1
|
Applications of ionic liquids for the biochemical transformation of lignocellulosic biomass into biofuels and biochemicals: A critical review. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Beckwée EJ, Wittevrongel GR, Claessens B. Comparing column dynamics in the liquid and vapor phase adsorption of biobutanol on an activated carbon monolith. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Yao X, Zhang Q, Fan Y, Xu X, Liu Z. Butanol-isopropanol fermentation with oxygen-tolerant Clostridium beijerinckii XH29. AMB Express 2022; 12:57. [PMID: 35567691 PMCID: PMC9107568 DOI: 10.1186/s13568-022-01399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Acetone–butanol–ethanol (ABE) fermentation is a traditional way for solvents production through bioconversion by Clostridium species. It is still a challenge to obtain metabolic engineering strains with high ABE yield. Screening strains with remarkable characteristics from nature and improving ABE yield by mutation are viable approaches. Clostridium beijerinckii XH 0906, a newly isolated strain, produces butanol and isopropanol (BI) as the main end-products (9.1 g/L BI) during fermentation with glucose as the sole carbon source. The screening process for this strain was performed under aerobic conditions rather than anaerobic environment. Thus, it is a robust stain capable of oxygen-tolerant BI fermentation. Furthermore, C. beijerinckii XH 0906 fermented xylose and glucose simultaneously to produce BI. A mutant strain obtained by ultraviolet (UV) mutagenesis, C. beijerinckii XH 29, had improved BI production capacity and could produce 17.0 g/L BI and 18.4 g/L BI using glucose or corn stover hydrolysate, respectively as the carbon source. Interestingly, C. beijerinckii XH 29 also produced up to 19.3 g/L isopropanol through fermentation of a glucose–acetone mix. These results indicate that C. beijerinckii XH 29 is an excellent BI producer with great potential for industrial applications. A newly isolated strain produces butanol and isopropanol (BI) rather than acetone butanol and ethanol (ABE). The strain is oxygen-tolerant and robust in the fermentation. A mutant obtained by ultraviolet mutagenesis produces higher levels of BI than the wild type strain using corn stover as a carbon source.
Collapse
|
4
|
Oh HJ, Ko JK, Gong G, Lee SM, Um Y. Production of Hexanol as the Main Product Through Syngas Fermentation by Clostridium carboxidivorans P7. Front Bioeng Biotechnol 2022; 10:850370. [PMID: 35547160 PMCID: PMC9081523 DOI: 10.3389/fbioe.2022.850370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
The production of hexanol from syngas by acetogens has gained attention as a replacement for petroleum-derived hexanol, which is widely used in the chemical synthesis and plastic industries. However, acetogenic bacteria generally produce C2 compounds (e.g., acetate and ethanol) as the main products. In this study, the gas fermentation conditions favorable for hexanol production were investigated at different temperatures (30-37°C) and CO gas contents (30-70%) in batch gas fermentation. Hexanol production increased from 0.02 to 0.09 g/L when the cultivation temperature was lowered from 37 to 30°C. As the CO content increased from 30 to 70%, the CO consumption rate and hexanol production (yield, titer, and ratio of C6 compound to total products) increased with the CO content. When 70% CO gas was repeatedly provided by flushing the headspace of the bottles at 30°C, the total alcohol production increased to 4.32 g/L at the expense of acids. Notably, hexanol production (1.90 g/L) was higher than that of ethanol (1.20 g/L) and butanol (1.20 g/L); this is the highest level of hexanol produced in gas fermentation to date and the first report of hexanol as the main product. Hexanol production was further enhanced to 2.34 g/L when 2 g/L ethanol was supplemented at the beginning of 70% CO gas refeeding fermentation. Particularly, hexanol productivity was significantly enhanced to 0.18 g/L/day while the supplemented ethanol was consumed, indicating that the conversion of ethanol to acetyl-CoA and reducing equivalents positively affected hexanol production. These optimized culture conditions (gas fermentation at 30°C and refeeding with 70% CO gas) and ethanol supplementation provide an effective and sustainable approach for bio-hexanol production.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, South Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
5
|
Li X, Han R, Bao T, Osire T, Zhang X, Xu M, Yang T, Rao Z. Citrulline deiminase pathway provides ATP and boosts growth of Clostridium carboxidivorans P7. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:204. [PMID: 34656154 PMCID: PMC8520249 DOI: 10.1186/s13068-021-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Clostridium carboxidivorans P7 is capable of producing ethanol and butanol from inexpensive and non-food feedstock, such as syngas. Achieving improved ethanol and butanol production in the strain for industrial application depends on the energetics and biomass, especially ATP availability. RESULTS This study found that exogenous addition of citrulline promoted accumulation of ATP, increased specific growth rate, and reduced the doubling time of C. carboxidivorans P7. In heterotrophic fermentation experiments, the addition of citrulline increased intracellular ATP by 3.39-fold, significantly enhancing the production of total alcohol (ethanol + butanol) by 20%. Moreover, in the syngas fermentation experiments, the addition of citrulline improved the level of intracellular ATP and the biomass by 80.5% and 31.6%, respectively, resulting in an 18.6% and 60.3% increase in ethanol and the alcohol/acid production ratio, respectively. CONCLUSIONS This is the first report that citrulline could promote the growth of C. carboxidivorans P7 and increase the level of intracellular ATP, which is of great significance for the use of C. carboxidivorans P7 to synthesize biofuels.
Collapse
Affiliation(s)
- Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Rumeng Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Teng Bao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
6
|
Lin L, Zhang Z, Tang H, Guo Y, Zhou B, Liu Y, Huang R, Du L, Pang H. Enhanced sucrose fermentation by introduction of heterologous sucrose transporter and invertase into Clostridium beijerinckii for acetone-butanol-ethanol production. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201858. [PMID: 34567584 PMCID: PMC8456130 DOI: 10.1098/rsos.201858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/31/2021] [Indexed: 05/12/2023]
Abstract
A heterologous pathway for sucrose transport and metabolism was introduced into Clostridium beijerinckii to improve sucrose use for n-butanol production. The combined expression of StSUT1, encoding a sucrose transporter from potato (Solanum tuberosum), and SUC2, encoding a sucrose invertase from Saccharomyces cerevisiae, remarkably enhanced n-butanol production. With sucrose, sugarcane molasses and sugarcane juice as substrates, the C. beijerinckii strain harbouring StSUT1 and SUC2 increased acetone-butanol-ethanol production by 38.7%, 22.3% and 52.8%, respectively, compared with the wild-type strain. This is the first report to demonstrate enhanced sucrose fermentation due to the heterologous expression of a sucrose transporter and invertase in Clostridium. The metabolic engineering strategy used in this study can be widely applied in other microorganisms to enhance the production of high-value compounds from sucrose-based biomass.
Collapse
Affiliation(s)
- Lihua Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Zhikai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
| | - Hongchi Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Yuan Guo
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Bingqing Zhou
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Yi Liu
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
| | - Hao Pang
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| |
Collapse
|
7
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
8
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
9
|
Zhou ZY, Yang ST, Moore CD, Zhang QH, Peng SY, Li HG. Acetone, butanol, and ethanol production from puerariae slag hydrolysate through ultrasound-assisted dilute acid by Clostridium beijerinckii YBS3. BIORESOURCE TECHNOLOGY 2020; 316:123899. [PMID: 32739577 DOI: 10.1016/j.biortech.2020.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, puerariae slag (PS) was evaluated as a renewable raw material for acetone-butanol-ethanol (ABE) fermentation. To accelerate the hydrolysis of PS, the method of ultrasound-assisted dilute acid hydrolysis (UAAH) was used. With this effort, 0.69 g reducing sugar was obtained from 1 g raw material under the optimal pretreatment condition. Subsequently, the butanol and total solvent production of 8.79 ± 0.16 g/L and 12.32 ± 0.26 g/L were obtained from the non-detoxified diluted hydrolysate, and the yield and productivity of butanol were 0.19 g/g and 0.12 g/L/h, respectively. Additionally, the changes in the structure of PS after different pretreatment methods were observed using SEM and FT-IR. UAAH resulted in more severe and distinct damage to the dense structure of PS. This study suggests that the UAAH is an attainable but effective pretreatment method, thereby is a promising technique for lignocellulose hydrolysis and improve butanol production.
Collapse
Affiliation(s)
- Zhi-You Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi 330045, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Curtis D Moore
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Qing-Hua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi 330045, China
| | - Shuai-Ying Peng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi 330045, China
| | - Han-Guang Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
10
|
Geinitz B, Hüser A, Mann M, Büchs J. Gas Fermentation Expands the Scope of a Process Network for Material Conversion. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bertram Geinitz
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Aline Hüser
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Marcel Mann
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
11
|
Zhao T, Tashiro Y, Sonomoto K. Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems. Appl Microbiol Biotechnol 2019; 103:9359-9371. [PMID: 31720773 DOI: 10.1007/s00253-019-10198-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
There is a renewed interest in acetone-butanol-ethanol (ABE) fermentation from renewable substrates for the sustainable and environment-friendly production of biofuel and platform chemicals. However, the ABE fermentation is associated with several challenges due to the presence of heterogeneous components in the renewable substrates and the intrinsic characteristics of ABE fermentation process. Hence, there is a need to select optimal substrates and modify their characteristics suitable for the ABE fermentation process or microbial strain. This "designed biomass" can be used to establish the consolidated bioprocessing systems. As there are very few reports on designed biomass, the main objectives of this review are to summarize the main challenges associated with ABE fermentation from renewable substrates and to introduce feasible strategies for designing the substrates through pretreatment and hydrolysis technologies as well as through the establishment of consolidated bioprocessing systems. This review offers new insights on improving the efficiency of ABE fermentation from designed renewable substrates.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
12
|
Huang J, Du Y, Bao T, Lin M, Wang J, Yang ST. Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: Kinetics and cost analysis. BIORESOURCE TECHNOLOGY 2019; 292:121969. [PMID: 31415989 DOI: 10.1016/j.biortech.2019.121969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The production of biofuels such as butanol is usually limited by the availability of inexpensive raw materials and high substrate cost. Using food crops as feedstock in the biorefinery industry has been criticized for its competition with food supply, causing food shortage and increased food prices. In this study, cassava bagasse as an abundant, renewable, and inexpensive byproduct from the cassava starch industry was used for n-butanol production. Cassava bagasse hydrolysate containing mainly glucose was obtained after treatments with dilute acid and enzymes (glucoamylases and cellulases) and then supplemented with corn steep liquor for use as substrate in repeated-batch fermentation with engineered Clostridium tyrobutyricum CtΔack-adhE2 in a fibrous-bed bioreactor. Stable butanol production with high titer (>15.0 g/L), yield (>0.30 g/g), and productivity (~0.3 g/L∙h) was achieved, demonstrating the feasibility of an economically competitive process for n-butanol production from cassava bagasse for industrial application.
Collapse
Affiliation(s)
- Jin Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Yinming Du
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Li J, Du Y, Bao T, Dong J, Lin M, Shim H, Yang ST. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor. BIORESOURCE TECHNOLOGY 2019; 289:121749. [PMID: 31323711 DOI: 10.1016/j.biortech.2019.121749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Acetone-butanol-ethanol fermentation suffers from high substrate cost and low butanol titer and yield. In this study, engineered Clostridium tyrobutyricum CtΔack-adhE2 immobilized in a fibrous-bed bioreactor was used for butanol production from glucose and xylose present in the hydrolysates of low-cost lignocellulosic biomass including corn fiber, cotton stalk, soybean hull, and sugarcane bagasse. The biomass hydrolysates obtained after acid pretreatment and enzymatic hydrolysis were supplemented with corn steep liquor and used in repeated-batch fermentations. Butanol production with high titer (∼15 g/L), yield (∼0.3 g/g), and productivity (∼0.3 g/L∙h) was obtained from cotton stalk, soybean hull, and sugarcane bagasse hydrolysates, while corn fiber hydrolysate with higher inhibitor contents gave somewhat inferior results. The fermentation process was stable for long-term operation without any noticeable degeneration, demonstrating its potential for industrial application. A techno-economic analysis showed that n-butanol could be produced from lignocellulosic biomass using this novel fermentation process at ∼$2.5/gal for biofuel application.
Collapse
Affiliation(s)
- Jing Li
- College of Biology & Engineering, Hebei University of Economics & Business, Shijiazhuang 050061, PR China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Yinming Du
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Jie Dong
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Hojae Shim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR 999078, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Zhang Z, Lin L, Tang H, Zeng S, Guo Y, Wei Y, Huang R, Pang H, Du L. A Convenient Fluorescence-Based Assay for the Detection of Sucrose Transport and the Introduction of a Sucrose Transporter from Potato into Clostridium Strains. Molecules 2019; 24:molecules24193495. [PMID: 31561523 PMCID: PMC6803915 DOI: 10.3390/molecules24193495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
A convenient and effective sucrose transport assay for Clostridium strains is needed. Traditional methods, such as 14C-sucrose isotope labelling, use radioactive materials and are not convenient for many laboratories. Here, a sucrose transporter from potato was introduced into Clostridium, and a fluorescence assay based on esculin was used for the analysis of sucrose transport in Clostridium strains. This showed that the heterologously expressed potato sucrose transporter is functional in Clostridium. Recombinant engineering of high-level sucrose transport would aid sucrose fermentation in Clostridium strains. The assay described herein provides an important technological platform for studying sucrose transporter function following heterologous expression in Clostridium.
Collapse
Affiliation(s)
- Zhikai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China.
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Daling Road No. 98, Nanning 530007, China.
| | - Hongchi Tang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Daling Road No. 98, Nanning 530007, China.
| | - Shaowei Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China.
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Daling Road No. 98, Nanning 530007, China.
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China.
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China.
| | - Hao Pang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Daling Road No. 98, Nanning 530007, China.
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China.
| |
Collapse
|
15
|
Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P. Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100224] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Cheng C, Li W, Lin M, Yang ST. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. BIORESOURCE TECHNOLOGY 2019; 284:415-423. [PMID: 30965197 DOI: 10.1016/j.biortech.2019.03.145] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Clostridium carboxidivorans can convert CO2, CO and H2 to ethanol and n-butanol; however, its industrial application is limited by the lack of tools for metabolic pathway engineering. In this study, C. carboxidivorans was successfully engineered to overexpress aor, adhE2, and fnr together with adhE2 or aor. In glucose fermentation, all engineered strains showed higher alcohol yields compared to the wild-type. Strains overexpressing aor showed CO2 re-assimilation during heterotrophic growth. In syngas fermentation, compared to the wild-type, the strain overexpressing adhE2 produced ∼50% more ethanol and the strain overexpressing adhE2 and fnr produced ∼18% more butanol and ∼22% more ethanol. Interestingly, both strains showed obvious acid re-assimilation, with <0.15 g/L total acid remaining at the end of fermentation. Overexpressing fnr with adhE2 enhanced butanol production compared to only adhE2. This is the first report of overexpressing homologous and heterologous genes in C. carboxidivorans for enhancing alcohols production from syngas and glucose.
Collapse
Affiliation(s)
- Chi Cheng
- Department of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave, Columbus, OH 43210, USA
| | - Weiming Li
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave, Columbus, OH 43210, USA; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Lin
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave, Columbus, OH 43210, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Kinetic study of butanol production from mixtures of glucose and xylose and investigation of different pre-growth strategies. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Birgen C, Dürre P, Preisig HA, Wentzel A. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:167. [PMID: 31297155 PMCID: PMC6598312 DOI: 10.1186/s13068-019-1508-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
After just more than 100 years of history of industrial acetone-butanol-ethanol (ABE) fermentation, patented by Weizmann in the UK in 1915, butanol is again today considered a promising biofuel alternative based on several advantages compared to the more established biofuels ethanol and methanol. Large-scale fermentative production of butanol, however, still suffers from high substrate cost and low product titers and selectivity. There have been great advances the last decades to tackle these problems. However, understanding the fermentation process variables and their interconnectedness with a holistic view of the current scientific state-of-the-art is lacking to a great extent. To illustrate the benefits of such a comprehensive approach, we have developed a dataset by collecting data from 175 fermentations of lignocellulosic biomass and mixed sugars to produce butanol that reported during the past three decades of scientific literature and performed an exploratory data analysis to map current trends and bottlenecks. This review presents the results of this exploratory data analysis as well as main features of fermentative butanol production from lignocellulosic biomass with a focus on performance indicators as a useful tool to guide further research and development in the field towards more profitable butanol manufacturing for biofuel applications in the future.
Collapse
Affiliation(s)
- Cansu Birgen
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Heinz A. Preisig
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | | |
Collapse
|
19
|
Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 2019; 103:5549-5566. [DOI: 10.1007/s00253-019-09916-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
|
20
|
Luo H, Zheng P, Xie F, Yang R, Liu L, Han S, Zhao Y, Bilal M. Co-production of solvents and organic acids in butanol fermentation by Clostridium acetobutylicum in the presence of lignin-derived phenolics. RSC Adv 2019; 9:6919-6927. [PMID: 35518483 PMCID: PMC9061099 DOI: 10.1039/c9ra00325h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Co-production of solvents (butanol, acetone, and ethanol) and organic acids (butyrate and acetate) by Clostridium acetobutylicum using lignocellulosic biomass as a substrate could further enlarge the application scope of butanol fermentation. This is mainly because solvents and organic acids could be used for production of fine chemicals such as butyl butyrate, butyl oleate, etc. However, many phenolic fermentation inhibitors are formed during the pretreatment process because of lignin degradation. The present study investigated the effects of five typical lignin-derived phenolics on the biosynthesis of solvents and organic acids in C. acetobutylicum ATCC 824. Results obtained in 100 mL anaerobic bottles indicated that butanol concentration was enhanced from 10.29 g L−1 to 11.36 g L−1 by the addition of 0.1 g L−1 vanillin. Subsequently, a pH-control strategy was proposed in a 5 L anaerobic fermenter to alleviate the “acid crash” phenomenon and improve butanol fermentation performance, simultaneously. Notably, organic acid concentration was enhanced from 6.38 g L−1 (control) to a high level of 9.21–12.57 g L−1 with vanillin or/and vanillic acid addition (0.2 g L−1) under the pH-control strategy. Furthermore, the butyrate/butanol ratio reached the highest level of 0.80 g g−1 with vanillin/vanillic acid co-addition, and solvent concentration reached 13.85 g L−1, a comparable level to the control (13.69 g L−1). The effectiveness and robustness of the strategy for solvent and organic acid co-production was also verified under five typical phenolic environments. In conclusion, these results suggest that the proposed process strategy would potentially promote butanol fermentative products from renewable biomass. Lignin-derived phenolics enhance solvent and organic acid biosynthesis in butanol fermentation by Clostridium acetobutylicum ATCC 824.![]()
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Panli Zheng
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Fang Xie
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Rongling Yang
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Lina Liu
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Shuo Han
- Department of Chemistry
- Missouri University of Science and Technology
- Rolla
- USA
| | - Yuping Zhao
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Muhammad Bilal
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| |
Collapse
|
21
|
Zhang J, Wang P, Wang X, Feng J, Sandhu HS, Wang Y. Enhancement of sucrose metabolism in Clostridium saccharoperbutylacetonicum N1-4 through metabolic engineering for improved acetone-butanol-ethanol (ABE) fermentation. BIORESOURCE TECHNOLOGY 2018; 270:430-438. [PMID: 30245312 DOI: 10.1016/j.biortech.2018.09.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
This work investigated sucrose metabolism in C. saccharoperbutylacetonicum. Inactivation of sucrose catabolism operon resulted in 28.9% decrease in sucrose consumption and 44.1% decrease in ABE production with sucrose as sole carbon source. Interestingly, a large amount of colloid-like polysaccharides were generated in the mutant, which might be due to inefficient intracellular sucrose metabolism. Deletion of transcriptional repressor gene successfully alleviated CCR and enhanced ABE production by 24.7%. Additional overexpression of endogenous sucrose pathway further elevated sucrose consumption and enhanced ABE production by 17.2%, 45.7%, or 22.5% compared to wild type with sucrose, mixed sugars or sugarcane juice as substrate, respectively. The engineered strain could be a robust platform for efficient biofuel production from inexpensive sucrose-based carbon sources.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Pixiang Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Xiaofei Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Jun Feng
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Hardev S Sandhu
- Everglades Research and Education Center, Belle Glade, FL 33430, USA
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
22
|
Charubin K, Bennett RK, Fast AG, Papoutsakis ET. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metab Eng 2018; 50:173-191. [DOI: 10.1016/j.ymben.2018.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022]
|
23
|
The draft genome sequence of Clostridium sp. strain LJ4 with high furan and phenolic derivates' tolerances occurring from lignocellulosic hydrolysates. 3 Biotech 2018; 8:406. [PMID: 30237953 DOI: 10.1007/s13205-018-1430-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022] Open
Abstract
The genome of a wild-type solventogenic Clostridium sp. strain LJ4 that could directly convert undetoxified lignocellulosic hydrolysate to butanol and tolerate high concentration of furan and phenolic derivates occurring in the lignocellulosic hydrolysate is described. 16S rDNA gene sequencing and analysis indicated that it is closely related to Clostridium acetobutylicum. The genome size of strain LJ4 is 3.90 Mp, which has a G + C content of 30.72% and encodes 2711 proteins. It also has one 0.19 Mp plasmid with 181 predicted encoding proteins. Alcohol dehydrogenases (ADs) and a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent flavin mononucleotide (FMN) reductase were identified, which may play key roles in inhibitors' resistance in lignocellulosic hydrolysate.
Collapse
|
24
|
Qin Z, Duns GJ, Pan T, Xin F. Consolidated processing of biobutanol production from food wastes by solventogenic Clostridium sp. strain HN4. BIORESOURCE TECHNOLOGY 2018; 264:148-153. [PMID: 29800775 DOI: 10.1016/j.biortech.2018.05.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
In this study, biobutanol production from glucose, starch and food waste by newly identified Clostridium sp. strain HN4 was comprehensively investigated, which is capable of secreting amylase indigenously for the following acetone-butanol-ethanol fermentation. With pH adjustment, strain HN4 could produce 5.23 g/L of butanol from 60 g/L of starch with secretion of 1.95 U/mL amylase through consolidated bioprocessing. Further supplementation of 3 g/L of CaCO3 and 0.5% non-ionic surfactant of Tween 80 could stimulate both amylase activities and the final butanol titer, leading to 17.64 g/L of butanol with yield of 0.15 g/g. Fed batch fermentation integrated with in situ removal could further improve the butanol titer to 35.63 g/L with yield of , representing the highest butanol production and yield from food waste. These unique features of Clostridium sp. strain HN4 could open the door to the possibility of cost-effective biobutanol production from food waste on a large scale.
Collapse
Affiliation(s)
- Zuodong Qin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in the South of Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425000, PR China
| | - Gregory J Duns
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in the South of Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425000, PR China
| | - Ting Pan
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in the South of Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425000, PR China
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
25
|
Zhang J, Zong W, Hong W, Zhang ZT, Wang Y. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 2018. [PMID: 29530750 DOI: 10.1016/j.ymben.2018.03.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endogenous immune systems. Here, we report the exploitation of Type I-B CRISPR-Cas of Clostridium tyrobutyricum for genome engineering. In silico CRISPR array analysis and plasmid interference assay revealed that TCA or TCG at the 5'-end of the protospacer was the functional protospacer adjacent motif (PAM) for CRISPR targeting. With a lactose inducible promoter for CRISPR array expression, we significantly decreased the toxicity of CRISPR-Cas and enhanced the transformation efficiency, and successfully deleted spo0A with an editing efficiency of 100%. We further evaluated effects of the spacer length on genome editing efficiency. Interestingly, spacers ≤ 20 nt led to unsuccessful transformation consistently, likely due to severe off-target effects; while a spacer of 30-38 nt is most appropriate to ensure successful transformation and high genome editing efficiency. Moreover, multiplex genome editing for the deletion of spo0A and pyrF was achieved in a single transformation, with an editing efficiency of up to 100%. Finally, with the integration of the alcohol dehydrogenase gene (adhE1 or adhE2) to replace cat1 (the key gene responsible for butyrate production and previously could not be deleted), two mutants were created for n-butanol production, with the butanol titer reached historically record high of 26.2 g/L in a batch fermentation. Altogether, our results demonstrated the easy programmability and high efficiency of endogenous CRISPR-Cas. The developed protocol herein has a broader applicability to other prokaryotes containing endogenous CRISPR-Cas systems. C. tyrobutyricum could be employed as an excellent platform to be engineered for biofuel and biochemical production using the CRISPR-Cas based genome engineering toolkit.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Wenming Zong
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hong
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang 550000, China
| | - Zhong-Tian Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
26
|
Dai K, Zhang F, Zhang Y, Zeng RJ. The chemostat metabolite spectra of alkaline mixed culture fermentation under mesophilic, thermophilic, and extreme-thermophilic conditions. BIORESOURCE TECHNOLOGY 2018; 249:322-327. [PMID: 29054062 DOI: 10.1016/j.biortech.2017.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
Alkaline mixed culture fermentation (MCF) is a promising technology for reducing organic waste and producing biochemicals. However, chemostat metabolite spectra that are necessary for constructing a model and analyzing factors are seldom reported. In the present study, the effects of pH on the metabolites distribution in mesophilic (35 °C), thermophilic (55 °C), and extreme-thermophilic (70 °C) alkaline MCF were demonstrated. A chemical oxygen demand balance above 80% was achieved, and the main metabolites included acetate, ethanol, propionate, lactate, and formate. The yields of ethanol and formate increased as pH was increased from 7.5 to higher pH under mesophilic and thermophilic conditions, while the yields of acetate, lactate, and/or propionate decreased. The yields of ethanol, acetate, and formate increased under extreme-thermophilic conditions as pH was increased from 7.5 to 9.0, whereas lactate and hydrogen yields decreased. Low biomass yield under thermophilic and extreme-thermophilic conditions benefited higher metabolite production and minimized the accumulation of sludge.
Collapse
Affiliation(s)
- Kun Dai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yan Zhang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
27
|
Luo H, Zeng Q, Han S, Wang Z, Dong Q, Bi Y, Zhao Y. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World J Microbiol Biotechnol 2017; 33:76. [PMID: 28337710 DOI: 10.1007/s11274-017-2246-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/15/2017] [Indexed: 01/22/2023]
Abstract
Butanol is not only an important chemical intermediate and solvent in pharmaceutical and cosmetics industries, but also considered as an advanced biofuel. Although species of the natural host Clostridium have been engineered, butanol titers in the anaerobe seem to be limited by its intolerance to butanol less than 13 g/L. Here we aimed to develop a technology for enhancing butanol production by a co-culture system with butyrate fermentative supernatant addition. First, when adding 4.0 g/L butyrate into the acetone-butanol-ethanol (ABE) fermentation broth with single-shot at 24 h, the "acid crash" phenomenon occurred and the ABE fermentation performance deteriorated. Subsequently, we found that adding certain amino acids could effectively enhance butyrate re-assimilation, butanol tolerance and titer (from 11.1 to 14.8 g/L). Additionally, in order to decrease the raw material cost, butyrate fermentative supernatant produced by Clostridium tyrobutyricum was applied to butanol production in the Clostridium acetobutylicum/Saccharomyces cerevisiae co-culture system, instead of adding synthetic butyrate. Final butanol and total ABE concentrations reached higher levels of 16.3 and 24.8 g/L with increments of 46.8 and 37.8%, respectively. These results show that the proposed fermentation strategy has great potential for efficiently butanol production with an economic approach.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shuo Han
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Qing Dong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| |
Collapse
|
28
|
Polyurethane–fluoropolymer interpenetrating polymer network membrane for pervaporation recovery of butanol. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1822-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|