1
|
Sarwar A, Lee EY. Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs. Synth Syst Biotechnol 2023; 8:396-415. [PMID: 37384124 PMCID: PMC10293595 DOI: 10.1016/j.synbio.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
Methanol has recently gained significant attention as a potential carbon substrate for the production of fuels and chemicals, owing to its high degree of reduction, abundance, and low price. Native methylotrophic yeasts and bacteria have been investigated for the production of fuels and chemicals. Alternatively, synthetic methylotrophic strains are also being developed by reconstructing methanol utilization pathways in model microorganisms, such as Escherichia coli. Owing to the complex metabolic pathways, limited availability of genetic tools, and methanol/formaldehyde toxicity, the high-level production of target products for industrial applications are still under development to satisfy commercial feasibility. This article reviews the production of biofuels and chemicals by native and synthetic methylotrophic microorganisms. It also highlights the advantages and limitations of both types of methylotrophs and provides an overview of ways to improve their efficiency for the production of fuels and chemicals from methanol.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
2
|
Lv X, Yu W, Zhang C, Ning P, Li J, Liu Y, Du G, Liu L. C1-based biomanufacturing: Advances, challenges and perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128259. [PMID: 36347475 DOI: 10.1016/j.biortech.2022.128259] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
One-carbon (C1) compounds have emerged as a key research focus due to the growth of metabolic engineering and synthetic biology as affordable and sustainable nonfood sugar feedstocks for energy-efficient and environmentally friendly biomanufacturing. This paper summarizes and discusses current developments in C1 compounds for biomanufacturing. First, two primary groups of microbes that use C1 compounds (native and synthetic) are introduced, and the traits, categorization, and functions of C1 microbes are summarized. Second, engineering strategies for C1 utilization are compiled and reviewed, including reconstruction of C1-utilization pathway, enzyme engineering, cofactor engineering, genome-scale modeling, and adaptive laboratory evolution. Third, a review of C1 compounds' uses in the synthesis of biofuels and high-value compounds is presented. Finally, potential obstacles to C1-based biomanufacturing are highlighted along with future research initiatives.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Baima Future Foods Research Institute, Nanjing 211225, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chenyang Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Peng Ning
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Singh HB, Kang MK, Kwon M, Kim SW. Developing methylotrophic microbial platforms for a methanol-based bioindustry. Front Bioeng Biotechnol 2022; 10:1050740. [PMID: 36507257 PMCID: PMC9727194 DOI: 10.3389/fbioe.2022.1050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Methanol, a relatively cheap and renewable single-carbon feedstock, has gained considerable attention as a substrate for the bio-production of commodity chemicals. Conventionally produced from syngas, along with emerging possibilities of generation from methane and CO2, this C1 substrate can serve as a pool for sequestering greenhouse gases while supporting a sustainable bio-economy. Methylotrophic organisms, with the inherent ability to use methanol as the sole carbon and energy source, are competent candidates as platform organisms. Accordingly, methanol bioconversion pathways have been an attractive target for biotechnological and bioengineering interventions in developing microbial cell factories. This review summarizes the recent advances in methanol-based production of various bulk and value-added chemicals exploiting the native and synthetic methylotrophic organisms. Finally, the current challenges and prospects of streamlining these methylotrophic platforms are discussed.
Collapse
Affiliation(s)
- Hawaibam Birla Singh
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| |
Collapse
|
4
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Wegat V, Fabarius JT, Sieber V. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:113. [PMID: 36273178 PMCID: PMC9587593 DOI: 10.1186/s13068-022-02210-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Global energy-related emissions, in particular carbon dioxide, are rapidly increasing. Without immediate and strong reductions across all sectors, limiting global warming to 1.5 °C and thus mitigating climate change is beyond reach. In addition to the expansion of renewable energies and the increase in energy efficiency, the so-called Carbon Capture and Utilization technologies represent an innovative approach for closing the carbon cycle and establishing a circular economy. One option is to combine CO2 capture with microbial C1 fermentation. C1-molecules, such as methanol or formate are considered as attractive alternative feedstock for biotechnological processes due to their sustainable production using only CO2, water and renewable energy. Native methylotrophic microorganisms can utilize these feedstock for the production of value-added compounds. Currently, constraints exist regarding the understanding of methylotrophic metabolism and the available genetic engineering tools are limited. For this reason, the development of synthetic methylotrophic cell factories based on the integration of natural or artificial methanol assimilation pathways in biotechnologically relevant microorganisms is receiving special attention. Yeasts like Saccharomyces cerevisiae and Yarrowia lipolytica are capable of producing important products from sugar-based feedstock and the switch to produce these in the future from methanol is important in order to realize a CO2-based economy that is independent from land use. Here, we review historical biotechnological applications, the metabolism and the characteristics of methylotrophic yeasts. Various studies demonstrated the production of a broad set of promising products from fine chemicals to bulk chemicals by applying methylotrophic yeasts. Regarding synthetic methylotrophy, the deep understanding of the methylotrophic metabolism serves as the basis for microbial strain engineering and paves the way towards a CO2-based circular bioeconomy. We highlight design aspects of synthetic methylotrophy and discuss the resulting chances and challenges using non-conventional yeasts as host organisms. We conclude that the road towards synthetic methylotrophic yeasts can only be achieved through a combination of methods (e.g., metabolic engineering and adaptive laboratory evolution). Furthermore, we presume that the installation of metabolic regeneration cycles such as supporting carbon re-entry towards the pentose phosphate pathway from C1-metabolism is a pivotal target for synthetic methylotrophy.
Collapse
Affiliation(s)
- Vanessa Wegat
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Jonathan T. Fabarius
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany
| | - Volker Sieber
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| |
Collapse
|
6
|
Keller P, Reiter MA, Kiefer P, Gassler T, Hemmerle L, Christen P, Noor E, Vorholt JA. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nat Commun 2022; 13:5243. [PMID: 36068201 PMCID: PMC9448777 DOI: 10.1038/s41467-022-32744-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Methanol is a liquid with high energy storage capacity that holds promise as an alternative substrate to replace sugars in the biotechnology industry. It can be produced from CO2 or methane and its use does not compete with food and animal feed production. However, there are currently only limited biotechnological options for the valorization of methanol, which hinders its widespread adoption. Here, we report the conversion of the industrial platform organism Escherichia coli into a synthetic methylotroph that assimilates methanol via the energy efficient ribulose monophosphate cycle. Methylotrophy is achieved after evolution of a methanol-dependent E. coli strain over 250 generations in continuous chemostat culture. We demonstrate growth on methanol and biomass formation exclusively from the one-carbon source by 13C isotopic tracer analysis. In line with computational modeling, the methylotrophic E. coli strain optimizes methanol oxidation by upregulation of an improved methanol dehydrogenase, increasing ribulose monophosphate cycle activity, channeling carbon flux through the Entner-Doudoroff pathway and downregulating tricarboxylic acid cycle enzymes. En route towards sustainable bioproduction processes, our work lays the foundation for the efficient utilization of methanol as the dominant carbon and energy resource. Using one carbon compounds as feedstock is a promising approach in abating climate change. Here, the authors report the conversion of E. coli into a synthetic methylotroph that assimilates methanol via the ribulose monophosphate cycle and a set of distinctive mutations.
Collapse
Affiliation(s)
- Philipp Keller
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Michael A Reiter
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas Gassler
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Lucas Hemmerle
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland.,Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
7
|
Irla M, Wendisch VF. Efficient cell factories for the production of N-methylated amino acids and for methanol-based amino acid production. Microb Biotechnol 2022; 15:2145-2159. [PMID: 35488805 PMCID: PMC9328739 DOI: 10.1111/1751-7915.14067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The growing world needs commodity amino acids such as L-glutamate and L-lysine for use as food and feed, and specialty amino acids for dedicated applications. To meet the supply a paradigm shift regarding their production is required. On the one hand, the use of sustainable and cheap raw materials is necessary to sustain low production cost and decrease detrimental effects of sugar-based feedstock on soil health and food security caused by competing uses of crops in the feed and food industries. On the other hand, the biotechnological methods to produce functionalized amino acids need to be developed further, and titres enhanced to become competitive with chemical synthesis methods. In the current review, we present successful strain mutagenesis and rational metabolic engineering examples leading to the construction of recombinant bacterial strains for the production of amino acids such as L-glutamate, L-lysine, L-threonine and their derivatives from methanol as sole carbon source. In addition, the fermentative routes for bioproduction of N-methylated amino acids are highlighted, with focus on three strategies: partial transfer of methylamine catabolism, S-adenosyl-L-methionine dependent alkylation and reductive methylamination of 2-oxoacids.
Collapse
Affiliation(s)
- Marta Irla
- Microbial Synthetic BiologyDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus C8000Denmark
| | - Volker F. Wendisch
- Genetics of ProkaryotesFaculty of Biology and CeBiTecBielefeld UniversityUniversitätsstr. 25Bielefeld33615Germany
| |
Collapse
|
8
|
Kelso PA, Chow LKM, Carpenter AC, Paulsen IT, Williams TC. Toward Methanol-Based Biomanufacturing: Emerging Strategies for Engineering Synthetic Methylotrophy in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2548-2563. [PMID: 35848307 DOI: 10.1021/acssynbio.2c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The global expansion of biomanufacturing is currently limited by the availability of sugar-based microbial feedstocks, which require farmland for cultivation and therefore cannot support large increases in production without impacting the human food supply. One-carbon feedstocks, such as methanol, present an enticing alternative to sugar because they can be produced independently of arable farmland from organic waste, atmospheric carbon dioxide, and hydrocarbons such as biomethane, natural gas, and coal. The development of efficient industrial microorganisms that can convert one-carbon feedstocks into valuable products is an ongoing challenge. This review discusses progress in the field of synthetic methylotrophy with a focus on how it pertains to the important industrial yeast, Saccharomyces cerevisiae. Recent insights generated from engineering synthetic methylotrophic xylulose- and ribulose-monophosphate cycles, reductive glycine pathways, and adaptive laboratory evolution studies are critically assessed to generate novel strategies for the future engineering of methylotrophy in S. cerevisiae.
Collapse
Affiliation(s)
- Philip A Kelso
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | | | - Alex C Carpenter
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | - Ian T Paulsen
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| | - Thomas C Williams
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Cai HL, Shimada M, Nakagawa T. The potential and capability of the methylotrophic yeast Ogataea methanolica in a "methanol bioeconomy". Yeast 2022; 39:440-448. [PMID: 35811458 DOI: 10.1002/yea.3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/03/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Efficient bioconversion of methanol, which can be generated from greenhouse gases, into valuable resources contributes to achieving climate goals and developing a sustainable economy. The methylotrophic yeast Ogataea methanolica is considered to be a suitable host for efficient methanol bioconversion because it has outstanding characteristics for the better adaptive potential to a high methanol environment (i.e., greater than 5%). This capacity represents a huge potential to construct an innovative carbon-neutral production system that converts methanol into value-added chemicals under the control of strong methanol-induced promoters. In this review, we discuss what is known about the regulation of methanol metabolism and adaptation mechanisms for 5% methanol conditions in O. methanolica in detail. We also discuss about the potential to breed "super methylotrophic yeast," which has potent growth characteristics under high methanol conditions.
Collapse
Affiliation(s)
- Hao-Liang Cai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Masaya Shimada
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
10
|
Wendisch VF, Nampoothiri KM, Lee JH. Metabolic Engineering for Valorization of Agri- and Aqua-Culture Sidestreams for Production of Nitrogenous Compounds by Corynebacterium glutamicum. Front Microbiol 2022; 13:835131. [PMID: 35211108 PMCID: PMC8861201 DOI: 10.3389/fmicb.2022.835131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/06/2023] Open
Abstract
Corynebacterium glutamicum is used for the million-ton-scale production of amino acids. Valorization of sidestreams from agri- and aqua-culture has focused on the production of biofuels and carboxylic acids. Nitrogen present in various amounts in sidestreams may be valuable for the production of amines, amino acids and other nitrogenous compounds. Metabolic engineering of C. glutamicum for valorization of agri- and aqua-culture sidestreams addresses to bridge this gap. The product portfolio accessible via C. glutamicum fermentation primarily features amino acids and diamines for large-volume markets in addition to various specialty amines. On the one hand, this review covers metabolic engineering of C. glutamicum to efficiently utilize components of various sidestreams. On the other hand, examples of the design and implementation of synthetic pathways not present in native metabolism to produce sought after nitrogenous compounds will be provided. Perspectives and challenges of this concept will be discussed.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| |
Collapse
|
11
|
Gao B, Zhao N, Deng J, Gu Y, Jia S, Hou Y, Lv X, Liu L. Constructing a methanol-dependent Bacillus subtilis by engineering the methanol metabolism. J Biotechnol 2022; 343:128-137. [PMID: 34906603 DOI: 10.1016/j.jbiotec.2021.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
Methanol is a promising green feedstock for producing fuels and chemicals because it is inexpensive, clean, environmentally friendly, and easily prepared. Thus, many studies have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. This study adopted a series of strategies to develop a synthetic methylotrophic Bacillus subtilis that can use methanol as the carbon source, including the heterologous expression of methanol dehydrogenase (Mdh), enhancement of the expressions of 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi), regulation of the expressions of key enzymes at both the translational and transcriptional levels, stabilization of the key enzyme expression through a dual-system for expressing the target genes on both the plasmid and genome, and improvement of the catalytic activity of Mdh with a recycling strategy for NAD+. As a result, the methanol consumption of the synthetic methylotrophic B. subtilis reached 4.09 g/L, with the maximum OD600 showing a 2.21-fold increase compared with the wild-type B. subtilis, which cannot use methanol. We further deleted the phosphoglucose isomerase (Pgi) and added co-substrates to increase the supply of ribulose-5-phosphate (Ru-5-P), and the specific methanol consumption rate increased by an additional 27.54%. Finally, we successfully constructed two strains that cannot grow in M9 medium with xylose or ribose unless methanol is utilized. The strategies used in this study are generally applicable to other studies on synthetic methylotrophy.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jieying Deng
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Gu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Tianlong Agricultural Science and Technology Co., Ltd, Tianjin 300457, China.
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Wang Y, Zheng P, Sun J. Developing Synthetic Methylotrophs by Metabolic Engineering-Guided Adaptive Laboratory Evolution. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:127-148. [DOI: 10.1007/10_2021_185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Wendisch VF, Kosec G, Heux S, Brautaset T. Aerobic Utilization of Methanol for Microbial Growth and Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:169-212. [PMID: 34761324 DOI: 10.1007/10_2021_177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methanol is a reduced one-carbon (C1) compound. It supports growth of aerobic methylotrophs that gain ATP from reduced redox equivalents by respiratory phosphorylation in their electron transport chains. Notably, linear oxidation of methanol to carbon dioxide may yield three reduced redox equivalents if methanol oxidation is NAD-dependent as, e.g., in Bacillus methanolicus. Methanol has a higher degree of reduction per carbon than glucose (6 vs. 4), and thus, lends itself as an ideal carbon source for microbial production of reduced target compounds. However, C-C bond formation in the RuMP or serine cycle, a prerequisite for production of larger molecules, requires ATP and/or reduced redox equivalents. Moreover, heat dissipation and a high demand for oxygen during catabolic oxidation of methanol may pose challenges for fermentation processes. In this chapter, we summarize metabolic pathways for aerobic methanol utilization, aerobic methylotrophs as industrial production hosts, strain engineering, and methanol bioreactor processes. In addition, we provide technological and market outlooks.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.
| | | | - Stéphanie Heux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
14
|
Blombach B, Grünberger A, Centler F, Wierckx N, Schmid J. Exploiting unconventional prokaryotic hosts for industrial biotechnology. Trends Biotechnol 2021; 40:385-397. [PMID: 34482995 DOI: 10.1016/j.tibtech.2021.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Developing cost-efficient biotechnological processes is a major challenge in replacing fossil-based industrial production processes. The remarkable progress in genetic engineering ensures efficient and fast tailoring of microbial metabolism for a wide range of bioconversions. However, improving intrinsic properties such as tolerance, handling, growth, and substrate consumption rates is still challenging. At the same time, synthetic biology tools are becoming easier applicable and transferable to nonmodel organisms. These trends have resulted in the exploitation of new and unconventional microbial systems with sophisticated properties, which render them promising hosts for the bio-based industry. Here, we highlight the metabolic and cellular capabilities of representative prokaryotic newcomers and discuss the potential and drawbacks of these hosts for industrial application.
Collapse
Affiliation(s)
- Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany; SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | | | - Florian Centler
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Nick Wierckx
- Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
15
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Haupka C, Brito LF, Busche T, Wibberg D, Wendisch VF. Genomic and Transcriptomic Investigation of the Physiological Response of the Methylotroph Bacillus methanolicus to 5-Aminovalerate. Front Microbiol 2021; 12:664598. [PMID: 33995329 PMCID: PMC8119775 DOI: 10.3389/fmicb.2021.664598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
The methylotrophic thermophile Bacillus methanolicus can utilize the non-food substrate methanol as its sole carbon and energy source. Metabolism of L-lysine, in particular its biosynthesis, has been studied to some detail, and methanol-based L-lysine production has been achieved. However, little is known about L-lysine degradation, which may proceed via 5-aminovalerate (5AVA), a non-proteinogenic ω-amino acid with applications in bioplastics. The physiological role of 5AVA and related compounds in the native methylotroph was unknown. Here, we showed that B. methanolicus exhibits low tolerance to 5AVA, but not to related short-chain (C4–C6) amino acids, diamines, and dicarboxylic acids. In order to gain insight into the physiological response of B. methanolicus to 5AVA, transcriptomic analyses by differential RNA-Seq in the presence and absence of 5AVA were performed. Besides genes of the general stress response, RNA levels of genes of histidine biosynthesis, and iron acquisition were increased in the presence of 5AVA, while an Rrf2 family transcriptional regulator gene showed reduced RNA levels. In order to test if mutations can overcome growth inhibition by 5AVA, adaptive laboratory evolution (ALE) was performed and two mutants—AVA6 and AVA10—with higher tolerance to 5AVA were selected. Genome sequencing revealed mutations in genes related to iron homeostasis, including the gene for an iron siderophore-binding protein. Overexpression of this mutant gene in the wild-type (WT) strain MGA3 improved 5AVA tolerance significantly at high Fe2+ supplementation. The combined ALE, omics, and genetics approach helped elucidate the physiological response of thermophilic B. methanolicus to 5AVA and will guide future strain development for 5AVA production from methanol.
Collapse
Affiliation(s)
- Carsten Haupka
- Genetics of Prokaryotes, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Luciana F Brito
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
17
|
Schultenkämper K, Gütle DD, López MG, Keller LB, Zhang L, Einsle O, Jacquot JP, Wendisch VF. Interrogating the Role of the Two Distinct Fructose-Bisphosphate Aldolases of Bacillus methanolicus by Site-Directed Mutagenesis of Key Amino Acids and Gene Repression by CRISPR Interference. Front Microbiol 2021; 12:669220. [PMID: 33995334 PMCID: PMC8119897 DOI: 10.3389/fmicb.2021.669220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
The Gram-positive Bacillus methanolicus shows plasmid-dependent methylotrophy. This facultative ribulose monophosphate (RuMP) cycle methylotroph possesses two fructose bisphosphate aldolases (FBA) with distinct kinetic properties. The chromosomally encoded FBAC is the major glycolytic aldolase. The gene for the major gluconeogenic aldolase FBAP is found on the natural plasmid pBM19 and is induced during methylotrophic growth. The crystal structures of both enzymes were solved at 2.2 Å and 2.0 Å, respectively, and they suggested amino acid residue 51 to be crucial for binding fructose-1,6-bisphosphate (FBP) as substrate and amino acid residue 140 for active site zinc atom coordination. As FBAC and FBAP differed at these positions, site-directed mutagenesis (SDM) was performed to exchange one or both amino acid residues of the respective proteins. The aldol cleavage reaction was negatively affected by the amino acid exchanges that led to a complete loss of glycolytic activity of FBAP. However, both FBAC and FBAP maintained gluconeogenic aldol condensation activity, and the amino acid exchanges improved the catalytic efficiency of the major glycolytic aldolase FBAC in gluconeogenic direction at least 3-fold. These results confirmed the importance of the structural differences between FBAC and FBAP concerning their distinct enzymatic properties. In order to investigate the physiological roles of both aldolases, the expression of their genes was repressed individually by CRISPR interference (CRISPRi). The fba C RNA levels were reduced by CRISPRi, but concomitantly the fba P RNA levels were increased. Vice versa, a similar compensatory increase of the fba C RNA levels was observed when fba P was repressed by CRISPRi. In addition, targeting fba P decreased tkt P RNA levels since both genes are cotranscribed in a bicistronic operon. However, reduced tkt P RNA levels were not compensated for by increased RNA levels of the chromosomal transketolase gene tkt C.
Collapse
Affiliation(s)
- Kerstin Schultenkämper
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Marina Gil López
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Laura B Keller
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Lin Zhang
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
18
|
Frank C, Hoffmann T, Zelder O, Felle MF, Bremer E. Enhanced Glutamate Synthesis and Export by the Thermotolerant Emerging Industrial Workhorse Bacillus methanolicus in Response to High Osmolarity. Front Microbiol 2021; 12:640980. [PMID: 33897645 PMCID: PMC8060640 DOI: 10.3389/fmicb.2021.640980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The thermotolerant methylotroph Bacillus methanolicus MGA3 was originally isolated from freshwater marsh soil. Due to its ability to use methanol as sole carbon and energy source, B. methanolicus is increasingly explored as a cell factory for the production of amino acids, fine chemicals, and proteins of biotechnological interest. During high cell density fermentation in industrial settings with the membrane-permeable methanol as the feed, the excretion of low molecular weight products synthesized from it will increase the osmotic pressure of the medium. This in turn will impair cell growth and productivity of the overall biotechnological production process. With this in mind, we have analyzed the core of the physiological adjustment process of B. methanolicus MGA3 to sustained high osmolarity surroundings. Through growth assays, we found that B. methanolicus MGA3 possesses only a restricted ability to cope with sustained osmotic stress. This finding is consistent with the ecophysiological conditions in the habitat from which it was originally isolated. None of the externally provided compatible solutes and proline-containing peptides affording osmostress protection for Bacillus subtilis were able to stimulate growth of B. methanolicus MGA3 at high salinity. B. methanolicus MGA3 synthesized the moderately effective compatible solute L-glutamate in a pattern such that the cellular pool increased concomitantly with increases in the external osmolarity. Counterintuitively, a large portion of the newly synthesized L-glutamate was excreted. The expression of the genes (gltAB and gltA2) for two L-glutamate synthases were upregulated in response to high salinity along with that of the gltC regulatory gene. Such a regulatory pattern of the system(s) for L-glutamate synthesis in Bacilli is new. Our findings might thus be generally relevant to understand the production of the osmostress protectant L-glutamate by those Bacilli that exclusively rely on this compatible solute for their physiological adjustment to high osmolarity surroundings.
Collapse
Affiliation(s)
- Christine Frank
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Oskar Zelder
- BASF SE, RWB/EC - A030 - L3/10, Ludwigshafen, Germany
| | - Max F Felle
- BASF SE, RWB/EC - A030 - L3/10, Ludwigshafen, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
19
|
Adaptive laboratory evolution of methylotrophic Escherichia coli enables synthesis of all amino acids from methanol-derived carbon. Appl Microbiol Biotechnol 2021; 105:869-876. [PMID: 33404828 DOI: 10.1007/s00253-020-11058-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Recent attempts to create synthetic Escherichia coli methylotrophs identified that de novo biosynthesis of amino acids, in the presence of methanol, presents significant challenges in achieving autonomous methylotrophic growth. Previously engineered methanol-dependent strains required co-utilization of stoichiometric amounts of co-substrates and methanol. As such, these strains could not be evolved to grow on methanol alone. In this work, we have explored an alternative approach to enable biosynthesis of all amino acids from methanol-derived carbon in minimal media without stoichiometric coupling. First, we identified that biosynthesis of threonine was limiting the growth of our methylotrophic E. coli. To address this, we performed adaptive laboratory evolution to generate a strain that grew efficiently in minimal medium with methanol and threonine. Methanol assimilation and growth of the evolved strain were analyzed, and, interestingly, we found that the evolved strain synthesized all amino acids, including threonine, from methanol-derived carbon. The evolved strain was then further engineered through overexpression of an optimized threonine biosynthetic pathway. We show that the resulting methylotrophic E. coli strain has a methanol-dependent growth phenotype with homoserine as co-substrate. In contrast to previous methanol-dependent strains, co-utilization of homoserine is not stoichiometrically linked to methanol assimilation. As such, future engineering of this strain and successive adaptive evolution could enable autonomous growth on methanol as the sole carbon source. KEY POINTS: • Adaptive evolution of E. coli enables biosynthesis of all amino acids from methanol. • Overexpression of threonine biosynthesis pathway improves methanol assimilation. • Methanol-dependent growth is seen in minimal media with homoserine as co-substrate.
Collapse
|
20
|
Abstract
Methanol is inexpensive, is easy to transport, and can be produced both from renewable and from fossil resources without mobilizing arable lands. As such, it is regarded as a potential carbon source to transition toward a greener industrial chemistry. Metabolic engineering of bacteria and yeast able to efficiently consume methanol is expected to provide cell factories that will transform methanol into higher-value chemicals in the so-called methanol economy. Toward that goal, the study of natural methylotrophs such as Bacillus methanolicus is critical to understand the origin of their efficient methylotrophy. This knowledge will then be leveraged to transform such natural strains into new cell factories or to design methylotrophic capability in other strains already used by the industry. Bacillus methanolicus MGA3 is a thermotolerant and relatively fast-growing methylotroph able to secrete large quantities of glutamate and lysine. These natural characteristics make B. methanolicus a good candidate to become a new industrial chassis organism, especially in a methanol-based economy. Intriguingly, the only substrates known to support B. methanolicus growth as sole sources of carbon and energy are methanol, mannitol, and, to a lesser extent, glucose and arabitol. Because fluxomics provides the most direct readout of the cellular phenotype, we hypothesized that comparing methylotrophic and nonmethylotrophic metabolic states at the flux level would yield new insights into MGA3 metabolism. In this study, we designed and performed a 13C metabolic flux analysis (13C-MFA) of the facultative methylotroph B. methanolicus MGA3 growing on methanol, mannitol, and arabitol to compare the associated metabolic states. On methanol, results showed a greater flux in the ribulose monophosphate (RuMP) pathway than in the tricarboxylic acid (TCA) cycle, thus validating previous findings on the methylotrophy of B. methanolicus. New insights related to the utilization of cyclic RuMP versus linear dissimilation pathways and between the RuMP variants were generated. Importantly, we demonstrated that the linear detoxification pathways and the malic enzyme shared with the pentose phosphate pathway have an important role in cofactor regeneration. Finally, we identified, for the first time, the metabolic pathway used to assimilate arabitol. Overall, those data provide a better understanding of this strain under various environmental conditions. IMPORTANCE Methanol is inexpensive, is easy to transport, and can be produced both from renewable and from fossil resources without mobilizing arable lands. As such, it is regarded as a potential carbon source to transition toward a greener industrial chemistry. Metabolic engineering of bacteria and yeast able to efficiently consume methanol is expected to provide cell factories that will transform methanol into higher-value chemicals in the so-called methanol economy. Toward that goal, the study of natural methylotrophs such as Bacillus methanolicus is critical to understand the origin of their efficient methylotrophy. This knowledge will then be leveraged to transform such natural strains into new cell factories or to design methylotrophic capability in other strains already used by the industry.
Collapse
|
21
|
Tuyishime P, Sinumvayo JP. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production. World J Microbiol Biotechnol 2020; 36:118. [DOI: 10.1007/s11274-020-02899-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
|
22
|
Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway. Int J Mol Sci 2020; 21:ijms21103617. [PMID: 32443885 PMCID: PMC7279501 DOI: 10.3390/ijms21103617] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered Corynebacterium glutamicum for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from Bacillus methanolicus and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from Bacillus subtilis enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of C. glutamicum to unleash the full potential of methanol as a carbon source in biotechnological processes.
Collapse
|
23
|
Hakvåg S, Nærdal I, Heggeset TMB, Kristiansen KA, Aasen IM, Brautaset T. Production of Value-Added Chemicals by Bacillus methanolicus Strains Cultivated on Mannitol and Extracts of Seaweed Saccharina latissima at 50°C. Front Microbiol 2020; 11:680. [PMID: 32328058 PMCID: PMC7161427 DOI: 10.3389/fmicb.2020.00680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
The facultative methylotroph Bacillus methanolicus MGA3 has previously been genetically engineered to overproduce the amino acids L-lysine and L-glutamate and their derivatives cadaverine and γ-aminobutyric acid (GABA) from methanol at 50°C. We here explored the potential of utilizing the sugar alcohol mannitol and seaweed extract (SWE) containing mannitol, as alternative feedstocks for production of chemicals by fermentation using B. methanolicus. Extracts of the brown algae Saccharina latissima harvested in the Trondheim Fjord in Norway were prepared and found to contain 12–13 g/l of mannitol, with conductivities corresponding to a salt content of ∼2% NaCl. Initially, 12 B. methanolicus wild type strains were tested for tolerance to various SWE concentrations, and some strains including MGA3 could grow on 50% SWE medium. Non-methylotrophic and methylotrophic growth of B. methanolicus rely on differences in regulation of metabolic pathways, and we compared production titers of GABA and cadaverine under such growth conditions. Shake flask experiments showed that recombinant MGA3 strains could produce similar and higher titers of cadaverine during growth on 50% SWE and mannitol, compared to on methanol. GABA production levels under these conditions were however low compared to growth on methanol. We present the first fed-batch mannitol fermentation of B. methanolicus and production of 6.3 g/l cadaverine. Finally, we constructed a recombinant MGA3 strain synthesizing the C30 terpenoids 4,4′-diaponeurosporene and 4,4′-diapolycopene, experimentally confirming that B. methanolicus has a functional methylerythritol phosphate (MEP) pathway. Together, our results contribute to extending the range of both the feedstocks for growth and products that can be synthesized by B. methanolicus.
Collapse
Affiliation(s)
- Sigrid Hakvåg
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingemar Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Tonje M B Heggeset
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kåre A Kristiansen
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Inga M Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
24
|
Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: Challenges and opportunities. Biotechnol Adv 2020; 39:107467. [DOI: 10.1016/j.biotechadv.2019.107467] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022]
|
25
|
Wang Y, Fan L, Tuyishime P, Zheng P, Sun J. Synthetic Methylotrophy: A Practical Solution for Methanol-Based Biomanufacturing. Trends Biotechnol 2020; 38:650-666. [PMID: 31932066 DOI: 10.1016/j.tibtech.2019.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
The increasing availability and affordability of natural gas has renewed interest in using methanol for bioproduction of useful chemicals. Engineering synthetic methylotrophy based on natural or artificial methanol assimilation pathways and genetically tractable platform microorganisms for methanol-based biomanufacturing is drawing particular attention. Recently, intensive efforts have been devoted to demonstrating the feasibility and improving the efficiency of synthetic methylotrophy. Various fuel, bulk, and fine chemicals have been synthesized using methanol as a feedstock. However, fully synthetic methylotrophs utilizing methanol as the sole carbon source and commercially viable bioproduction from methanol remain to be developed. Here, we review ongoing efforts to identify limiting factors, optimize synthetic methylotrophs, and implement methanol-based biomanufacturing. Future challenges and prospects are also discussed.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Philibert Tuyishime
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
26
|
Schultenkämper K, Brito LF, Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 2020; 67:7-21. [DOI: 10.1002/bab.1901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Luciana F. Brito
- Department of Biotechnology and Food ScienceNTNUNorwegian University of Science and Technology Trondheim Norway
| | | |
Collapse
|
27
|
López MG, Irla M, Brito LF, Wendisch VF. Characterization of D-Arabitol as Newly Discovered Carbon Source of Bacillus methanolicus. Front Microbiol 2019; 10:1725. [PMID: 31417519 PMCID: PMC6685057 DOI: 10.3389/fmicb.2019.01725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Bacillus methanolicus is a Gram-positive, thermophilic, methanol-utilizing bacterium. As a facultative methylotroph, B. methanolicus is also known to utilize D-mannitol, D-glucose and, as recently discovered, sugar alcohol D-arabitol. While metabolic pathways for utilization of methanol, mannitol and glucose are known, catabolism of arabitol has not yet been characterized in B. methanolicus. In this work we present the elucidation of this hitherto uncharted pathway. In order to confirm our predictions regarding genes coding for arabitol utilization, we performed differential gene expression analysis of B. methanolicus MGA3 cells grown on arabitol as compared to mannitol via transcriptome sequencing (RNA-seq). We identified a gene cluster comprising eight genes that was up-regulated during growth with arabitol as a sole carbon source. The RNA-seq results were subsequently confirmed via qRT-PCR experiments. The transcriptional organization of the gene cluster identified via RNA-seq was analyzed and it was shown that the arabitol utilization genes are co-transcribed in an operon that spans from BMMGA3_RS07325 to BMMGA3_RS07365. Since gene deletion studies are currently not possible in B. methanolicus, two complementation experiments were performed in an arabitol negative Corynebacterium glutamicum strain using the four genes discovered via RNA-seq analysis as coding for a putative PTS for arabitol uptake (BMMGA3_RS07330, BMMGA3_RS07335, and BMMGA3_RS07340 renamed to atlABC) and a putative arabitol phosphate dehydrogenase (BMMGA3_RS07345 renamed to atlD). C. glutamicum is a natural D-arabitol utilizer that requires arabitol dehydrogenase MtlD for arabitol catabolism. The C. glutamicum mtlD deletion mutant was chosen for complementation experiments. Heterologous expression of atlABCD as well as the arabitol phosphate dehydrogenase gene atlD from B. methanolicus alone restored growth of the C. glutamicum ΔmtlD mutant with arabitol. Furthermore, D-arabitol phosphate dehydrogenase activities could be detected in crude extracts of B. methanolicus and these were higher in arabitol-grown cells than in methanol- or mannitol-grown cells. Thus, B. methanolicus possesses an arabitol inducible operon encoding, amongst others, a putative PTS system and an arabitol phosphate dehydrogenase for uptake and activation of arabitol as growth substrate.
Collapse
Affiliation(s)
- Marina Gil López
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marta Irla
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.,Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana F Brito
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.,Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
28
|
Roth TB, Woolston BM, Stephanopoulos G, Liu DR. Phage-Assisted Evolution of Bacillus methanolicus Methanol Dehydrogenase 2. ACS Synth Biol 2019; 8:796-806. [PMID: 30856338 PMCID: PMC6479731 DOI: 10.1021/acssynbio.8b00481] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthetic methylotrophy, the modification of organisms such as E. coli to grow on methanol, is a longstanding goal of metabolic engineering and synthetic biology. The poor kinetic properties of NAD-dependent methanol dehydrogenase, the first enzyme in most methanol assimilation pathways, limit pathway flux and present a formidable challenge to synthetic methylotrophy. To address this bottleneck, we used a formaldehyde biosensor to develop a phage-assisted noncontinuous evolution (PANCE) selection for variants of Bacillus methanolicus methanol dehydrogenase 2 (Bm Mdh2). Using this selection, we evolved Mdh2 variants with up to 3.5-fold improved Vmax. The mutations responsible for enhanced activity map to the predicted active site region homologous to that of type III iron-dependent alcohol dehydrogenases, suggesting a new critical region for future methanol dehydrogenase engineering strategies. Evolved Mdh2 variants enable twice as much 13C-methanol assimilation into central metabolites than previously reported state-of-the-art methanol dehydrogenases. This work provides improved Mdh2 variants and establishes a laboratory evolution approach for metabolic pathways in bacterial cells.
Collapse
Affiliation(s)
- Timothy B. Roth
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Benjamin M. Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
29
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
30
|
Wang X, Wang X, Lu X, Ma C, Chen K, Ouyang P. Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:17. [PMID: 30679956 PMCID: PMC6340170 DOI: 10.1186/s13068-019-1356-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Methanol has attracted increased attention as a non-food alternative carbon source to sugar for biological production of chemicals and fuels. Moreover, the high degree of reduction of methanol offers some advantages in increasing the production yields of NAD(P)H-dependent metabolites. Here, we demonstrate an example of methanol bioconversion with the aim of improving production of NAD(P)H-dependent chemicals in synthetic methylotrophic Escherichia coli. RESULTS A synthetic methylotrophic E. coli was engineered with a nicotinamide adenine dinucleotide (NAD+)-dependent methanol dehydrogenase (MDH) and ribulose monophosphate (RuMP) pathway. Regarding the limited MDH activity, the role of activator proteins in vivo was investigated, and the NudF protein was identified capable of improving MDH activity and triggering increased methanol metabolism. Using 13C-methanol-labeling experiments, we confirmed methanol assimilation in the methylotrophic E. coli. A cycling RuMP pathway for methanol assimilation was also demonstrated by detecting multiple labeled carbons for several compounds. Finally, using the NAD(P)H-dependent metabolite lysine as a test, the potential of methanol bioconversion to generate value-added metabolites was determined. To further characterize the benefit of methanol as the carbon source, extra NADH from methanol oxidation was engineered to generate NADPH to improve lysine biosynthesis by expression of the POS5 gene from Saccharomyces cerevisiae, which resulted in a twofold improvement of lysine production. Moreover, this new sink further pulled upstream methanol utilization. CONCLUSION Through engineering methanol metabolism, lysine biosynthesis, and NADPH regeneration pathway from NADH, the bioconversion of methanol to improve chemical synthesis was successfully achieved in methylotrophic E. coli.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | - Xuelin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | - Xiaolu Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | - Chen Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| |
Collapse
|
31
|
Fan L, Wang Y, Tuyishime P, Gao N, Li Q, Zheng P, Sun J, Ma Y. Engineering Artificial Fusion Proteins for Enhanced Methanol Bioconversion. Chembiochem 2018; 19:2465-2471. [DOI: 10.1002/cbic.201800424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/14/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Liwen Fan
- School of Life SciencesUniversity of Science and Technology of China Hefei 230026 China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Yu Wang
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Philibert Tuyishime
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ning Gao
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggang Li
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Ping Zheng
- School of Life SciencesUniversity of Science and Technology of China Hefei 230026 China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Jibin Sun
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Yanhe Ma
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
32
|
Zhao N, Qian L, Luo G, Zheng S. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:9517-9529. [DOI: 10.1007/s00253-018-9358-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
33
|
Yi J, Lee J, Sung BH, Kang DK, Lim G, Bae JH, Lee SG, Kim SC, Sohn JH. Development of Bacillus methanolicus methanol dehydrogenase with improved formaldehyde reduction activity. Sci Rep 2018; 8:12483. [PMID: 30127388 PMCID: PMC6102214 DOI: 10.1038/s41598-018-31001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/09/2018] [Indexed: 11/09/2022] Open
Abstract
Methanol dehydrogenase (MDH), an NAD+-dependent oxidoreductase, reversibly converts formaldehyde to methanol. This activity is a key step for both toxic formaldehyde elimination and methanol production in bacterial methylotrophy. We mutated decameric Bacillus methanolicus MDH by directed evolution and screened mutants for increased formaldehyde reduction activity in Escherichia coli. The mutant with the highest formaldehyde reduction activity had three amino acid substitutions: F213V, F289L, and F356S. To identify the individual contributions of these residues to the increased reduction activity, the activities of mutant variants were evaluated. F213V/F289L and F213V/F289L/F356S showed 25.3- and 52.8-fold higher catalytic efficiency (kcat/Km) than wild type MDH, respectively. In addition, they converted 5.9- and 6.4-fold more formaldehyde to methanol in vitro than the wild type enzyme. Computational modelling revealed that the three substituted residues were located at MDH oligomerization interfaces, and may influence oligomerization stability: F213V aids in dimer formation, and F289L and F356S in decamer formation. The substitutions may stabilise oligomerization, thereby increasing the formaldehyde reduction activity of MDH.
Collapse
Affiliation(s)
- Jiyeun Yi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.,Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - Du-Kyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - GyuTae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - Jung-Hoon Bae
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Seung-Goo Lee
- School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea.,Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| | - Jung-Hoon Sohn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea. .,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
34
|
Woolston BM, King JR, Reiter M, Van Hove B, Stephanopoulos G. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nat Commun 2018; 9:2387. [PMID: 29921903 PMCID: PMC6008399 DOI: 10.1038/s41467-018-04795-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/26/2018] [Indexed: 01/12/2023] Open
Abstract
Due to volatile sugar prices, the food vs fuel debate, and recent increases in the supply of natural gas, methanol has emerged as a promising feedstock for the bio-based economy. However, attempts to engineer Escherichia coli to metabolize methanol have achieved limited success. Here, we provide a rigorous systematic analysis of several potential pathway bottlenecks. We show that regeneration of ribulose 5-phosphate in E. coli is insufficient to sustain methanol assimilation, and overcome this by activating the sedoheptulose bisphosphatase variant of the ribulose monophosphate pathway. By leveraging the kinetic isotope effect associated with deuterated methanol as a chemical probe, we further demonstrate that under these conditions overall pathway flux is kinetically limited by methanol dehydrogenase. Finally, we identify NADH as a potent kinetic inhibitor of this enzyme. These results provide direction for future engineering strategies to improve methanol utilization, and underscore the value of chemical biology methodologies in metabolic engineering.
Collapse
Affiliation(s)
- Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469C, Cambridge, MA, 02139, USA
| | - Jason R King
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469C, Cambridge, MA, 02139, USA
- Department of Organism Engineering, Ginkgo Bioworks, 27 Drydock Ave, Suite 800, Boston, MA, 02210, USA
| | - Michael Reiter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469C, Cambridge, MA, 02139, USA
| | - Bob Van Hove
- Centre for Synthetic Biology (CSB), Department of Biochemical and Microbial Technology, Ghent University, 9000, Ghent, Belgium
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, MIT 56-469C, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA. Methanol-essential growth of Escherichia coli. Nat Commun 2018; 9:1508. [PMID: 29666370 PMCID: PMC5904121 DOI: 10.1038/s41467-018-03937-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
Methanol represents an attractive substrate for biotechnological applications. Utilization of reduced one-carbon compounds for growth is currently limited to methylotrophic organisms, and engineering synthetic methylotrophy remains a major challenge. Here we apply an in silico-guided multiple knockout approach to engineer a methanol-essential Escherichia coli strain, which contains the ribulose monophosphate cycle for methanol assimilation. Methanol conversion to biomass was stoichiometrically coupled to the metabolization of gluconate and the designed strain was subjected to laboratory evolution experiments. Evolved strains incorporate up to 24% methanol into core metabolites under a co-consumption regime and utilize methanol at rates comparable to natural methylotrophs. Genome sequencing reveals mutations in genes coding for glutathione-dependent formaldehyde oxidation (frmA), NAD(H) homeostasis/biosynthesis (nadR), phosphopentomutase (deoB), and gluconate metabolism (gntR). This study demonstrates a successful metabolic re-routing linked to a heterologous pathway to achieve methanol-dependent growth and represents a crucial step in generating a fully synthetic methylotrophic organism. Engineering synthetic methylotrophy remains challenging. Here, the authors engineer a methanol-essential E. coli by an in silico-guided multiple knockout approach and show a laboratory evolved strain can incorporate up to 24% methanol into core metabolites during growth.
Collapse
Affiliation(s)
- Fabian Meyer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Philipp Keller
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Johannes Hartl
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Olivier G Gröninger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland.
| |
Collapse
|
36
|
Claassens NJ, Sánchez-Andrea I, Sousa DZ, Bar-Even A. Towards sustainable feedstocks: A guide to electron donors for microbial carbon fixation. Curr Opin Biotechnol 2018; 50:195-205. [PMID: 29453021 DOI: 10.1016/j.copbio.2018.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
The replacement of fossil and agricultural feedstocks with sustainable alternatives for the production of chemicals and fuels is a societal and environmental necessity. This challenge can be tackled by using inorganic or one-carbon compounds as electron donors for microbial CO2 fixation and bioproduction. Yet, considering the wide array of microbial electron donors, which are the best suited for bioindustry? Here, we propose criteria to evaluate these compounds, considering factors such as production methods, physicochemical properties, and microbial utilization. H2, CO, and formate emerge as the most promising electron donors as they can be produced electrochemically at high efficiency and, importantly, have reduction potentials low enough to directly reduce the cellular electron carriers. Still, further research towards the production and utilization of other electron donors-especially phosphite-might unlock the full potential of microbial CO2 fixation and bioproduction.
Collapse
Affiliation(s)
- Nico Joannes Claassens
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Diana Zita Sousa
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
37
|
Bennett RK, Steinberg LM, Chen W, Papoutsakis ET. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr Opin Biotechnol 2017; 50:81-93. [PMID: 29216497 DOI: 10.1016/j.copbio.2017.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
Methylotrophy describes the ability of organisms to utilize reduced one-carbon compounds, notably methane and methanol, as growth and energy sources. Abundant natural gas supplies, composed primarily of methane, have prompted interest in using these compounds, which are more reduced than sugars, as substrates to improve product titers and yields of bioprocesses. Engineering native methylotophs or developing synthetic methylotrophs are emerging fields to convert methane and methanol into fuels and chemicals under aerobic and anaerobic conditions. This review discusses recent progress made toward engineering native methanotrophs for aerobic and anaerobic methane utilization and synthetic methylotrophs for methanol utilization. Finally, strategies to overcome the limitations involved with synthetic methanol utilization, notably methanol dehydrogenase kinetics and ribulose 5-phosphate regeneration, are discussed.
Collapse
Affiliation(s)
- R Kyle Bennett
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA; The Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Lisa M Steinberg
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA; The Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA; The Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA.
| |
Collapse
|
38
|
Woolston BM, Roth T, Kohale I, Liu DR, Stephanopoulos G. Development of a formaldehyde biosensor with application to synthetic methylotrophy. Biotechnol Bioeng 2017; 115:206-215. [PMID: 28921510 DOI: 10.1002/bit.26455] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 02/03/2023]
Abstract
Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy.
Collapse
Affiliation(s)
| | - Timothy Roth
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ishwar Kohale
- Department of Biological Engineering, MIT, Cambridge 02139, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
39
|
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T. 6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle. Appl Microbiol Biotechnol 2017; 101:4185-4200. [DOI: 10.1007/s00253-017-8173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 11/29/2022]
|
40
|
Nærdal I, Netzer R, Irla M, Krog A, Heggeset TMB, Wendisch VF, Brautaset T. l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering. J Biotechnol 2017; 244:25-33. [PMID: 28163092 DOI: 10.1016/j.jbiotec.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysEMGA3. Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysEPB1 and lysE2PB1. The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysECg from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysECg while overexpression of lysEMGA3, lysEPB1 and lysE2PB1 had no measurable effect.
Collapse
Affiliation(s)
- Ingemar Nærdal
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | - Roman Netzer
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | - Marta Irla
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Anne Krog
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | | | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Trygve Brautaset
- NTNU, Norwegian University of Science and Technology, Department of Biotechnology, Trondheim, Norway.
| |
Collapse
|
41
|
Irla M, Heggeset TMB, Nærdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production. Front Microbiol 2016; 7:1481. [PMID: 27713731 PMCID: PMC5031790 DOI: 10.3389/fmicb.2016.01481] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022] Open
Abstract
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 6.5 to 10.2 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.
Collapse
Affiliation(s)
- Marta Irla
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| | - Tonje M B Heggeset
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Ingemar Nærdal
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Lidia Paul
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| | - Tone Haugen
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Simone B Le
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Trygve Brautaset
- SINTEF Materials and Chemistry, Department of Biotechnology and NanomedicineTrondheim, Norway; Department of Biotechnology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| |
Collapse
|
42
|
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 2016; 234:139-157. [DOI: 10.1016/j.jbiotec.2016.07.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
|
43
|
Carnicer M, Vieira G, Brautaset T, Portais JC, Heux S. Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus. Microb Cell Fact 2016; 15:92. [PMID: 27251037 PMCID: PMC4888489 DOI: 10.1186/s12934-016-0483-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 12/04/2022] Open
Abstract
Background The gram-positive bacterium Bacillus methanolicus MGA3 is a promising candidate for methanol-based biotechnologies. Accurate determination of intracellular metabolites is crucial for engineering this bacteria into an efficient microbial cell factory. Due to the diversity of chemical and cell properties, an experimental protocol validated on B. methanolicus is needed. Here a systematic evaluation of different techniques for establishing a reliable basis for metabolome investigations is presented. Results Metabolome analysis was focused on metabolites closely linked with B. methanolicus central methanol metabolism. As an alternative to cold solvent based procedures, a solvent-free quenching strategy using stainless steel beads cooled to −20 °C was assessed. The precision, the consistency of the measurements, and the extent of metabolite leakage from quenched cells were evaluated in procedures with and without cell separation. The most accurate and reliable performance was provided by the method without cell separation, as significant metabolite leakage occurred in the procedures based on fast filtration. As a biological test case, the best protocol was used to assess the metabolome of B. methanolicus grown in chemostat on methanol at two different growth rates and its validity was demonstrated. Conclusion The presented protocol is a first and helpful step towards developing reliable metabolomics data for thermophilic methylotroph B. methanolicus. This will definitely help for designing an efficient methylotrophic cell factory. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0483-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc Carnicer
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, 31077, Toulouse, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400, Toulouse, France.,CNRS, UMR5504, 31400, Toulouse, France
| | - Gilles Vieira
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, 31077, Toulouse, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400, Toulouse, France.,CNRS, UMR5504, 31400, Toulouse, France
| | - Trygve Brautaset
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jean-Charles Portais
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, 31077, Toulouse, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400, Toulouse, France.,CNRS, UMR5504, 31400, Toulouse, France
| | - Stephanie Heux
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, 31077, Toulouse, France. .,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400, Toulouse, France. .,CNRS, UMR5504, 31400, Toulouse, France. .,LISBP-INSA de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
44
|
Usuda Y, Hara Y, Kojima H. Toward Sustainable Amino Acid Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:289-304. [PMID: 27872964 DOI: 10.1007/10_2016_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.
Collapse
Affiliation(s)
- Yoshihiro Usuda
- Institute for Innovation, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Yoshihiko Hara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzukicho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Hiroyuki Kojima
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzukicho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| |
Collapse
|
45
|
Müller JEN, Meyer F, Litsanov B, Kiefer P, Vorholt JA. Core pathways operating during methylotrophy ofBacillus methanolicus MGA3 and induction of a bacillithiol-dependent detoxification pathway upon formaldehyde stress. Mol Microbiol 2015; 98:1089-100. [DOI: 10.1111/mmi.13200] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas E. N. Müller
- Institute of Microbiology; ETH Zurich; Vladimir-Prelog-Weg 4 Zurich 8093 Switzerland
| | - Fabian Meyer
- Institute of Microbiology; ETH Zurich; Vladimir-Prelog-Weg 4 Zurich 8093 Switzerland
| | - Boris Litsanov
- Institute of Microbiology; ETH Zurich; Vladimir-Prelog-Weg 4 Zurich 8093 Switzerland
| | - Patrick Kiefer
- Institute of Microbiology; ETH Zurich; Vladimir-Prelog-Weg 4 Zurich 8093 Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology; ETH Zurich; Vladimir-Prelog-Weg 4 Zurich 8093 Switzerland
| |
Collapse
|
46
|
Kiefer P, Schmitt U, Müller JEN, Hartl J, Meyer F, Ryffel F, Vorholt JA. DynaMet: A Fully Automated Pipeline for Dynamic LC–MS Data. Anal Chem 2015; 87:9679-86. [DOI: 10.1021/acs.analchem.5b01660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Patrick Kiefer
- Institute
of Microbiology, ETH Zurich, Zurich, Switzerland 8093
| | - Uwe Schmitt
- ID
Scientific IT Services, ETH Zurich, Zurich, Switzerland 8093
| | | | - Johannes Hartl
- Institute
of Microbiology, ETH Zurich, Zurich, Switzerland 8093
| | - Fabian Meyer
- Institute
of Microbiology, ETH Zurich, Zurich, Switzerland 8093
| | - Florian Ryffel
- Institute
of Microbiology, ETH Zurich, Zurich, Switzerland 8093
| | | |
Collapse
|
47
|
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 2015; 99:10163-76. [PMID: 26276544 DOI: 10.1007/s00253-015-6906-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.
Collapse
|
48
|
Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria. Microorganisms 2015; 3:94-112. [PMID: 27682081 PMCID: PMC5023230 DOI: 10.3390/microorganisms3010094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
Gram-positive methylotrophic bacteria have been known for a long period of time, some serving as model organisms for characterizing the specific details of methylotrophy pathways/enzymes within this group. However, genome-based knowledge of methylotrophy within this group has been so far limited to a single species, Bacillus methanolicus (Firmicutes). The paucity of whole-genome data for Gram-positive methylotrophs limits our global understanding of methylotrophy within this group, including their roles in specific biogeochemical cycles, as well as their biotechnological potential. Here, we describe the isolation of seven novel strains of Gram-positive methylotrophs that include two strains of Bacillus and five representatives of Actinobacteria classified within two genera, Arthrobacter and Mycobacterium. We report whole-genome sequences for these isolates and present comparative analysis of the methylotrophy functional modules within these genomes. The genomic sequences of these seven novel organisms, all capable of growth on methylated amines, present an important reference dataset for understanding the genomic basis of methylotrophy in Gram-positive methylotrophic bacteria. This study is a major contribution to the field of methylotrophy, aimed at closing the gap in the genomic knowledge of methylotrophy within this diverse group of bacteria.
Collapse
|
49
|
Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb Biotechnol 2015; 8:342-50. [PMID: 25644214 PMCID: PMC4353347 DOI: 10.1111/1751-7915.12257] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 01/05/2023] Open
Abstract
Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l−1 during shake flask conditions. A volume-corrected concentration of 11.3 g l−1 of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol.
Collapse
Affiliation(s)
- Ingemar Naerdal
- Sector for Biotechnology and Nanomedicine, Department of Molecular Biology, SINTEF Materials and Chemistry, Trondheim, Norway
| | | | | | | |
Collapse
|
50
|
Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol 2014; 99:517-34. [PMID: 25432674 DOI: 10.1007/s00253-014-6240-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 01/06/2023]
Abstract
Methylotrophy is the ability to use reduced one-carbon compounds, such as methanol, as a single source of carbon and energy. Methanol is, due to its availability and potential for production from renewable resources, a valuable feedstock for biotechnology. Nature offers a variety of methylotrophic microorganisms that differ in their metabolism and represent resources for engineering of value-added products from methanol. The most extensively studied methylotroph is the Alphaproteobacterium Methylobacterium extorquens. Over the past five decades, the metabolism of M. extorquens has been investigated physiologically, biochemically, and more recently, using complementary omics technologies such as transcriptomics, proteomics, metabolomics, and fluxomics. These approaches, together with a genome-scale metabolic model, facilitate system-wide studies and the development of rational strategies for the successful generation of desired products from methanol. This review summarizes the knowledge of methylotrophy in M. extorquens, as well as the available tools and biotechnological applications.
Collapse
Affiliation(s)
- Andrea M Ochsner
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | | | | | | | | |
Collapse
|