1
|
Sumathi Y, Dong CD, Singhania RR, Chen CW, Gurunathan B, Patel AK. Advancements in Nano-Enhanced microalgae bioprocessing. BIORESOURCE TECHNOLOGY 2024; 401:130749. [PMID: 38679239 DOI: 10.1016/j.biortech.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
Collapse
Affiliation(s)
- Yamini Sumathi
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
2
|
Mora-Godínez S, Senés-Guerrero C, Pacheco A. De novo transcriptome and lipidome analysis of Desmodesmus abundans under model flue gas reveals adaptive changes after ten years of acclimation to high CO2. PLoS One 2024; 19:e0299780. [PMID: 38758755 PMCID: PMC11101044 DOI: 10.1371/journal.pone.0299780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/14/2024] [Indexed: 05/19/2024] Open
Abstract
Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.
Collapse
Affiliation(s)
- Shirley Mora-Godínez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| | | | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
3
|
Liao L, Chen B, Deng K, He Q, Lin G, Guo J, Yan P. Effect of the N-hexanoyl-L-homoserine Lactone on the Carbon Fixation Capacity of the Algae-Bacteria System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5047. [PMID: 36981956 PMCID: PMC10049018 DOI: 10.3390/ijerph20065047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Algae-bacteria systems are used widely in wastewater treatment. N-hexanoyl-L-homoserine lactone (AHL) plays an important role in algal-bacteria communication. However, little study has been conducted on the ability of AHLs to regulate algal metabolism and the carbon fixation ability, especially in algae-bacteria system. In this study, we used the Microcystis aeruginosa + Staphylococcus ureilyticus strain as a algae-bacteria system. The results showed that 10 ng/L C6-HSL effectively increased the chlorophyll-a (Chl-a) concentration and carbon fixation enzyme activities in the algae-bacteria group and algae group, in which Chl-a, carbonic anhydrase activity, and Rubisco enzyme increased by 40% and 21%, 56.4% and 137.65%, and 66.6% and 10.2%, respectively, in the algae-bacteria group and algae group, respectively. The carbon dioxide concentration mechanism (CCM) model showed that C6-HSL increased the carbon fixation rate of the algae-bacteria group by increasing the CO2 transport rate in the water and the intracellular CO2 concentration. Furthermore, the addition of C6-HSL promoted the synthesis and secretion of the organic matter of algae, which provided biogenic substances for bacteria in the system. This influenced the metabolic pathways and products of bacteria and finally fed back to the algae. This study provided a strategy to enhance the carbon fixation rate of algae-bacteria consortium based on quorum sensing.
Collapse
Affiliation(s)
- Lei Liao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Bin Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Kaikai Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Qiang He
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Guijiao Lin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| |
Collapse
|
4
|
Mora-Godínez S, Rodríguez-López CE, Senés-Guerrero C, Treviño V, Díaz de la Garza R, Pacheco A. Effect of high CO2 concentrations on Desmodesmus abundans RSM lipidome. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Development of a Strategy for Enhancing the Biomass Growth and Lipid Accumulation of Chlorella sp. UJ-3 Using Magnetic Fe 3O 4 Nanoparticles. NANOMATERIALS 2021; 11:nano11112802. [PMID: 34835566 PMCID: PMC8624931 DOI: 10.3390/nano11112802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023]
Abstract
In this study, magnetic Fe3O4 nanoparticles (NPs) were used as an effective enhancer to increase the biomass and total lipid production of Chlorella sp. UJ-3. It was found that the biomass of algal cells increased significantly when they were exposed to low concentrations of Fe3O4 NPs (20 mg/L), while the best total lipid content of algal cells was achieved when they were exposed to high concentrations of Fe3O4 NPs (100 mg/L). Therefore, we established a strategy to promote the growth and lipid accumulation of microalgae by initially exposing the algal cells to low concentrations of Fe3O4 NPs and then treating them with an increased concentration of Fe3O4 NPs after 12 days of culture. For this strategy, the biomass and total lipid production of algal cells increased by 50% and 108.7%, respectively, compared to the untreated control. The increase in lipid production and change in the fatty acid composition of Chlorella cells were found to help them to cope with the increased number of reactive oxygen species produced due to oxidative stress in alga cells after the addition of Fe3O4 NPs. This study provided a highly efficient way to improve the lipid production of microalgae using nanoparticles.
Collapse
|
6
|
Sarkar A, Rajarathinam R, Venkateshan RB. A comparative assessment of growth, pigment and enhanced lipid production by two toxic freshwater cyanobacteria Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of nitrogen and phosphorous inputs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15923-15933. [PMID: 33247403 DOI: 10.1007/s11356-020-11754-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen and phosphorous are important nutritional regulators for the growth of cyanobacteria, thereby having a significant impact in bloom formation by toxic species. Usage of toxic cyanobacteria for increasing valuable metabolite production by nutrient manipulation is still unexplored. Hence, the current work is aimed to estimate and compare growth, pigment, and increased lipid production coupled with the identification of fatty acids between two toxic strains-Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of these two nutrients. Low level of nitrogen and phosphorous enhanced lipid content in both strains (˃ 20% and 30% respectively) and C. raciborskii, respectively. Lipid productivity in low phosphorous concentration (P0.5) was achieved significantly high in C. raciborskii. Similarly, a substantial amount of carotenoids was obtained at reduced nitrogen and phosphorous in C. raciborskii accompanied by lessened growth and Chl a concentration. Unlikely, enough biomass (˃ 2 g L-1) was produced at high nutrient levels in both species. Comparative statistical significance (p < 0.05) was found between two species regarding biomass production, chlorophyll concentration, lipid content, and productivity and between these factors in each species under both nutrient variations. FAME of Cylindrospermopsis is composed of saturated fatty acids (˃ 50%) and MUFA (˃ 25%) while Anabaena contains PUFA (˃ 21%) additionally. However, the study highlights C. raciborskii as potential lipid and carotenoid producer at nutrient stress and finds a novel way to utilize these cyanobacterial biomasses, which cause immense environmental hazards and life threats.
Collapse
Affiliation(s)
- Aratrika Sarkar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India
| | - Ravikumar Rajarathinam
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India.
| | - Ranganathan Budhi Venkateshan
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India
| |
Collapse
|
7
|
Zhang Y, Gu Z, Ren Y, Wang L, Zhang J, Liang C, Tong S, Wang Y, Xu D, Zhang X, Ye N. Integrating Transcriptomics and Metabolomics to Characterize Metabolic Regulation to Elevated CO 2 in Chlamydomonas Reinhardtii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:255-275. [PMID: 33689052 DOI: 10.1007/s10126-021-10021-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 05/27/2023]
Abstract
With atmospheric CO2 increasing, a large amount of CO2 is absorbed by oceans and lakes, which changes the carbonate system and affects the survival of aquatic plants, especially microalgae. The main aim of our study was to explore the responses of Chlamydomonas reinhardtii (Chlorophyceae) to elevated CO2 by combined transcriptome and metabolome analysis under three different scenarios: control (CK, 400 ppm), short-term elevated CO2 (ST, 1000 ppm), and long-term elevated CO2 (LT, 1000 ppm). The transcriptomic data showed moderate changes between ST and CK. However, metabolic analysis indicated that fatty acids (FAs) and partial amino acids (AAs) were increased under ST. There was a global downregulation of genes involved in photosynthesis, glycolysis, lipid metabolism, and nitrogen metabolism but increase in the TCA cycle and β-oxidation under LT. Integrated transcriptome and metabolome analyses demonstrated that the nutritional constituents (FAs, AAs) under LT were poor compared with CK, and most genes and metabolites involved in C and N metabolism were significantly downregulated. However, the growth and photosynthesis of cells under LT increased significantly. Thus, C. reinhardtii could form a specific adaptive evolution to elevated CO2, affecting future biogeochemical cycles.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Zipeng Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Yudong Ren
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Lu Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Jian Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
| | - Chengwei Liang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China.
| | - Shanying Tong
- School of Life Sciences, Ludong University, 186 Hongqi Middle Road, Yantai, 264025, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- National Oceanographic Center, Qingdao, 266071, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- National Oceanographic Center, Qingdao, 266071, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- National Oceanographic Center, Qingdao, 266071, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China.
- National Oceanographic Center, Qingdao, 266071, China.
| |
Collapse
|
8
|
Changes in lipid and carotenoid metabolism in Chlamydomonas reinhardtii during induction of CO2-concentrating mechanism: Cellular response to low CO2 stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Ran W, Wang H, Liu Y, Qi M, Xiang Q, Yao C, Zhang Y, Lan X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. BIORESOURCE TECHNOLOGY 2019; 291:121894. [PMID: 31387839 DOI: 10.1016/j.biortech.2019.121894] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
Microalgae accumulate starch and lipid as storage metabolites under nutrient depletion, which can be used as sustainable feedstock for biorefinery. Omics analysis coupled with enzymatic and genetic verifications uncovered a partial picture of pathways and important enzymes or regulators related to starch and lipid biosynthesis as well as the carbon partitioning between them under nutrient depletion conditions. Depletion of macronutrients (N, P, and S) resulted in considerable enhancement of starch and/or lipid content in microalgae, but the accompanying declined photosynthesis hampered the achievements of high concentrations. This review summarized the current knowledge on the pathways and the committed steps as well as their carbon allocation involved in starch and lipid biosynthesis, and focused on the manipulation of different nutrients and the alleviation of oxidative stress for enhanced storage metabolites production. The biological and engineering approaches to cope with the conflict between biomass production and storage metabolites accumulation are proposed.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haitao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yinghui Liu
- Information Management Center of Sichuan University, Chengdu, Sichuan 610065, China
| | - Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
10
|
Arora N, Pienkos PT, Pruthi V, Poluri KM, Guarnieri MT. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol Adv 2018; 36:1274-1292. [PMID: 29678388 DOI: 10.1016/j.biotechadv.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023]
Abstract
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Philip T Pienkos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Michael T Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
11
|
Zhang L, Wang YZ, Wang S, Ding K. Effect of carbon dioxide on biomass and lipid production of Chlorella pyrenoidosa in a membrane bioreactor with gas-liquid separation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:227. [PMID: 30151055 PMCID: PMC6100726 DOI: 10.1186/s13068-018-1225-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 05/13/2023]
Abstract
Microalgae are capable of producing sustainable bioproducts and biofuels by using carbon dioxide or other carbon substances in various cultivation modes. It is of great significance to exploit microalgae for the economical viability of biofuels and the revenues from high-value bioproducts. However, the industrial performance of microalgae is still challenged with potential conflict between cost of microalgae cultivation and revenues from them, which is mainly ascribed to the lack of comprehensive understanding of carbon metabolism and energy conversion. In this review, we provide an overview of the recent advances in carbon and energy fluxes of light-dependent reaction, Calvin-Benson-Bassham cycle, tricarboxylic acid cycle, glycolysis pathway and processes of product biosynthesis in microalgae, with focus on the increased photosynthetic and carbon efficiencies. Recent strategies for the enhanced production of bioproducts and biofuels from microalgae are discussed in detail. Approaches to alter microbial physiology by controlling light, nutrient and other environmental conditions have the advantages of increasing biomass concentration and product yield through the efficient carbon conversion. Engineering strategies by regulating carbon partitioning and energy route are capable of improving the efficiencies of photosynthesis and carbon conversion, which consequently realize high-value biomass. The coordination of carbon and energy fluxes is emerging as the potential strategy to increase efficiency of carbon fixation and product biosynthesis. To achieve more desirable high-value products, coordination of multi-stage cultivation with engineering and stress-based strategies occupies significant positions in a long term.
Collapse
Affiliation(s)
- Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Weiyang Zhao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yuelian Li
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
13
|
Ji X, Verspagen JMH, Stomp M, Huisman J. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why? JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3815-3828. [PMID: 28207058 PMCID: PMC5853874 DOI: 10.1093/jxb/erx027] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/12/2017] [Indexed: 05/22/2023]
Abstract
Traditionally, it has often been hypothesized that cyanobacteria are superior competitors at low CO2 and high pH in comparison with eukaryotic algae, owing to their effective CO2-concentrating mechanism (CCM). However, recent work indicates that green algae can also have a sophisticated CCM tuned to low CO2 levels. Conversely, cyanobacteria with the high-flux bicarbonate uptake system BicA appear well adapted to high inorganic carbon concentrations. To investigate these ideas we studied competition between three species of green algae and a bicA strain of the harmful cyanobacterium Microcystis aeruginosa at low (100 ppm) and high (2000 ppm) CO2. Two of the green algae were competitively superior to the cyanobacterium at low CO2, whereas the cyanobacterium increased its competitive ability with respect to the green algae at high CO2. The experiments were supported by a resource competition model linking the population dynamics of the phytoplankton species with dynamic changes in carbon speciation, pH and light. Our results show (i) that competition between phytoplankton species at different CO2 levels can be predicted from species traits in monoculture, (ii) that green algae can be strong competitors under CO2-depleted conditions, and (iii) that bloom-forming cyanobacteria with high-flux bicarbonate uptake systems will benefit from elevated CO2 concentrations.
Collapse
Affiliation(s)
- Xing Ji
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, The Netherlands
| | - Jolanda M H Verspagen
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, The Netherlands
| | - Maayke Stomp
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, The Netherlands
| |
Collapse
|
14
|
Qi F, Xu Y, Yu Y, Liang X, Zhang L, Zhao H, Wang H. Enhancing growth of Chlamydomonas reinhardtii and nutrient removal in diluted primary piggery wastewater by elevated CO 2 supply. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2281-2290. [PMID: 28541935 DOI: 10.2166/wst.2017.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The coupling of primary piggery wastewater as a culture medium with elevated CO2 aeration is thought to be an economically feasible option for the cultivation of microalgae. However, little information is available regarding the photosynthetic characteristics of microalgae and nutrient removal from wastewater at different CO2 concentrations. It was found that elevated CO2 aeration provided sustained growth at CO2 concentrations ranging from 5% to 15% and performed best with 5% CO2 aeration in primary piggery wastewater for Chlamydomonas reinhardtii growth. Photosynthesis, respiration, and nutrient uptake (total nitrogen and total phosphorus) were stimulated in response to CO2 enrichment, thus increasing nutrient uptake in primary piggery wastewater, particularly total nitrogen and total phosphorus. A study of carbon-concentrating mechanism-related gene expression revealed that the levels of mRNAs, such as CAH1, LCIB and HLA3, were significantly downregulated. This represents a possible method for the reconciliation of CO2-stimulated growth with mixotrophic cultivation of C. reinhardtii in diluted primary piggery wastewater.
Collapse
Affiliation(s)
- Fan Qi
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China E-mail:
| | - Yan Xu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China E-mail:
| | - Yi Yu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China E-mail:
| | - Xiaosheng Liang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China E-mail:
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China E-mail:
| | - Hui Zhao
- HuBei Inspection and Quarantine Technology Center, Wuhan 430050, China
| | - Haiying Wang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China E-mail:
| |
Collapse
|
15
|
Show PL, Tang MSY, Nagarajan D, Ling TC, Ooi CW, Chang JS. A Holistic Approach to Managing Microalgae for Biofuel Applications. Int J Mol Sci 2017; 18:ijms18010215. [PMID: 28117737 PMCID: PMC5297844 DOI: 10.3390/ijms18010215] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/24/2016] [Accepted: 01/06/2017] [Indexed: 11/16/2022] Open
Abstract
Microalgae contribute up to 60% of the oxygen content in the Earth’s atmosphere by absorbing carbon dioxide and releasing oxygen during photosynthesis. Microalgae are abundantly available in the natural environment, thanks to their ability to survive and grow rapidly under harsh and inhospitable conditions. Microalgal cultivation is environmentally friendly because the microalgal biomass can be utilized for the productions of biofuels, food and feed supplements, pharmaceuticals, nutraceuticals, and cosmetics. The cultivation of microalgal also can complement approaches like carbon dioxide sequestration and bioremediation of wastewaters, thereby addressing the serious environmental concerns. This review focuses on the factors affecting microalgal cultures, techniques adapted to obtain high-density microalgal cultures in photobioreactors, and the conversion of microalgal biomass into biofuels. The applications of microalgae in carbon dioxide sequestration and phycoremediation of wastewater are also discussed.
Collapse
Affiliation(s)
- Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Malaysia.
| | - Malcolm S Y Tang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Chien-Wei Ooi
- Chemical Engineering Discipline and Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia.
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
16
|
Huang Y, Cheng J, Lu H, He Y, Zhou J, Cen K. Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO 2. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:181. [PMID: 28702086 PMCID: PMC5505034 DOI: 10.1186/s13068-017-0868-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND The biomass yield of Chlorella PY-ZU1 drastically increased when cultivated under high CO2 condition compared with that cultivated under air condition. However, less attention has been given to the microalgae photosynthetic mechanisms response to different CO2 concentrations. The genetic reasons for the higher growth rate, CO2 fixation rate, and photosynthetic efficiency of microalgal cells under higher CO2 concentration have not been clearly defined yet. RESULTS In this study, the Illumina sequencing and de novo transcriptome assembly of Chlorella PY-ZU1 cells cultivated under 15% CO2 were performed and compared with those of cells grown under air. It was found that carbonic anhydrase (CAs, enzyme for interconversion of bicarbonate to CO2) dramatically decreased to near 0 in 15% CO2-grown cells, which indicated that CO2 molecules directly permeated into cells under high CO2 stress without CO2-concentrating mechanism. Extrapolating from the growth conditions and quantitative Real-Time PCR of CCM-related genes, the Km (CO2) (the minimum intracellular CO2 concentration that rubisco required) of Chlorella PY-ZU1 might be in the range of 80-192 μM. More adenosine triphosphates was saved for carbon fixation-related pathways. The transcript abundance of rubisco (the most important enzyme of CO2 fixation reaction) was 16.3 times higher in 15% CO2-grown cells than that under air. Besides, the transcript abundances of most key genes involved in carbon fixation pathways were also enhanced in 15% CO2-grown cells. CONCLUSIONS Carbon fixation and nitrogen metabolism are the two most important metabolisms in the photosynthetic cells. These genes related to the two most metabolisms with significantly differential expressions were beneficial for microalgal growth (2.85 g L-1) under 15% CO2 concentration. Considering the micro and macro growth phenomena of Chlorella PY-ZU1 under different concentrations of CO2 (0.04-60%), CO2 transport pathways responses to different CO2 (0.04-60%) concentrations was reconstructed.
Collapse
Affiliation(s)
- Yun Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing, 400044 China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China
| | - Hongxiang Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China
| | - Yong He
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China
| |
Collapse
|
17
|
|
18
|
Transcriptome-based global analysis of gene expression in response to carbon dioxide deprivation in the green algae Chlorella pyrenoidosa. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Xie L, Zhou L, Liu T, Xu X. Degradation of disperse blue 2BLN by oleaginous C. sorokiniana XJK. RSC Adv 2016. [DOI: 10.1039/c6ra21915b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, an oil-producing freshwater microalgae Chlorella sorokiniana XJK was identified and used for the degradation of disperse blue 2BLN.
Collapse
Affiliation(s)
- Li Xie
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi
- People's Republic of China
| | - Lin Zhou
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi
- People's Republic of China
| | - Tingting Liu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi
- People's Republic of China
| | - Xiaolin Xu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi
- People's Republic of China
| |
Collapse
|
20
|
Zhao S, Ding YD, Liao Q, Zhu X, Huang Y. Experimental and theoretical study on dissolution of a single mixed gas bubble in a microalgae suspension. RSC Adv 2015. [DOI: 10.1039/c5ra03905c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visualization experiments using a promoted bubble grafting method were carried out and the non-equilibrium theory at the gas–liquid interface was adopted to predict the dissolution and transmission process of CO2 gas.
Collapse
Affiliation(s)
- Sha Zhao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University)
- Ministry of Education
- Chongqing 400030
- China
- Institute of Engineering Thermophysics
| | - Yu-Dong Ding
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University)
- Ministry of Education
- Chongqing 400030
- China
- Institute of Engineering Thermophysics
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University)
- Ministry of Education
- Chongqing 400030
- China
- Institute of Engineering Thermophysics
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University)
- Ministry of Education
- Chongqing 400030
- China
- Institute of Engineering Thermophysics
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University)
- Ministry of Education
- Chongqing 400030
- China
- Institute of Engineering Thermophysics
| |
Collapse
|