1
|
Gjini L, Kuznetsova A, Okpala G, Foght JM, Ulrich A, Siddique T. Aerobic biodegradation of cycloalkanes in non-aqueous extracted oil sands tailings. CHEMOSPHERE 2024; 349:140900. [PMID: 38065261 DOI: 10.1016/j.chemosphere.2023.140900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/22/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Management of growing volumes of fluid fine tailings (FFT) is a significant challenge for oil sands industry. A potential alternative non-aqueous solvent extraction (NAE) process uses cycloalkane solvent such as cyclohexane or cyclopentane with very little water and generates smaller volumes of 'dry' solids (NAES) with residual solvent. Here we investigate remediation of NAES in a simulated bench-scale upland reclamation scenario. In the first study, microcosms with nutrient medium plus FFT as inoculum were amended with cyclohexane and incubated for ∼1 year, monitoring for cyclohexane biodegradation under aerobic conditions. Biodegradation of cyclohexane occurred under aerobic conditions with no metabolic intermediates detected. A second study using NAES mixed with FFT spiked with cyclohexane and cyclopentane, with or without additional nutrients (nitrogen and phosphorus), showed complete and rapid aerobic biodegradation of both cycloalkanes in NAES inoculated with FFT and supplemented with nutrients. 16S rRNA gene sequencing revealed dominance of Rhodoferax and members of Burkholderiaceae during aerobic cyclohexane biodegradation in FFT, and Hydrogenophaga, Acidovorax, Defluviimonas and members of Porticoccaceae during aerobic biodegradation of cyclohexane and cyclopentane in NAES inoculated with FFT and supplemented with nutrients. The findings indicate that biodegradation of cycloalkanes from NAES is possible under aerobic condition, which will contribute to the successful reclamation of oil sands tailings for land closure.
Collapse
Affiliation(s)
- Luke Gjini
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Gloria Okpala
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Julia M Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Tüllinghoff A, Toepel J, Bühler B. Enlighting Electron Routes In Oxyfunctionalizing Synechocystis sp. PCC 6803. Chembiochem 2024; 25:e202300475. [PMID: 37994522 DOI: 10.1002/cbic.202300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Phototrophic microorganisms, like cyanobacteria, are gaining attention as host organisms for biocatalytic processes with light as energy source and water as electron source. Redox enzymes, especially oxygenases, can profit from in-situ supply of co-substrates, i. e., reduction equivalents and O2 , by the photosynthetic light reaction. The electron transfer downstream of PS I to heterologous electron consuming enzymes in principle can involve NADPH, NADH, and/or ferredoxin, whereas most direct and efficient transfer is desirable. Here, we use the model organism Synechocystis sp. PCC 6803 to investigate, to what extent host and/or heterologous constituents are involved in electron transfer to a heterologous cytochrome P450 monooxygenase from Acidovorax sp. CHX100. Interestingly, in this highly active light-fueled cycloalkane hydroxylating biocatalyst, host-intrinsic enzymes were found capable of completely substituting the function of the Acidovorax ferredoxin reductase. To a certain extent (20 %), this also was true for the Acidovorax ferredoxin. These results indicate the presence of a versatile set of electron carriers in cyanobacteria, enabling efficient and direct coupling of electron consuming reactions to photosynthetic water oxidation. This will both simplify and promote the use of phototrophic microorganisms for sustainable production processes.
Collapse
Affiliation(s)
- Adrian Tüllinghoff
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
3
|
Wu J, Ye Z, Liao C, Li R, Chen X. Terpenoids from the Roots of Stellera chamaejasme (L.) and Their Bioactivities. Molecules 2023; 28:7726. [PMID: 38067457 PMCID: PMC10707970 DOI: 10.3390/molecules28237726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
An undescribed diterpene, stellerterpenoid A (1), and two undescribed sesquiterpenoids, stellerterpenoids B and C (2-3), together with six known compounds, prostratin (4) stelleraguaianone B (5), chamaejasnoid A (6), auranticanol L (7), wikstronone C (8), and oleodaphnone (9), were isolated from the roots of Stellera chamaejasme L. Their structures were elucidated by extensive spectroscopic data (1D, 2D NMR, IR, UV, and HR-ESI-MS). The absolute configuration of 1-3 was elucidated based on ECD calculation. Among them, stellerterpenoid A was a rare 13, 14-seco nortigliane diterpenoid and stellerterpenoid B was a guaiacane-type sesquiterpenoid with an unusual 1, 2-diketone moiety. The known stelleraguaianone B (5) exhibited moderate activity for suppressing NO production in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages cells with an IC50 value of 24.76 ± 0.4 μM. None of the compounds showed anti-influenza virus or anti-tumor activity in vitro.
Collapse
Affiliation(s)
- Juan Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.W.); (Z.Y.); (C.L.)
| | - Zhujun Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.W.); (Z.Y.); (C.L.)
| | - Caicen Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.W.); (Z.Y.); (C.L.)
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.W.); (Z.Y.); (C.L.)
- Key Laboratory of New Drugs (Traditional Chinese Medicine) for Respiratory Viral Diseases of Yunnan Province, Kunming 650500, China
| | - Xuanqin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.W.); (Z.Y.); (C.L.)
- Key Laboratory of New Drugs (Traditional Chinese Medicine) for Respiratory Viral Diseases of Yunnan Province, Kunming 650500, China
| |
Collapse
|
4
|
Góngora E, Chen YJ, Ellis M, Okshevsky M, Whyte L. Hydrocarbon bioremediation on Arctic shorelines: Historic perspective and roadway to the future. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119247. [PMID: 35390417 DOI: 10.1016/j.envpol.2022.119247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Climate change has become one of the greatest concerns of the past few decades. In particular, global warming is a growing threat to the Canadian high Arctic and other polar regions. By the middle of this century, an increase in the annual mean temperature of 1.8 °C-2.7 °C for the Canadian North is predicted. Rising temperatures lead to a significant decrease of the sea ice area covered in the Northwest Passage. As a consequence, a surge of maritime activity in that region increases the risk of hydrocarbon pollution due to accidental fuel spills. In this review, we focus on bioremediation approaches on Arctic shorelines. We summarize historical experimental spill studies conducted at Svalbard, Baffin Island, and the Kerguelen Archipelago, and review contemporary studies that used modern omics techniques in various environments. We discuss how omics approaches can facilitate our understanding of Arctic shoreline bioremediation and identify promising research areas that should be further explored. We conclude that specific environmental conditions strongly alter bioremediation outcomes in Arctic environments and future studies must therefore focus on correlating these diverse parameters with the efficacy of hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Esteban Góngora
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Ya-Jou Chen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Madison Ellis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Mira Okshevsky
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
5
|
Zheng S, Guo J, Cheng F, Gao Z, Du L, Meng C, Li S, Zhang X. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction. Acta Pharm Sin B 2022; 12:2832-2844. [PMID: 35755277 PMCID: PMC9214053 DOI: 10.1016/j.apsb.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Algae are a large group of photosynthetic organisms responsible for approximately half of the earth's total photosynthesis. In addition to their fundamental ecological roles as oxygen producers and as the food base for almost all aquatic life, algae are also a rich source of bioactive natural products, including several clinical drugs. Cytochrome P450 enzymes (P450s) are a superfamily of biocatalysts that are extensively involved in natural product biosynthesis by mediating various types of reactions. In the post-genome era, a growing number of P450 genes have been discovered from algae, indicating their important roles in algal life-cycle. However, the functional studies of algal P450s remain limited. Benefitting from the recent technical advances in algae cultivation and genetic manipulation, the researches on P450s in algal natural product biosynthesis have been approaching to a new stage. Moreover, some photoautotrophic algae have been developed into “photo-bioreactors” for heterologous P450s to produce high-value added pharmaceuticals and chemicals in a carbon-neutral or carbon-negative manner. Here, we comprehensively review these advances of P450 studies in algae from 2000 to 2021.
Collapse
Affiliation(s)
- Shanmin Zheng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| |
Collapse
|
6
|
Heuschkel I, Hanisch S, Volke DC, Löfgren E, Hoschek A, Nikel PI, Karande R, Bühler K. Pseudomonas taiwanensis biofilms for continuous conversion of cyclohexanone in drip flow and rotating bed reactors. Eng Life Sci 2021; 21:258-269. [PMID: 33716623 PMCID: PMC7923564 DOI: 10.1002/elsc.202000072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
In this study, the biocatalytic performance of a Baeyer-Villiger monooxygenase (BVMO) catalyzing the reaction of cyclohexanone to ε-caprolactone was investigated in Pseudomonas biofilms. Biofilm growth and development of two Pseudomonas taiwanensis VLB120 variants, Ps_BVMO and Ps_BVMO_DGC, were evaluated in drip flow reactors (DFRs) and rotating bed reactors (RBRs). Engineering a hyperactive diguanylate cyclase (DGC) from Caulobacter crescentus into Ps_BVMO resulted in faster biofilm growth compared to the control Ps_BVMO strain in the DFRs. The maximum product formation rates of 92 and 87 g m-2 d-1 were observed for mature Ps_BVMO and Ps_ BVMO_DGC biofilms, respectively. The application of the engineered variants in the RBR was challenged by low biofilm surface coverage (50-60%) of rotating bed cassettes, side-products formation, oxygen limitation, and a severe drop in production rates with time. By implementing an active oxygen supply mode and a twin capillary spray feed, the biofilm surface coverage was maximized to 70-80%. BVMO activity was severely inhibited by cyclohexanol formation, resulting in a decrease in product formation rates. By controlling the cyclohexanone feed concentration at 4 mM, a stable product formation rate of 14 g m-2 d-1 and a substrate conversion of 60% was achieved in the RBR.
Collapse
Affiliation(s)
- Ingeborg Heuschkel
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
| | - Selina Hanisch
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
- ZINT ‐ Zentrum für integrierte NaturstofftechnikTU DresdenDresdenGermany
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | | | - Anna Hoschek
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Rohan Karande
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
| | - Katja Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
- ZINT ‐ Zentrum für integrierte NaturstofftechnikTU DresdenDresdenGermany
| |
Collapse
|
7
|
Salamanca D, Bühler K, Engesser KH, Schmid A, Karande R. Whole-cell biocatalysis using the Acidovorax sp. CHX100 Δ6HX for the production of ω-hydroxycarboxylic acids from cycloalkanes. N Biotechnol 2020; 60:200-206. [PMID: 33127412 DOI: 10.1016/j.nbt.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
Omega hydroxycarboxylic acids (ω-HAs) possess two functional groups, a hydroxyl group and a carboxyl group, and are essential precursors for the production of biodegradable polyester polymers. In this work, an Acidovorax mutant was investigated as a whole-cell biocatalyst for the conversion of cycloalkanes to their respective ω-hydroxycarboxylic acids. This Acidovorax sp. strain CHX100 originated from a wastewater treatment plant and uses cyclohexane as the sole source of carbon and energy with excellent growth rates (0.199 h-1). The metabolic efficiency of Acidovorax CHX100 is based on a highly efficient enzyme cascade used for the mineralization of cyclohexane. A deletion of 6-hydroxyhexanoate dehydrogenase in the native cycloalkane pathway resulted in the Acidovorax sp. strain CHX100 Δ6HX mutant, which accumulated short ω-hydroxycarboxylic acids (C5 to C10) from cycloalkanes. This mutant transformed cyclopentane and cyclohexane (5 mM) to 5-hydroxypentanoic acid and 6-hydroxyhexanoic acid, respectively, with a molar conversion above 98% in 6 h. An elementary environmental and economical assessment based on E-factor and biocatalyst yield suggests the use of inexpensive electron donor and carbon sources, with subsequent efforts to minimize waste generation. Such an early-stage analysis highlights the main bottlenecks that need to be solved in developing a sustainable bioprocess.
Collapse
Affiliation(s)
- Diego Salamanca
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Katja Bühler
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Andreas Schmid
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rohan Karande
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
8
|
Schäfer L, Bühler K, Karande R, Bühler B. Rational Engineering of a Multi‐Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in
Pseudomonas taiwanensis. Biotechnol J 2020; 15:e2000091. [DOI: 10.1002/biot.202000091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Lisa Schäfer
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Katja Bühler
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Rohan Karande
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Bruno Bühler
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| |
Collapse
|
9
|
Schäfer L, Karande R, Bühler B. Maximizing Biocatalytic Cyclohexane Hydroxylation by Modulating Cytochrome P450 Monooxygenase Expression in P. taiwanensis VLB120. Front Bioeng Biotechnol 2020; 8:140. [PMID: 32175317 PMCID: PMC7056670 DOI: 10.3389/fbioe.2020.00140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 01/31/2023] Open
Abstract
Cytochrome P450 monooxygenases (Cyps) effectively catalyze the regiospecific oxyfunctionalization of inert C-H bonds under mild conditions. Due to their cofactor dependency and instability in isolated form, oxygenases are preferably applied in living microbial cells with Pseudomonas strains constituting potent host organisms for Cyps. This study presents a holistic genetic engineering approach, considering gene dosage, transcriptional, and translational levels, to engineer an effective Cyp-based whole-cell biocatalyst, building on recombinant Pseudomonas taiwanensis VLB120 for cyclohexane hydroxylation. A lac-based regulation system turned out to be favorable in terms of orthogonality to the host regulatory network and enabled a remarkable specific whole-cell activity of 34 U gCDW -1. The evaluation of different ribosomal binding sites (RBSs) revealed that a moderate translation rate was favorable in terms of the specific activity. An increase in gene dosage did only slightly elevate the hydroxylation activity, but severely impaired growth and resulted in a large fraction of inactive Cyp. Finally, the introduction of a terminator reduced leakiness. The optimized strain P. taiwanensis VLB120 pSEVA_Cyp allowed for a hydroxylation activity of 55 U gCDW -1. Applying 5 mM cyclohexane, molar conversion and biomass-specific yields of 82.5% and 2.46 mmolcyclohexanol gbiomass -1 were achieved, respectively. The strain now serves as a platform to design in vivo cascades and bioprocesses for the production of polymer building blocks such as ε-caprolactone.
Collapse
Affiliation(s)
- Lisa Schäfer
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
10
|
Hoschek A, Toepel J, Hochkeppel A, Karande R, Bühler B, Schmid A. Light‐Dependent and Aeration‐Independent Gram‐Scale Hydroxylation of Cyclohexane to Cyclohexanol by CYP450 Harboring
Synechocystis
sp. PCC 6803. Biotechnol J 2019; 14:e1800724. [DOI: 10.1002/biot.201800724] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/01/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Anna Hoschek
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Jörg Toepel
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Adrian Hochkeppel
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Rohan Karande
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Andreas Schmid
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| |
Collapse
|
11
|
Zheng XY, Lu D, Wang MY, Chen W, Zhou G, Zhang Y. Effect of chromium (VI) on the multiple nitrogen removal pathways and microbial community of aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2018; 39:1682-1696. [PMID: 28562229 DOI: 10.1080/09593330.2017.1337230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The frequent appearance of Cr(VI) significantly impacts the microbial metabolism in wastewater. In this study, long-term effects of Cr(VI) on microbial community, nitrogen removal pathways and mechanism of aerobic granular sludge (AGS) were investigated. AGS had strong resistance ability to 1.0 mg/L Cr(VI). 3.0 mg/L Cr(VI) increased the heterotrophic-specific ammonia uptake rate (HSAUR) and heterotrophic-specific nitrate uptake rate (HSNUR) transiently, whereas 5.0 mg/L Cr(VI) sharply decreased the specific ammonia uptake rate (SAUR), specific nitrate uptake rate (SNUR) and simultaneous nitrification denitrification rate (SNDR). It was found that Cr (VI) has a greater inhibitory effect on autotrophic nitrification (ASAUR), and the maximal inhibition rate (IR) was 139.19%. Besides, the inhibition of Cr (VI) on nitrogen removal process belongs to non-competitive inhibition. Cr(VI) had a weaker negative impact on heterotrophic bacteria compared with that on autotrophic bacteria. Denaturing gradient gel electrophoresis analyses suggest that Acidovorax sp., flavobacterium sp., uncultured soil bacterium, uncultured nitrosospira sp., uncultured prokaryote, uncultured β-proteobacterium and uncultured pseudomonas sp. were the dominant species. The inhibition of Cr(VI) on nitrite-oxidizing bacteria was the strongest, followed by ammonia-oxidizing bacteria and denitrifying bacteria. Linear correlations between bacterial count and biomass-specific uptake rate were observed when the Cr(VI) concentration exceeded 3 mg/L. This study revealed the effect of Cr(VI) on nitrification is more serious than that on denitrification. Autotrophic and heterotrophic nitrification, heterotrophic denitrification and simultaneous nitrification denitrification played a significant role on nitrogen removal under Cr(VI) stress.
Collapse
Affiliation(s)
- Xiao-Ying Zheng
- a Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing , People's Republic of China
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Dan Lu
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Ming-Yang Wang
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Wei Chen
- a Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing , People's Republic of China
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Gan Zhou
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Yuan Zhang
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| |
Collapse
|
12
|
Zhang C, Fu L, Xu Z, Xiong H, Zhou D, Huo M. Contrasting roles of phenol and pyrocatechol on the degradation of 4-chlorophenol in a photocatalytic–biological reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24725-24731. [PMID: 28942472 DOI: 10.1007/s11356-017-0245-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
|
13
|
Salamanca D, Dobslaw D, Engesser KH. Removal of cyclohexane gaseous emissions using a biotrickling filter system. CHEMOSPHERE 2017; 176:97-107. [PMID: 28260660 DOI: 10.1016/j.chemosphere.2017.02.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
The removal of cyclohexane from gaseous emissions was studied using a biotrickling filter packed with polyurethane foam. Acivodorax sp. CHX100 was chosen as inoculum due to its ability to use cyclohexane as carbon source. Performance was evaluated by means of different resident times from 18 s to 37 s and concentration levels of 60, 90, 120, 160, 320, 480 and 720 mg C m-3, respectively. Removal efficiencies of 80%-99% and elimination capacities in the range of 5.4 g C m-3 h-1-38 g C m-3 h-1 were achieved for concentrations among 60 mg C m-3-480 mg C m-3. The removal efficiency decreased to 40% at concentrations of cyclohexane of 720 mg C m-3. The dynamics of the microbial population showed the strain CHX100 as predominant during the different operational process of biotrickling filter. The results of this study propose a novel approach for cleaning waste air containing cyclohexane by means of a biotrickling filter.
Collapse
Affiliation(s)
- Diego Salamanca
- University of Stuttgart, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, Department of Biological Waste Air Purification, Bandtäle 2, 70569 Stuttgart, Germany.
| | - Daniel Dobslaw
- University of Stuttgart, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, Department of Biological Waste Air Purification, Bandtäle 2, 70569 Stuttgart, Germany
| | - Karl-H Engesser
- University of Stuttgart, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, Department of Biological Waste Air Purification, Bandtäle 2, 70569 Stuttgart, Germany
| |
Collapse
|
14
|
Karande R, Debor L, Salamanca D, Bogdahn F, Engesser KH, Buehler K, Schmid A. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms. Biotechnol Bioeng 2015; 113:52-61. [PMID: 26153144 DOI: 10.1002/bit.25696] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 11/06/2022]
Abstract
The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW (-1) were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous-air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g L tube (-1) h(-1) for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water.
Collapse
Affiliation(s)
- Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Linde Debor
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Diego Salamanca
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Fabian Bogdahn
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Katja Buehler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany. .,Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|