1
|
Chen J, Zhuang J, Dai T, Zhang R, Zeng Y, Jiang B, Guo H, Guo X, Yang Y. Enhancing soil petrochemical contaminant remediation through nutrient addition and exogenous bacterial introduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135078. [PMID: 38964043 DOI: 10.1016/j.jhazmat.2024.135078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Biostimulation (providing favorable environmental conditions for microbial growth) and bioaugmentation (introducing exogenous microorganisms) are effective approaches in the bioremediation of petroleum-contaminated soil. However, uncertainty remains in the effectiveness of these two approaches in practical application. In this study, we constructed mesocosms using petroleum hydrocarbon-contaminated soil. We compared the effects of adding nutrients, introducing exogenous bacterial degraders, and their combination on remediating petroleum contamination in the soil. Adding nutrients more effectively accelerated total petroleum hydrocarbon (TPH) degradation than other treatments in the initial 60 days' incubation. Despite both approaches stimulating bacterial richness, the community turnover caused by nutrient addition was gentler than bacterial degrader introduction. As TPH concentrations decreased, we observed a succession in microbial communities characterized by a decline in copiotrophic, fast-growing bacterial r-strategists with high rRNA operon (rrn) copy numbers. Ecological network analysis indicated that both nutrient addition and bacterial degrader introduction enhanced the complexity and stability of bacterial networks. Compared to the other treatment, the bacterial network with nutrient addition had more keystone species and a higher proportion of negative associations, factors that may enhance microbial community stability. Our study demonstrated that nutrient addition effectively regulates community succession and ecological interaction to accelerate the soil TPH degradation.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jugui Zhuang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tianjiao Dai
- School of Environment, Tsinghua University, Beijing 100084, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Ruihuan Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yufei Zeng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huaming Guo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xue Guo
- School of Environment, Tsinghua University, Beijing 100084, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
2
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Jimoh AA, Ikhimiukor OO, Adeleke R. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35615-35642. [PMID: 35247173 DOI: 10.1007/s11356-022-19299-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Hypersaline environments are underappreciated and are frequently exposed to pollution from petroleum hydrocarbons. Unlike other environs, the high salinity conditions present are a deterrent to various remediation techniques. There is also production of hypersaline waters from oil-polluted ecosystems which contain toxic hydrophobic pollutants that are threat to public health, environmental protection, and sustainability. Currently, innovative advances are being proposed for the remediation of oil-contaminated hypersaline regions. Such advancements include the exploration and stimulation of native microbial communities capable of utilizing and degrading petroleum hydrocarbons. However, prevailing salinity in these environments is unfavourable for the growth of non-halophylic microorganisms, thus limiting effective bioremediation options. An in-depth understanding of the potentials of various remediation technologies of hydrocarbon-polluted hypersaline environments is lacking. Thus, we present an overview of petroleum hydrocarbon pollution in hypersaline ecosystems and discuss the challenges and prospects associated with several technologies that may be employed in remediation of hydrocarbon pollution in the presence of delimiting high salinities. The application of biological remediation technologies including the utilization of halophilic and halotolerant microorganisms is also discussed.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa.
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| | - Odion Osebhahiemen Ikhimiukor
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Koutinas M, Kyriakou M, Andreou K, Hadjicharalambous M, Kaliviotis E, Pasias D, Kazamias G, Varavvas C, Vyrides I. Enhanced biodegradation and valorization of drilling wastewater via simultaneous production of biosurfactants and polyhydroxyalkanoates by Pseudomonas citronellolis SJTE-3. BIORESOURCE TECHNOLOGY 2021; 340:125679. [PMID: 34364084 DOI: 10.1016/j.biortech.2021.125679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas citronellolis SJTE-3 was isolated as a highly efficient microorganism for biodegradation and valorization of drilling fluids (DF) wastewater. The strain metabolised DF and oily mud exhibiting up to 93%, 86%, 85% and 88% of chemical oxygen demand (COD), n-dodecane, n-tetradecane and naphthalene removal efficiency respectively. Enhanced bioconversion was enabled through production of biosurfactants that reduced the surface tension of water by 53% and resulted in 43.3% emulsification index (E24), while synthesizing 24% of dry cell weight (DCW) as medium-chain-length polyhydroxyalkanoates (PHA). Expression from the main pathways for alkanes and naphthalene biodegradation as well as biosurfactants and PHA biosynthesis revealed that although the alkanes and naphthalene biodegradation routes were actively expressed even at stationary phase, PHA production was stimulated at late stationary phase and putisolvin could comprise the biosurfactant synthesized. The bioconversion of toxic petrochemical residues to added-value thermoelastomers and biosurfactants indicate the high industrial significance of P. citronellolis SJTE-3.
Collapse
Affiliation(s)
- Michalis Koutinas
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| | - Maria Kyriakou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Kostas Andreou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Michalis Hadjicharalambous
- Innovating Environmental Solutions Center (IESC) Ltd, 33 Spyrou Kyprianou Str., 3(rd) Industrial Area, Agios Sylas, 4193, Ypsonas, Limassol, Cyprus
| | - Efstathios Kaliviotis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Str., 3041, Limassol, Cyprus
| | - Dimitris Pasias
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Str., 3041, Limassol, Cyprus
| | - George Kazamias
- Innovating Environmental Solutions Center (IESC) Ltd, 33 Spyrou Kyprianou Str., 3(rd) Industrial Area, Agios Sylas, 4193, Ypsonas, Limassol, Cyprus
| | - Costas Varavvas
- Innovating Environmental Solutions Center (IESC) Ltd, 33 Spyrou Kyprianou Str., 3(rd) Industrial Area, Agios Sylas, 4193, Ypsonas, Limassol, Cyprus
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| |
Collapse
|
6
|
Sharma J, Sundar D, Srivastava P. Biosurfactants: Potential Agents for Controlling Cellular Communication, Motility, and Antagonism. Front Mol Biosci 2021; 8:727070. [PMID: 34708073 PMCID: PMC8542798 DOI: 10.3389/fmolb.2021.727070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Biosurfactants are surface-active molecules produced by microorganisms, either on the cell surface or secreted extracellularly. They form a thin film on the surface of microorganisms and help in their detachment or attachment to other cell surfaces. They are involved in regulating the motility of bacteria and quorum sensing. Here, we describe the various types of biosurfactants produced by microorganisms and their role in controlling motility, antagonism, virulence, and cellular communication.
Collapse
Affiliation(s)
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126253. [PMID: 34119972 DOI: 10.1016/j.jhazmat.2021.126253] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Heavy metal toxicity has become a pressing ecological problem that affects the ecosystems through bioaccumulation, representing a serious public health hazard. Many conventional strategies have been developed and applied to decontaminate and restore metal-contaminated areas. However, these conventional approaches are not very suitable and environmentally safe for heavy metal remediation because of their high operational costs, high energy requirements, post-waste disposal problems, and secondary pollutant generation. Thus, biosurfactant-based bioremediation of heavy metals is a sustainable and promising approach because of its biodegradation capability, economic effectiveness, and ecofriendly nature. Pseudomonas sp., Bacillus sp., Citrobacter freundii, and Candida tropicalis have been isolated as potential sources of biosurfactants and produce compounds such as surfactin, rhamnolipids, and sophorolipids. Owing to the severity of heavy metal pollution in certain parts of the environment, biosurfactants have garnered great interest and attention as an emerging multi-functional technology of the new century for successful removal of heavy metal pollutants. The present study describes the role of biosurfactants in the bioremediation of heavy metals from contaminated environments. Moreover, the interaction mechanism underlying biosurfactant-metal complexation and metal remediation are discussed. Based on the review of the literature, further research is warranted to elucidate the mechanistic roles and explore the structural characterization and gene regulation of biosurfactants to improve their productivity and expand their applicability in bioremediation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
8
|
Iron-Stimulated Production and Antimicrobial Potential of a Novel Biosurfactant Produced by a Drilling Waste-Degrading Pseudomonas citronellolis Strain. Processes (Basel) 2021. [DOI: 10.3390/pr9040686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A Pseudomonas citronellolis strain was isolated from drilling waste (DW). This strain utilizes DW as the sole energy and carbon source to produce biosurfactants (BSs). The BS produced was thermally stable, amorphous and includes a peptide structure. FeSO4, FeCl3 and Fe(NO3)3 were supplemented at various concentration levels to assess possible enhancement of BS production and DW biodegradation. The limit concentration of Fe compounds between the increase in BS formation and microbial toxicity was 0.1 mM. FeCl3 enhanced DW biodegradation and more than doubled the BS formation yield, determining an optimization strategy for BS production. The BS was then partially purified and used against several Gram-negative and positive multi-drug resistant bacteria (such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli spp, Acinetobacter baumaniii, Enterococcus faecalis spp, Streptococcus pneumoniae, Staphylococcus aureus, Salmonella enterica). The minimum inhibitory concentration was defined at a range of 0.25 to 10 mg/mL. The antimicrobial properties of the partially purified BS established its effectiveness and suggested a down-stream processing cost reduction, as no additional purification steps were necessary. The study could lead to a sustainable low-cost bioprocess towards a circular bioeconomy because waste, a non-expensive substrate, is used; while the BS holds great potential as a novel compound with antibiotic and disinfectant-like action, following toxicity testing with human cells.
Collapse
|
9
|
Guo J, Wen X. Performance and kinetics of benzo(a)pyrene biodegradation in contaminated water and soil and improvement of soil properties by biosurfactant amendment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111292. [PMID: 32919193 DOI: 10.1016/j.ecoenv.2020.111292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
As a hydrophobic pollutant, benzo(a)pyrene (BaP) is difficult to be degraded by microbes due to its poor water solubility. To improve its water solubility, this study harvested a biosurfactant from swine wastewater. The role of the biosurfactant in BaP biodegradation in contaminated water and soil were investigated. The biodegradation kinetics of BaP in contaminated water and the improvement of soil properties were determined. Results showed that critical micelle concentration (CMC) of the biosurfactant was 46.8 mg/L. The biosurfactant has a high pH stability in range of 3-9 and a strong salt stability in NaCl concentration range of 0-20%. At concentrations of 1, 2, 3, 4 and 5 CMC, the biosurfactant increased BaP water solubility by 1.4, 2.6, 4.0, 5.2 and 6.6 times. BaP biodegradation in contaminated water was effectively promoted by the biosurfactant, and the concentrations of BaP in sludge phase decreased to 1.015 mg/L (47.9% decrement) and 0.675 mg/L (65.4% decrement) when the dosed biosurfactant were 1 and 3 CMC, respectively. The biodegradation kinetics of BaP in contaminated water by the biosurfactant fitted well with the two-compartment kinetic model well (R2 > 0.90). For the bioremediation of BaP contaminated soil, adding 0.1%-0.5% (w/w) biosurfactant biodegraded 39.2%-84.8% of BaP, while the control without biosurfactant was 24.2%. In addition, the application of the biosurfactant significantly improved the properties of the contaminated soil, behaved as the increase in microbial quantity, water holding capacity (WHC) and dehydrogenase (DH) activity of the soil. To sum up, the biosurfactant facilitated the BaP biodegradation and can be effectively used in in-site remediation of polycyclic aromatic hydrocarbons (PAHs) (BaP in this study) contaminated water and soil.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Xiaoying Wen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
10
|
Oni FE, Geudens N, Onyeka JT, Olorunleke OF, Salami AE, Omoboye OO, Arias AA, Adiobo A, De Neve S, Ongena M, Martins JC, Höfte M. Cyclic lipopeptide-producing Pseudomonas koreensis group strains dominate the cocoyam rhizosphere of a Pythium root rot suppressive soil contrasting with P. putida prominence in conducive soils. Environ Microbiol 2020; 22:5137-5155. [PMID: 32524747 DOI: 10.1111/1462-2920.15127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Pseudomonas isolates from tropical environments have been underexplored and may form an untapped reservoir of interesting secondary metabolites. In this study, we compared Pseudomonas and cyclic lipopeptide (CLP) diversity in the rhizosphere of a cocoyam root rot disease (CRRD) suppressive soil in Boteva, Cameroon with those from four conducive soils in Cameroon and Nigeria. Compared with other soils, Boteva andosols were characterized by high silt, organic matter, nitrogen and calcium. Besides, the cocoyam rhizosphere at Boteva was characterized by strains belonging mainly to the P. koreensis and P. putida (sub)groups, with representations in the P. fluorescens, P. chlororaphis, P. jessenii and P. asplenii (sub)groups. In contrast, P. putida isolates were prominent in conducive soils. Regarding CLP diversity, Boteva was characterized by strains producing 11 different CLP types with cocoyamide A producers, belonging to the P. koreensis group, being the most abundant. However, putisolvin III-V producers were the most dominant in the rhizosphere of conducive soils in both Cameroon and Nigeria. Furthermore, we elucidated the chemical structure of putisolvin derivatives-putisolvin III-V, and described its biosynthetic gene cluster. We show that high Pseudomonas and metabolic diversity may be driven by microbial competition, which likely contributes to soil suppressiveness to CRRD.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Phytopathology Laboratory, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Ghent, Belgium
| | - Joseph T Onyeka
- Plant Pathology Unit, National Root Crops Research Institute (NRCRI), Umudike, Abia, Nigeria
| | - Oluwatoyin Faith Olorunleke
- Phytopathology Laboratory, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ayodeji Ekundayo Salami
- Department of Crop, Horticulture and Landscape Design, Faculty of Agricultural Sciences, Ekiti State University (EKSU), Ado-Ekiti, Nigeria
| | - Olumide Owolabi Omoboye
- Phytopathology Laboratory, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anthony Arguelles Arias
- Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Amayana Adiobo
- Institute for Agricultural Research for Development (IRAD), Ekona, Cameroon
| | - Stefaan De Neve
- Research Group of Soil Fertility and Nutrient Management, Department of Environment, Ghent University, Ghent, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Phytopathology Laboratory, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecules 2019; 24:molecules24183400. [PMID: 31546774 PMCID: PMC6767264 DOI: 10.3390/molecules24183400] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.
Collapse
Affiliation(s)
- Adam Truskewycz
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Taylor D Gundry
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Leadin S Khudur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Adam Kolobaric
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Qaliuobia 13736, Egypt.
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
12
|
Solyanikova IP, Golovleva LA. Hexadecane and Hexadecane-Degrading Bacteria: Mechanisms of Interaction. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261718060152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Meng L, Li W, Bao M, Sun P. Effect of surfactants on the solubilization, sorption and biodegradation of benzo (a) pyrene by Pseudomonas aeruginosa BT-1. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Bio-emulsifying and biodegradation activities of syringafactin producing Pseudomonas spp. strains isolated from oil contaminated soils. Biodegradation 2018; 30:259-272. [DOI: 10.1007/s10532-018-9861-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
|
15
|
Bezza FA, Chirwa EMN. Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:218-227. [PMID: 27627697 DOI: 10.1016/j.jhazmat.2016.08.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Effect of biosurfactant on biodegradation of pyrene was studied using a microbial consortium predominantly composed of Pseudomonas viridiflava (49.5%) and Pseudomonas nitroreducens (32.5%) in a batch experiment containing lipopeptidic biosurfactant, produced by Paenibacillus dendritiformis CN5 strain, and mineral salt medium. The results showed that the lipopeptide at 600 and 300mgL-1 enhanced pyrene degradation to 83.5% and 67% respectively in 24days compared to 16% degradation in its absence. However degradation of pyrene was reduced to 57% as the lipopeptide supplementation was raised to 900mgL-1. This demonstrates that the biodegradation of pyrene was found to increase with an increase in the lipopeptide concentration up to a threshold level. The experimental data were fitted to the logistic kinetic model which provided best fit with a coefficient of determination (R2) values≥0.97. Maximum specific growth rate, μmax of 0.97 and 0.69d-1 were achieved in the 600 and 300mgL-1 lipopeptide amendments in comparison to 0.54d-1 in the unamended one. The carrying capacity, Xmax increased 4.4-fold in 600mgL-1 lipopeptide supplemented samples in comparison to its absence. Generally the lipopeptide showed potential application in improving bioremediation of polycyclic aromatic hydrocarbons contaminated environmental media.
Collapse
Affiliation(s)
- Fisseha Andualem Bezza
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| | - Evans M Nkhalambayausi Chirwa
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
16
|
Li C, Jia T, Fu M, Hou N, Cao H, Wang Q, Li D. Biodemulsifiers produced by Achromobacter sp. and their features in improving the biodegradation of phenanthrene. RSC Adv 2017. [DOI: 10.1039/c6ra25167f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The application of biodemulsifiers plays an essential role in oil recovery and demulsification.
Collapse
Affiliation(s)
- Chunyan Li
- College of Resources and Environment
- Northeast Agricultural University
- Harbin 150030
- China
| | - Tingting Jia
- College of Resources and Environment
- Northeast Agricultural University
- Harbin 150030
- China
| | - Meng Fu
- College of Resources and Environment
- Northeast Agricultural University
- Harbin 150030
- China
| | - Ning Hou
- College of Resources and Environment
- Northeast Agricultural University
- Harbin 150030
- China
| | - Huiming Cao
- College of Resources and Environment
- Northeast Agricultural University
- Harbin 150030
- China
| | - Qiaoruo Wang
- College of Resources and Environment
- Northeast Agricultural University
- Harbin 150030
- China
| | - Dapeng Li
- College of Resources and Environment
- Northeast Agricultural University
- Harbin 150030
- China
| |
Collapse
|
17
|
Rodrigues EM, Kalks KHM, Fernandes PL, Tótola MR. Bioremediation strategies of hydrocarbons and microbial diversity in the Trindade Island shoreline--Brazil. MARINE POLLUTION BULLETIN 2015; 101:517-525. [PMID: 26522160 DOI: 10.1016/j.marpolbul.2015.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
This study analyzed the microbial diversity colonizing the surface of an oil sample during its contact with water, off the Trindade Island coast and simulated the efficiency of eight different bioremediation strategies for this environment. The diversity analysis was performed using acrylic coupons that served as the support for an oil inclusion at sea. The coupons were sampled over 30 days, and T-RFLP multiplex was employed to access the diversity of fungi, Bacteria and Archaea present on the oil surface. The bioremediation strategies were simulated in a respirometer. The results showed that the bacterial domain was the most dominant in oil colonization and that the richness of the species attached to the oil gradually increases with the exposure time of the coupons. The combination of biostimulation and bioaugmentation with a native population was proven to be an effective strategy for the remediation of oil off the Trindade Island shoreline.
Collapse
Affiliation(s)
- Edmo M Rodrigues
- Laboratory of Environmental Biotechnology and Biodiversity, Microbiology Department Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Karlos H M Kalks
- Laboratory of Environmental Biotechnology and Biodiversity, Microbiology Department Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Péricles L Fernandes
- Laboratory of Environmental Biotechnology and Biodiversity, Microbiology Department Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcos R Tótola
- Laboratory of Environmental Biotechnology and Biodiversity, Microbiology Department Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol 2015; 36:40-9. [DOI: 10.1016/j.copbio.2015.08.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 12/26/2022]
|
19
|
Bonnichsen L, Bygvraa Svenningsen N, Rybtke M, de Bruijn I, Raaijmakers JM, Tolker-Nielsen T, Nybroe O. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. MICROBIOLOGY-SGM 2015; 161:2289-97. [PMID: 26419730 PMCID: PMC4811653 DOI: 10.1099/mic.0.000191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.
Collapse
Affiliation(s)
- Lise Bonnichsen
- 1 Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Bygvraa Svenningsen
- 1 Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- 2 Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene de Bruijn
- 3 Microbial Ecology Department, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- 3 Microbial Ecology Department, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Tim Tolker-Nielsen
- 2 Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Nybroe
- 1 Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Patel S, Ahmed S, Eswari JS. Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles. World J Microbiol Biotechnol 2015; 31:1177-93. [PMID: 26041368 DOI: 10.1007/s11274-015-1880-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/31/2015] [Indexed: 12/23/2022]
Abstract
Infectious diseases impose serious public health burdens and often have devastating consequences. The cyclic lipopeptides elaborated by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very crucial in restraining the pathogens. Composed of a peptide and a fatty acyl moiety these amphiphilic metabolites exhibit broad spectrum antimicrobial effects. Among the plethora of cyclic lipopeptides, only selective few have emerged as robust antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin, fengysin, paenibacterin and pseudofactin have been integrated in mainstream healthcare. Daptomycin has been a significant part of antimicrobial arsenal since the past decade. As the magnitude of drug resistance rises in unprecedented manner, the urgency of prospecting novel cyclic lipopeptides is being perceived. Intense research has revealed the implication of these bioactive compounds stretching beyond antibacterial and antifungal. Anticancer, immunomodulatory, prosthetic parts disinfection and vaccine adjuvancy are some of the validated prospects. This review discusses the emerging applications, mechanisms governing the biological actions, role of genomics in refining structure and function, semi-synthetic analog discovery, novel strain isolation, setbacks etc. Though its beyond the scope of the current topic, for holistic purpose, the role of lipopeptides in bioremediation and crop biotechnology has been briefly outlined. This updated critique is expected to galvanize innovations and diversify therapeutic recruitment of microbial lipopeptides.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, CA, 92182, USA,
| | | | | |
Collapse
|
21
|
Shahaliyan F, Safahieh A, Abyar H. Evaluation of Emulsification Index in Marine Bacteria Pseudomonas sp. and Bacillus sp. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1663-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|