1
|
Balola A, Ferreira S, Rocha I. From plastic waste to bioprocesses: Using ethylene glycol from polyethylene terephthalate biodegradation to fuel Escherichia coli metabolism and produce value-added compounds. Metab Eng Commun 2024; 19:e00254. [PMID: 39720189 PMCID: PMC11667706 DOI: 10.1016/j.mec.2024.e00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped. Here, we review and discuss the current state of research regarding existing natural and synthetic microbial pathways that enable the assimilation of EG as a carbon and energy source for Escherichia coli. Leveraging the metabolic versatility of E. coli, we explore the viability of this widely used industrial strain in harnessing EG as feedstock for the synthesis of target value-added compounds via metabolic and protein engineering strategies. Consequently, we assess the potential of EG as a versatile alternative to conventional carbon sources like glucose, facilitating the closure of the loop between the highly available PET waste and the production of valuable biochemicals. This review explores the interplay between PET biodegradation and EG metabolism, as well as the key challenges and opportunities, while offering perspectives and suggestions for propelling advancements in microbial EG assimilation for circular economy applications.
Collapse
Affiliation(s)
- Alexandra Balola
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Sofia Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
2
|
Pan H, Li H, Wu S, Lai C, Guo D. De Novo Biosynthesis of Anisyl Alcohol and Anisyl Acetate in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3398-3402. [PMID: 36779799 DOI: 10.1021/acs.jafc.2c08859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Anisyl alcohol and its ester anisyl acetate are both important fragrance compounds and have a wide range of applications in the cosmetics, perfumery, and food industries. The currently commercially available anisyl alcohol and anisyl acetate are based on chemical synthesis. However, consumers increasingly prefer natural fragrance compounds. Therefore, it is of great significance to construct microbial cell factories to produce anisyl alcohol and anisyl acetate. In this study, we first established a biosynthetic pathway in engineered Escherichia coli MG1655 for the production of anisyl alcohol from simple carbon sources. We further increased the anisyl alcohol production to 355 mg/L by the increasing availability of erythrose-4-phosphate and phosphoenolpyruvate. Finally, we further demonstrated the production of anisyl acetate by overexpressing alcohol acetyltransferase ATF1 for the subsequent acetylation of anisyl alcohol to produce anisyl acetate. To our knowledge, this is the first report on the biosynthesis of anisyl alcohol and anisyl acetate directly from a renewable carbon source.
Collapse
Affiliation(s)
- Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - He Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shaoting Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Chongde Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
3
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
4
|
Soong YHV, Zhao L, Liu N, Yu P, Lopez C, Olson A, Wong HW, Shao Z, Xie D. Microbial synthesis of wax esters. Metab Eng 2021; 67:428-442. [PMID: 34391890 DOI: 10.1016/j.ymben.2021.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/27/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7-4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Le Zhao
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Na Liu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Peng Yu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Carmen Lopez
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA.
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
5
|
|
6
|
De novo biosynthesis of linalool from glucose in engineered Escherichia coli. Enzyme Microb Technol 2020; 140:109614. [DOI: 10.1016/j.enzmictec.2020.109614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022]
|
7
|
Zong Z, Zhang S, Zhen M, Xu N, Li D, Wang C, Gao B, Hua Q, Liu Z. Metabolic engineering of Escherichia coli for the production of neryl acetate. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
De novo biosynthesis of indole-3-ethanol and indole-3-ethanol acetate in engineered Escherichia coli. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Donzella S, Cucchetti D, Capusoni C, Rizzi A, Galafassi S, Chiara G, Compagno C. Engineering cytoplasmic acetyl-CoA synthesis decouples lipid production from nitrogen starvation in the oleaginous yeast Rhodosporidium azoricum. Microb Cell Fact 2019; 18:199. [PMID: 31727065 PMCID: PMC6854766 DOI: 10.1186/s12934-019-1250-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Oleaginous yeasts are able to accumulate very high levels of neutral lipids especially under condition of excess of carbon and nitrogen limitation (medium with high C/N ratio). This makes necessary the use of two-steps processes in order to achieve high level of biomass and lipid. To simplify the process, the decoupling of lipid synthesis from nitrogen starvation, by establishing a cytosolic acetyl-CoA formation pathway alternative to the one catalysed by ATP-citrate lyase, can be useful. RESULTS In this work, we introduced a new cytoplasmic route for acetyl-CoA (AcCoA) formation in Rhodosporidium azoricum by overexpressing genes encoding for homologous phosphoketolase (Xfpk) and heterologous phosphotransacetylase (Pta). The engineered strain PTAPK4 exhibits higher lipid content and produces higher lipid concentration than the wild type strain when it was cultivated in media containing different C/N ratios. In a bioreactor process performed on glucose/xylose mixture, to simulate an industrial process for lipid production from lignocellulosic materials, we obtained an increase of 89% in final lipid concentration by the engineered strain in comparison to the wild type. This indicates that the transformed strain can produce higher cellular biomass with a high lipid content than the wild type. The transformed strain furthermore evidenced the advantage over the wild type in performing this process, being the lipid yields 0.13 and 0.05, respectively. CONCLUSION Our results show that the overexpression of homologous Xfpk and heterologous Pta activities in R. azoricum creates a new cytosolic AcCoA supply that decouples lipid production from nitrogen starvation. This metabolic modification allows improving lipid production in cultural conditions that can be suitable for the development of industrial bioprocesses using lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | | | - Claudia Capusoni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Aurora Rizzi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Silvia Galafassi
- Water Research Institute, National Research Council, Verbania, Italy
| | - Gambaro Chiara
- Eni S.p.A.-Renewable Energy and Environmental R&D Center-Istituto Eni Donegani, Novara, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Kassab E, Fuchs M, Haack M, Mehlmer N, Brueck TB. Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids. Microb Cell Fact 2019; 18:163. [PMID: 31581944 PMCID: PMC6777021 DOI: 10.1186/s12934-019-1217-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Sustainable production of microbial fatty acids derivatives has the potential to replace petroleum based equivalents in the chemical, cosmetic and pharmaceutical industry. Most fatty acid sources for production oleochemicals are currently plant derived. However, utilization of these crops are associated with land use change and food competition. Microbial oils could be an alternative source of fatty acids, which circumvents the issue with agricultural competition. Results In this study, we generated a chimeric microbial production system that features aspects of both prokaryotic and eukaryotic fatty acid biosynthetic pathways targeted towards the generation of long chain fatty acids. We redirected the type-II fatty acid biosynthetic pathway of Escherichia coli BL21 (DE3) strain by incorporating two homologues of the beta-ketoacyl-[acyl carrier protein] synthase I and II from the chloroplastic fatty acid biosynthetic pathway of Arabidopsis thaliana. The microbial clones harboring the heterologous pathway yielded 292 mg/g and 220 mg/g DCW for KAS I and KAS II harboring plasmids respectively. Surprisingly, beta-ketoacyl synthases KASI/II isolated from A. thaliana showed compatibility with the FAB pathway in E. coli. Conclusion The efficiency of the heterologous plant enzymes supersedes the overexpression of the native enzyme in the E. coli production system, which leads to cell death in fabF overexpression and fabB deletion mutants. The utilization of our plasmid based system would allow generation of plant like fatty acids in E. coli and their subsequent chemical or enzymatic conversion to high end oleochemical products.
Collapse
Affiliation(s)
- Elias Kassab
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Monika Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Thomas B Brueck
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| |
Collapse
|
11
|
Lee JW, Trinh CT. Microbial biosynthesis of lactate esters. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:226. [PMID: 31548868 PMCID: PMC6753613 DOI: 10.1186/s13068-019-1563-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/07/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Green organic solvents such as lactate esters have broad industrial applications and favorable environmental profiles. Thus, manufacturing and use of these biodegradable solvents from renewable feedstocks help benefit the environment. However, to date, the direct microbial biosynthesis of lactate esters from fermentable sugars has not yet been demonstrated. RESULTS In this study, we present a microbial conversion platform for direct biosynthesis of lactate esters from fermentable sugars. First, we designed a pyruvate-to-lactate ester module, consisting of a lactate dehydrogenase (ldhA) to convert pyruvate to lactate, a propionate CoA-transferase (pct) to convert lactate to lactyl-CoA, and an alcohol acyltransferase (AAT) to condense lactyl-CoA and alcohol(s) to make lactate ester(s). By generating a library of five pyruvate-to-lactate ester modules with divergent AATs, we screened for the best module(s) capable of producing a wide range of linear, branched, and aromatic lactate esters with an external alcohol supply. By co-introducing a pyruvate-to-lactate ester module and an alcohol (i.e., ethanol, isobutanol) module into a modular Escherichia coli (chassis) cell, we demonstrated for the first time the microbial biosynthesis of ethyl and isobutyl lactate esters directly from glucose. In an attempt to enhance ethyl lactate production as a proof-of-study, we re-modularized the pathway into (1) the upstream module to generate the ethanol and lactate precursors and (2) the downstream module to generate lactyl-CoA and condense it with ethanol to produce the target ethyl lactate. By manipulating the metabolic fluxes of the upstream and downstream modules through plasmid copy numbers, promoters, ribosome binding sites, and environmental perturbation, we were able to probe and alleviate the metabolic bottlenecks by improving ethyl lactate production by 4.96-fold. We found that AAT is the most rate-limiting step in biosynthesis of lactate esters likely due to its low activity and specificity toward the non-natural substrate lactyl-CoA and alcohols. CONCLUSIONS We have successfully established the biosynthesis pathway of lactate esters from fermentable sugars and demonstrated for the first time the direct fermentative production of lactate esters from glucose using an E. coli modular cell. This study defines a cornerstone for the microbial production of lactate esters as green solvents from renewable resources with novel industrial applications.
Collapse
Affiliation(s)
- Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Cong T. Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Dr., DO#432, Knoxville, TN 37996 USA
| |
Collapse
|
12
|
Guo D, Kong S, Chu X, Li X, Pan H. De Novo Biosynthesis of Indole-3-acetic Acid in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8186-8190. [PMID: 31272146 DOI: 10.1021/acs.jafc.9b02048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Indole-3-acetic acid (IAA) is considered the most common and important naturally occurring auxin in plants and a major regulator of plant growth and development. In this study, an aldehyde dehydrogenase AldH from Escherichia coli was found to convert indole-3-acetylaldehyde into IAA. Then we established an artificial pathway in engineered E. coli for microbial production of IAA from glucose. The overall pathway includes the upstream pathway from glucose to L-tryptophan and the downstream pathway from L-tryptophan to IAA. To our knowledge, this is the first report on the biosynthesis of IAA directly from a renewable carbon source. The study described here shows the way for the development of a beneficial microbe for biosynthesis of auxin and promoting plant growth in the future.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| | - Sijia Kong
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| | - Xu Chu
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry , Jiangxi Province Gannan Normal University , Ganzhou 341000 , China
| |
Collapse
|
13
|
Chacón MG, Kendrick EG, Leak DJ. Engineering Escherichia coli for the production of butyl octanoate from endogenous octanoyl-CoA. PeerJ 2019; 7:e6971. [PMID: 31304053 PMCID: PMC6610577 DOI: 10.7717/peerj.6971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/18/2019] [Indexed: 11/20/2022] Open
Abstract
Medium chain esters produced from fruits and flowering plants have a number of commercial applications including use as flavour and fragrance ingredients, biofuels, and in pharmaceutical formulations. These esters are typically made via the activity of an alcohol acyl transferase (AAT) enzyme which catalyses the condensation of an alcohol and an acyl-CoA. Developing a microbial platform for medium chain ester production using AAT activity presents several obstacles, including the low product specificity of these enzymes for the desired ester and/or low endogenous substrate availability. In this study, we engineered Escherichia coli for the production of butyl octanoate from endogenously produced octanoyl-CoA. This was achieved through rational protein engineering of an AAT enzyme from Actinidia chinensis for improved octanoyl-CoA substrate specificity and metabolic engineering of E. coli fatty acid metabolism for increased endogenous octanoyl-CoA availability. This resulted in accumulation of 3.3 + 0.1 mg/L butyl octanoate as the sole product from E. coli after 48 h. This study represents a preliminary examination of the feasibility of developing E. coli platforms for the synthesis single medium chain esters from endogenous fatty acids.
Collapse
Affiliation(s)
- Micaela G Chacón
- Department of Biology and Biochemistry, University of Bath, Bath, England
| | | | - David J Leak
- Department of Biology and Biochemistry, University of Bath, Bath, England
| |
Collapse
|
14
|
|
15
|
Guo D, Kong S, Zhang L, Pan H, Wang C, Liu Z. Biosynthesis of advanced biofuel farnesyl acetate using engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2018; 269:577-580. [PMID: 30181019 DOI: 10.1016/j.biortech.2018.08.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Diminishing petroleum reserves and the rapid accumulation of greenhouse gases lead to increasing interest in microbial biofuels. In this study, a heterologous farnesyl acetate biosynthesis pathway was constructed in Escherichia coli for the first time. Firstly, the AtoB, ERG13, tHMG1, ERG12, ERG8, MVD1, Idi, IspA and PgpB were expressed to accumulate farnesol in the E. coli cells. Then the alcohol acetyltransferase (ATF1) was heterologous overexpressed for the subsequent esterification farnesol to farnesyl acetate. The engineered strain DG 106 accumulated 128 ± 10.5 mg/L of farnesyl acetate. Finally, the isopentenyl-diphosphate isomerase was further overexpressed, and the recombinant strain DG107 produced 201 ± 11.7 mg/L of farnesyl acetate. This study shows the novel method for the biosynthesis of the advanced biofuel farnesyl acetate directly from glucose and highlight the enormous designing strategies for metabolic engineering of bioproducts.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Sijia Kong
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lihua Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
16
|
Guo D, Zhang L, Kong S, Liu Z, Li X, Pan H. Metabolic Engineering of Escherichia coli for Production of 2-Phenylethanol and 2-Phenylethyl Acetate from Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5886-5891. [PMID: 29808680 DOI: 10.1021/acs.jafc.8b01594] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rose-like odor 2-phenylethanol (2-PE) and its more fruit-like ester 2-phenylethyl acetate (2-PEAc) are two important aromatic compounds and have wide applications. In the past, 2-PE and 2-PEAc were mainly produced from l-phenylalanine. In this study, Escherichia coli was engineered to de novo biosynthesis of 2-PE and 2-PEAc from glucose: first, overexpression of deregulated 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase aroG fbr and chorismate mutase/prephenate dehydratase pheA fbr for increasing phenylpyruvate production in E. coli, subsequently, heterologous expression of decarboxylase kdc and overexpression of reductase yjgB for the conversion of phenylpyruvate to 2-PE, with the engineered strain DG01 producing 578 mg/L 2-PE, and, finally, heterologous expression of an aminotransferase aro8 to redirect the metabolic flux to phenylpyruvate. 2-PE (1016 mg/L) was accumulated in the engineered strain DG02. Alcohol acetyltransferase ATF1 from Saccharomyces cerevisiae can esterify a wide variety of alcohols, including 2-PE. We have further demonstrated the biosynthesis of 2-PEAc from glucose by overexpressing atf1 for the subsequent conversion of 2-PE to 2-PEAc. The engineered strain DG03 produced 687 mg/L 2-PEAc.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou , Jiangxi 341000 , People's Republic of China
| | - Lihua Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou , Jiangxi 341000 , People's Republic of China
| | - Sijia Kong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou , Jiangxi 341000 , People's Republic of China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center for Industrial Fermentation , Hubei University of Technology , Wuhan , Hubei 430068 , People's Republic of China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou , Jiangxi 341000 , People's Republic of China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province , Gannan Normal University , Ganzhou , Jiangxi 341000 , People's Republic of China
| |
Collapse
|
17
|
Zhang L, Liu Q, Pan H, Li X, Guo D. Metabolic engineering of Escherichia coli to high efficient synthesis phenylacetic acid from phenylalanine. AMB Express 2017; 7:105. [PMID: 28549374 PMCID: PMC5445031 DOI: 10.1186/s13568-017-0407-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022] Open
Abstract
Phenylacetic acid (PAA) is a fine chemical with a high industrial demand for its widespread uses. Whereas, microorganic synthesis of PAA is impeded by the formation of by-product phenethyl alcohol due to quick, endogenous, and superfluous conversion of aldehydes to their corresponding alcohols, which resulted in less conversation of PAA from aldehydes. In this study, an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that does duty for a platform for aromatic aldehyde biosynthesis was used to prompt more PAA biosynthesis. We establish a microbial biosynthetic pathway for PAA production from the simple substrate phenylalanine in E. coli with heterologous coexpression of aminotransferase (ARO8), keto acid decarboxylase (KDC) and aldehyde dehydrogenase H (AldH) gene. It was found that PAA transformation yield was up to ~94% from phenylalanine in E. coli and there was no by-product phenethyl alcohol was detected. Our results reveal the high efficiency of the RARE strain for production of PAA and indicate the potential industrial applicability of this microbial platform for PAA biosynthesis.
Collapse
|
18
|
Guo D, Zhang L, Pan H, Li X. Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine. Microbiologyopen 2017; 6. [PMID: 28436122 PMCID: PMC5552962 DOI: 10.1002/mbo3.486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 11/25/2022] Open
Abstract
In order to meet the need of consumer preferences for natural flavor compounds, microbial synthesis method has become a very attractive alternative to the chemical production. The 2‐phenylethanol (2‐PE) and its ester 2‐phenylethylacetate (2‐PEAc) are two extremely important flavor compounds with a rose‐like odor. In recent years, Escherichia coli and yeast have been metabolically engineered to produce 2‐PE. However, a metabolic engineering approach for 2‐PEAc production is rare. Here, we designed and expressed a 2‐PEAc biosynthetic pathway in E. coli. This pathway comprised four steps: aminotransferase (ARO8) for transamination of L‐phenylalanine to phenylpyruvate, 2‐keto acid decarboxylase KDC for the decarboxylation of the phenylpyruvate to phenylacetaldehyde, aldehyde reductase YjgB for the reduction of phenylacetaldehyde to 2‐PE, alcohol acetyltransferase ATF1 for the esterification of 2‐PE to 2‐PEAc. Using the engineered E. coli strain for shake flasks cultivation with 1 g/L L‐phenylalanine, we achieved co‐production of 268 mg/L 2‐PEAc and 277 mg/L 2‐PE. Our results suggest that approximately 65% of L‐phenylalanine was utilized toward 2‐PEAc and 2‐PE biosynthesis and thus demonstrate potential industrial applicability of this microbial platform.
Collapse
Affiliation(s)
- Daoyi Guo
- College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China.,Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Lihua Zhang
- College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China.,Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
19
|
Pan H, Zhang L, Li X, Guo D. Biosynthesis of the fatty acid isopropyl esters by engineered Escherichia coli. Enzyme Microb Technol 2017; 102:49-52. [PMID: 28465060 DOI: 10.1016/j.enzmictec.2017.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 01/18/2023]
Abstract
The fatty acid methyl esters and fatty acid ethyl esters are known as biodiesels which are considered to be renewable, nontoxic and biodegradable biofuels. However, the conventional biodiesels show a high crystallization temperature which is one of the most critical obstacles against the widespread biodiesel usage. The high crystallization temperature of biodiesel can be reduced by replacing the methyl or ethyl ester with an isopropyl moiety. Here we report on a strategy to establish biosynthesis of the fatty acid isopropyl esters(FAIPEs) from the simple substrate glucose in Escherichia coli with heterologous coexpression of atoB encoded acetyl-CoA acetyltransferase and atoAD encode acetoacetyl-CoA transferase from E. coli, ADC encode acetoacetate decarboxylase from Clostridium acetobutylicum, ADH encoded NADP-dependent alcohol dehydrogenase from Clostridium beijerinckii, 'TesA encoded a truncated fatty acyl-ACP thioesterase and FadD encoded fatty acyl-CoA synthetase from E. coli, and the WS/DGAT encoded acyltransferase from Acinetobacter baylyi strain ADP1. It was found that the yield of FAIPEs was up to 203.4mg/L and accounted for around 6.4% (wt/wt) of the dry cell weight. Our results indicates that it is a feasible strategy to improve the yield of FAIPEs by increasing fatty acyl-CoA availability in biosynthetic pathway and exhibit a promising method for production of biodiesels with good low-temperature flow properties.
Collapse
Affiliation(s)
- Hong Pan
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal University, China; Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lihua Zhang
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal University, China; Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Daoyi Guo
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal University, China; Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
20
|
Ding BJ, Lager I, Bansal S, Durrett TP, Stymne S, Löfstedt C. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones. Lipids 2016; 51:469-75. [PMID: 26801935 PMCID: PMC4819908 DOI: 10.1007/s11745-016-4122-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022]
Abstract
Many moth pheromones are composed of mixtures of acetates of long-chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl-CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non-insect acetyltransferase alternative, we expressed a plant-derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with EaDAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27- and 10-fold higher in vivo and in vitro efficiency, respectively, compared to EaDAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden.
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sunil Bansal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, USA
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | |
Collapse
|