.00961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/03/2016] [Indexed: 02/01/2023] Open
Abstract
Strategic enrichment of microcosms derived from wood foragers can facilitate the discovery of key microbes that produce enzymes for the bioconversion of plant fiber (i.e., lignocellulose) into valuable chemicals and energy. In this study, lignocellulose-degrading microorganisms from the digestive systems of Canadian beaver (Castor canadensis) and North American moose (Alces americanus) were enriched under methanogenic conditions for over 3 years using various wood-derived substrates, including (i) cellulose (C), (ii) cellulose + lignosulphonate (CL), (iii) cellulose + tannic acid (CT), and (iv) poplar hydrolysate (PH). Substantial improvement in the conversion of amended organic substrates into biogas was observed in both beaver dropping and moose rumen enrichment cultures over the enrichment phases (up to 0.36–0.68 ml biogas/mg COD added), except for enrichments amended with tannic acid where conversion was approximately 0.15 ml biogas/mg COD added. Multiplex-pyrosequencing of 16S rRNA genes revealed systematic shifts in the population of Firmicutes, Bacteroidetes, Chlorobi, Spirochaetes, Chloroflexi, and Elusimicrobia in response to the enrichment. These shifts were predominantly substrate driven, not inoculum driven, as revealed by both UPGMA clustering pattern and OTU distribution. Additionally, the relative abundance of multiple OTUs from poorly defined taxonomic lineages increased from less than 1% to 25–50% in microcosms amended with lignocellulosic substrates, including OTUs from classes SJA-28, Endomicrobia, orders Bacteroidales, OPB54, and family Lachnospiraceae. This study provides the first direct comparison of shifts in microbial communities that occurred in different environmental samples in response to multiple relevant lignocellulosic carbon sources, and demonstrates the potential of enrichment to increase the abundance of key lignocellulolytic microorganisms and encoded activities.
Collapse
Affiliation(s)
- Mabel T Wong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada
| | - Weijun Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada
| | - Michael Lacourt
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada
| | - Marie Couturier
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada
| |
Collapse
|
14
|
Cibis KG, Gneipel A, König H. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants. J Biotechnol 2016; 220:51-63. [PMID: 26779817 DOI: 10.1016/j.jbiotec.2016.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 11/16/2022]
Abstract
In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.
Collapse
Affiliation(s)
- Katharina Gabriela Cibis
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55128 Mainz, Germany.
| | - Armin Gneipel
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55128 Mainz, Germany
| | - Helmut König
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55128 Mainz, Germany
| |
Collapse
|
15
|
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Pühler A, Sczyrba A, Schlüter A. Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:156. [PMID: 27462367 PMCID: PMC4960831 DOI: 10.1186/s13068-016-0565-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/12/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biofuel production from conversion of biomass is indispensable in the portfolio of renewable energies. Complex microbial communities are involved in the anaerobic digestion process of plant material, agricultural residual products and food wastes. Analysis of the genetic potential and microbiology of communities degrading biomass to biofuels is considered to be the key to develop process optimisation strategies. Hence, due to the still incomplete taxonomic and functional characterisation of corresponding communities, new and unknown species are of special interest. RESULTS Three mesophilic and one thermophilic production-scale biogas plants (BGPs) were taxonomically profiled using high-throughput 16S rRNA gene amplicon sequencing. All BGPs shared a core microbiome with the thermophilic BGP featuring the lowest diversity. However, the phyla Cloacimonetes and Spirochaetes were unique to BGPs 2 and 3, Fusobacteria were only found in BGP3 and members of the phylum Thermotogae were present only in the thermophilic BGP4. Taxonomic analyses revealed that these distinctive taxa mostly represent so far unknown species. The only exception is the dominant Thermotogae OTU featuring 16S rRNA gene sequence identity to Defluviitoga tunisiensis L3, a sequenced and characterised strain. To further investigate the genetic potential of the biogas communities, corresponding metagenomes were sequenced in a deepness of 347.5 Gbp in total. A combined assembly comprised 80.3 % of all reads and resulted in the prediction of 1.59 million genes on assembled contigs. Genome binning yielded genome bins comprising the prevalent distinctive phyla Cloacimonetes, Spirochaetes, Fusobacteria and Thermotogae. Comparative genome analyses between the most dominant Thermotogae bin and the very closely related Defluviitoga tunisiensis L3 genome originating from the same BGP revealed high genetic similarity. This finding confirmed applicability and reliability of the binning approach. The four highly covered genome bins of the other three distinct phyla showed low or very low genetic similarities to their closest phylogenetic relatives, and therefore indicated their novelty. CONCLUSIONS In this study, the 16S rRNA gene sequencing approach and a combined metagenome assembly and binning approach were used for the first time on different production-scale biogas plants and revealed insights into the genetic potential and functional role of so far unknown species.
Collapse
Affiliation(s)
- Yvonne Stolze
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madis Rumming
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Henke
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Sczyrba
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
16
|
Sabra W, Röske I, Sahm K, Antranikian G, Zeng AP. High temperature biogas reactors to treat stillage from an industrial bioethanol process: Metabolic and microbial characterization. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Wael Sabra
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - Immo Röske
- Institute of Technical Microbiology; Hamburg University of Technology; Hamburg Germany
| | - Kerstin Sahm
- Institute of Technical Microbiology; Hamburg University of Technology; Hamburg Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology; Hamburg University of Technology; Hamburg Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| |
Collapse
|
17
|
Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform. Appl Microbiol Biotechnol 2014; 99:3233-42. [DOI: 10.1007/s00253-014-6213-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/22/2023]
|