1
|
Zhang F, Fu H, Zhang D, Lou H, Sun X, Sun P, Wang X, Bao M. Co-pollution risk of petroleum hydrocarbons and heavy metals in typically polluted estuarine wetlands: Insights from the Xiaoqing River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174694. [PMID: 38997022 DOI: 10.1016/j.scitotenv.2024.174694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Excessive accumulation of total petroleum hydrocarbons (TPH) and heavy metals (HMs) in sediments poses a significant threat to the estuarine ecosystem. In this study, the spatial and temporal distribution, ecological risks, sources, and their impacts on the microbial communities of TPH and nine HMs in the estuarine sediments of the Xiaoqing River were determined. Results showed that the spatial distribution of TPH and HMs were similar but opposite in temporal. Ni, Cr, Pb, and Co concentrations were similar to the reference values (RVs). However, the other five HMs (Cu, Zn, Cd, As, and Hg) and TPH concentrations were 2.00-763.44 times higher than RVs; hence, this deserves attention, particularly for Hg. Owing to the water content of the sediments, Hg was mainly concentrated on the surface during the wet season and on the bottom during the dry season. Moreover, because of weak hydrodynamics and upstream pollutant sinks, TPH-HMs in the river were higher than those in the estuary. TPH and HM concentrations were negatively correlated with microbial diversity. Structural equation modeling showed that HMs (path coefficient = -0.50, p < 0.001) had a negative direct effect on microbial community structure and a positive indirect effect on TPH. The microbial community (path coefficient = 0.31, 0.01 < p < 0.05) was significantly correlated with TPH. In summary, this study explores both the chemical analysis of pollutants and their interaction with microbial communities, providing a better understanding of the co-pollution of TPH and HMs in estuarine sediments.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Wang L, Zhao W, Jiang Y, Liu L, Chen J, Zhao F, Zhang X, Zou K. Similarities and differences in bacterial communities between the Pearl River (Guangzhou section) and its estuary. Mol Biol Rep 2024; 51:1057. [PMID: 39417915 DOI: 10.1007/s11033-024-09989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The Pearl River and its estuary are highly exposed to anthropogenic disturbance. Because bacterial communities play an indispensable role in aquatic ecosystems, there has been an increased research focus on the statuses of these communities under human-induced perturbations. METHODS AND RESULTS This study investigated the composition, diversity, and structure of bacterial communities across 29 sites from the Guangzhou section of the Pearl River (GZ) to the Pearl River Estuary (PRE) using 16S rRNA gene amplicons. The results revealed similar dominant phyla of bacteria in both GZ and PRE, as well as significant differences in bacterial community composition and diversity between the two sections. Proteobacteria and Cyanobacteria were identified as the primary drivers of compositional differences between GZ and PRE. The Cyanobacteria Dolichospermum_NIES41 and Cuspidothrix issatschenkoi were only present in GZ, whereas the marine Gram-negative bacteria of Porticoccus litoralis and Thalassolituus oleivorans were unique to PRE. CONCLUSIONS Bacterial community composition and diversity exhibit both similarities and differences between GZ and PRE; Proteobacteria and Cyanobacteria are key factors underlying these variations. Bacterial communities in both GZ and PRE are strongly influenced by human activities, and salinity is an important factor in controlling their differences. This study provides a comprehensive analysis of the bacterial communities in GZ and PRE, establishing a foundation for better management of aquatic ecosystems impacted by anthropogenic activities.
Collapse
Affiliation(s)
- Longxin Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China
| | - Wencheng Zhao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China
| | - Yun Jiang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China
| | - Li Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China
| | - Jianwei Chen
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Fang Zhao
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China.
| | - Keshu Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Lennert KJ, Borsodi AK, Anda D, Krett G, Kós PB, Engloner AI. The effect of urbanization on planktonic and biofilm bacterial communities in different water bodies of the Danube River in Hungary. Sci Rep 2024; 14:23881. [PMID: 39396077 PMCID: PMC11470945 DOI: 10.1038/s41598-024-75863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
Freshwaters play an essential role in providing ecosystem services worldwide, however, the water quality of different water bodies is strongly influenced by human activities such as urbanization, industry and agriculture. In this study, water and biofilm samples were collected from the main channel of the Danube River upstream and downstream of a metropolitan, from a regulated side arm within an urbanized area, and from two differently separated oxbow lakes located in nature conservation areas. The taxonomic diversity of bacterial communities was revealed by 16S rRNA gene-based amplicon sequencing using Illumina MiSeq platform. The results showed that all samples were dominated by phyla Pseudomonadota, Actinobacteriota and Bacteroidota. The bacterial community structures, however, clearly differentiated according to planktonic and epilithic or epiphytic habitats, as well as by riverine body types (main channel, side arm, oxbow lakes). The taxonomic diversity of biofilm communities was higher than that of planktonic ones in all studied habitats. Human impacts were mainly reflected in the slowly changing biofilm composition compared to the planktonic ones. Genera with pollution tolerance and/or degradation potential, such as Acinetobacter, Pseudomonas and Shewanella were mainly detected in biofilm communities of the highly urbanized section of the river side arm.
Collapse
Affiliation(s)
- Kinga J Lennert
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Dóra Anda
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Péter B Kós
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Attila I Engloner
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
- National Laboratory for Water Science and Water Security, HUN-REN Centre for Ecological Research, Budapest, Hungary.
| |
Collapse
|
4
|
Shan L, Zheng W, Xu S, Zhu Z, Pei Y, Bao X, Yuan Y. Effect of household pipe materials on formation and chlorine resistance of the early-stage biofilm: various interspecific interactions exhibited by the same microbial biofilm in different pipe materials. Arch Microbiol 2024; 206:295. [PMID: 38856934 DOI: 10.1007/s00203-024-04013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024]
Abstract
Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.
Collapse
Affiliation(s)
- Lili Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Wanjun Zheng
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Siyang Xu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
- Department of Transportation of Jiangxi Province, Comprehensive Transportation Development Research Center of Jiangxi Provincial, Nanchang, PR China
| | - Zebing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China.
| | - Yunyan Pei
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Xiajun Bao
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
5
|
Sun P, Bai J, Lian J, Tan Y, Chen X. Single and Combined Effects of Phenanthrene and Silver Nanoparticles on Denitrification Processes in Coastal Marine Sediments. Microorganisms 2024; 12:745. [PMID: 38674689 PMCID: PMC11051833 DOI: 10.3390/microorganisms12040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing production and utilization of polycyclic aromatic hydrocarbons (PAHs) and commercial silver nanoparticles (AgNPs) have raised concerns about their potential environmental release, with coastal sediments as a substantial sink. To better understanding the effects of these contaminants on denitrification processes in coastal marine sediments, a short-term exposure simulation experiment was conducted. We investigated the effects of single and combined contamination of phenanthrene (Phe) and AgNPs on denitrification processes in a coastal marine sediment. Results showed that all contaminated treatment groups had different degrees of inhibitory effect on denitrification activity, denitrifying enzyme activity, total bacteria count and denitrifying genes. The inhibitory effect sequence of each treatment group was combined treatment > AgNPs treatment > Phe treatment. Moreover, the inhibitory effects of denitrifying genes were much larger than that of total bacteria count, indicating that the pollutants had specific toxic effects on denitrifying bacteria. The sequence of sensitivity of three reduction process to pollutants was N2O > NO2- > NO3-. All contaminated treatment groups could increase NO3-, NO2- and N2O accumulation. Furthermore, according to the linear relationship between functional gene or reductase and denitrification process, we also found that the abundance of denitrifying genes could better predict the influence of Phe and AgNPs on sediment denitrification than the denitrifying bacterial diversity. In addition, at the genus level, the community structure of nirS- and nosZ-type denitrifying bacteria changed dramatically, while changes at the phylum level were comparatively less pronounced. Single and combined contamination of Phe and AgNPs could reduce the dominance of Pseudomonas, which may lead to a potential slow-down in the degradation of Phe and inhibition of denitrification, especially the combined contamination. Overall, our study revealed that combined contamination of Phe and AgNPs could lead to an increase in NO3-, NO2- and N2O accumulation in coastal sediment, which poses a risk of eutrophication in coastal areas, exacerbates the greenhouse effect and has adverse effects on global climate change.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
| | - Jie Lian
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Yongyu Tan
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xi Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Che Y, Lin C, Li S, Liu J, Zhu L, Yu S, Wang N, Li H, Bao M, Zhou Y, Si T, Bao R. Influences of hydrodynamics on microbial community assembly and organic carbon composition of resuspended sediments in shallow marginal seas. WATER RESEARCH 2024; 248:120882. [PMID: 38006834 DOI: 10.1016/j.watres.2023.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Hydrodynamic processes play a crucial role in driving the transmission of sediments, likely harboring diverse microbes and heterogeneous organic carbon (OC) in the ocean. Here we conducted continuous micro-erosion experiments on surface sediments retrieved from shallow marginal seas, and analyzed the microbial community structures, OC content, and isotope compositions (δ13C and Δ14C) of resuspended sediments to investigate the effects of hydrodynamics on microbial assembly and OC composition in marginal seas. Our results showed that gene abundance and major microbial compositions in resuspended sediments changed with varying benthic shear stresses, which evolved towards diversification after continuous hydrodynamic erosion. Aerobic bacteria were more likely to be eroded out from sediments under lower shear stresses compared with anaerobic bacteria. Our study provides evidence that hydrodynamic disturbances shape the assembly of microbial communities with different metabolic functions, especially for bacteria, which may spatially influence the microbial-mediated biogeochemical transformation in marginal seas. Isotopic results revealed that more terrestrial OC was resuspended under initial erosion, while more marine OC was eroded out with increasing shear stresses, suggesting that hydrodynamics may control the redistribution of different sourced OC and contribute to the dispersion and degradation of terrestrial OC during transport process. Our findings further suggest that the nature of resuspended OC may influence the assembly of sediment-attached microbes due to their metabolic preference for carbon sources, as evidenced by correlations between OC compositions and microbial diversity and abundance. We thus suggest that hydrodynamic disturbance is an extrinsic physical driver of OC redistribution and microbial reassembly, whereas OC may be an intrinsic factor influencing microbial colonization, helping to interpret the spatial heterogeneity of microbes and OC compositions observed in marginal sea sediments. Our study underscores the significant roles of hydrodynamic-driven sediment resuspension in shaping diverse microbial communities and redistributing OC in aquatic systems, and highlights the importance of this process in biogeochemical cycles and ecological environment evolution in shallow marginal sea systems.
Collapse
Affiliation(s)
- Yangli Che
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chaoran Lin
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Shen Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jiao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Longhai Zhu
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Shilei Yu
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Nan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Guangzhou Marine Geological Survey, Guangzhou, China
| | - Tonghao Si
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
7
|
Li H, Tan L, Xu Y, Zheng X. Metagenomics insights into the performance and mechanism of soil infiltration systems on removing antibiotic resistance genes in rural sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118981. [PMID: 37742563 DOI: 10.1016/j.jenvman.2023.118981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
The removal of antibiotic resistance genes (ARGs) in sewage is of great concern, but advanced sewage treatment technologies are not suitable for rural areas, so the multi-layer soil infiltration system (MSL) has been developed for rural sewage treatment. However, little is known about the performance and function of MSL in the treatment of ARGs in rural sewage. Here, we optimized the matrix composition and structure of MSL and explored the efficacy and mechanism of MSL systems for ARG removal under different hydraulic conditions. The ARGs removal rate of MSL ranged from 41.51% to 99.67%, in which MSL with the middle hydraulic load, high pollution load, and continuous inflowing conditions showed the best removal performance. In addition, this system can operate stably and resist the temperature fluctuation, which showed an equivalent removal rate of ARGs in warm and cold seasons, amounting to 69.0%. The structural equation model revealed that microorganisms in sewage could significantly affect ARG removal (path coefficient = 0.91), probably owing to their interspecies competition. As for the internal system, the reduction of ARGs was mainly driven by microorganisms in the system matrix (path coefficient = 0.685), especially soil-mixture-block (SMB) microorganisms. The physicochemical factors of the matrix indirectly reduce ARGs by affecting the microorganisms that adhere to the matrices. Note that the pairwise alignment of nucleotide analysis demonstrated that the system matrix, especially biochar in the SMB, adsorbed ARGs and their hosts from the sewage, and in turn eliminated them by inhibiting the spread and colonization of hosts, thereby reducing the abundance of ARGs. Collectively, this study provides a deeper insight into the removal of ARGs from rural sewage by MSL, which can help improve sewage treatment technologies.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China.
| |
Collapse
|
8
|
Yu B, Zeng Q, Li J, Li J, Tan X, Gao X, Huang P, Wu S. Vertical variation in prokaryotic community composition and co-occurrence patterns in sediments of the Three Gorges Reservoir, China. ENVIRONMENTAL RESEARCH 2023; 237:116927. [PMID: 37604225 DOI: 10.1016/j.envres.2023.116927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Archaea and bacteria are distributed throughout the sediment; however, our understanding of their biodiversity patterns, community composition, and interactions is primarily limited to the surface horizons (0-20 cm). In this research, sediment samples were collected from three vertical sediment profiles (depths of 0-295 cm) in the Three Gorges Reservoir (TGR), one of the largest reservoirs in the world. Through 16S rRNA sequencing, it was shown that sediment microbial diversity did not significantly vary across the sediment. Nevertheless, a decline in the similarity of archaeal and bacterial communities over distance along sediment vertical profiles was noted. Nonmetric multidimensional scaling (NMDS) analysis revealed that archaeal and bacterial communities could be clearly separated into two groups, located in the upper sediments (0-135 cm) and deep sediments (155-295 cm). Meanwhile, at the fine-scale of the vertical section, noteworthy variations were observed in the relative abundance of prominent archaea (e.g., Euryarchaeota) and bacteria (e.g., Proteobacteria). The linear discriminant analysis effect size (LEfSe) demonstrated that twenty-four bacterial and twenty-six archaeal biomarker microbes exist in the upper and deep sediment layers. Each layer exhibited distinctive microbial divisions, suggesting that microbes with diverse biological functions are capable of thriving and propagating along the sediment profile. Co-occurrence network analysis further indicated that the microbial network in the upper sediments was more complex than that in the deep sediments. Additionally, the newly discovered anaerobic methanotrophic archaeon Candidatus Methanoperedens was identified as the most abundant keystone archaeal taxon in both sediment layers, highlighting the significance of methane oxidation in material cycling within the TGR ecosystem. In summary, our study examined the biodiversity and coexistence patterns of benthic microbial communities throughout the vertical sediment profile, providing detailed insights into the vertical geography of archaeal and bacterial communities in typical deep-water reservoir ecosystems.
Collapse
Affiliation(s)
- Baohong Yu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Quanchao Zeng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China.
| | - Jinlin Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Jun Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xun Tan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xin Gao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Ping Huang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| |
Collapse
|
9
|
Zhang ZF, Mao J, Cai L. Dispersal Limitation Controlling the Assembly of the Fungal Community in Karst Caves. J Fungi (Basel) 2023; 9:1013. [PMID: 37888269 PMCID: PMC10608104 DOI: 10.3390/jof9101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
As a unique ecosystem, Karst caves harbor an impressive diversity of specific fungi. However, the factors and mechanisms that shape fungal biodiversity in caves remain elusive. In this study, we explored the assembly patterns of fungal communities based on our previous research in eight representative Karst caves in Southwest China. Our results indicated that dispersal limitation plays a crucial role in shaping the overall fungal community as well as specific communities in rock, sediment, and water samples. However, "Undominated" processes contributed more than dispersal limitation in air samples. Interestingly, the dominant assembly processes varied between caves. Consistently, environmental selection had a minor impact on the assembly of fungal communities. Among the examined spatial and environmental variables, latitude, longitude, altitude, and temperature were found to significantly influence fungal communities irrespective of substrate type. These findings provide valuable insights into the ecological factors governing fungal community assembly in Karst caves.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Engloner AI, Vargha M, Kós P, Borsodi AK. Planktonic and epilithic prokaryota community compositions in a large temperate river reflect climate change related seasonal shifts. PLoS One 2023; 18:e0292057. [PMID: 37733803 PMCID: PMC10513243 DOI: 10.1371/journal.pone.0292057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
In freshwaters, microbial communities are of outstanding importance both from ecological and public health perspectives, however, they are threatened by the impact of global warming. To reveal how different prokaryotic communities in a large temperate river respond to environment conditions related to climate change, the present study provides the first detailed insight into the composition and spatial and year-round temporal variations of planktonic and epilithic prokaryotic community. Microbial diversity was studied using high-throughput next generation amplicon sequencing. Sampling was carried out monthly in the midstream and the littoral zone of the Danube, upstream and downstream from a large urban area. Result demonstrated that river habitats predominantly determine the taxonomic composition of the microbiota; diverse and well-differentiated microbial communities developed in water and epilithon, with higher variance in the latter. The composition of bacterioplankton clearly followed the prolongation of the summer resulting from climate change, while the epilithon community was less responsive. Rising water temperatures was associated with increased abundances of many taxa (such as phylum Actinobacteria, class Gammaproteobacteria and orders Synechococcales, Alteromonadales, Chitinophagales, Pseudomonadales, Rhizobiales and Xanthomonadales), and the composition of the microbiota also reflected changes of several further environmental factors (such as turbidity, TOC, electric conductivity, pH and the concentration of phosphate, sulphate, nitrate, total nitrogen and the dissolved oxygen). The results indicate that shift in microbial community responding to changing environment may be of crucial importance in the decomposition of organic compounds (including pollutants and xenobiotics), the transformation and accumulation of heavy metals and the occurrence of pathogens or antimicrobial resistant organisms.
Collapse
Affiliation(s)
- Attila I. Engloner
- Centre for Ecological Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Márta Vargha
- Department of Public Health Laboratories, National Public Health Centre, Budapest, Hungary
| | - Péter Kós
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, Szeged University, Szeged, Hungary
| | - Andrea K. Borsodi
- Centre for Ecological Research, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
11
|
An R, Liu Y, Pan C, Da Z, Zhang P, Qiao N, Zhao F, Ba S. Water quality determines protist taxonomic and functional group composition in a high-altitude wetland of international importance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163308. [PMID: 37028668 DOI: 10.1016/j.scitotenv.2023.163308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/26/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
Alpine wetland is a natural laboratory for studying the Earth's third polar ecosphere. Protist communities are key components of wetland ecosystems which are extremely vulnerable to environmental change. It is of great importance to study the protist community in relation to environment, which might be the key to understand the ecosystem of the alpine wetlands under global change. In this study, we investigated the composition of protist communities across the Mitika Wetland, a unique alpine wetland hosting tremendous endemic diversity. Using 18S rRNA gene high-throughput sequencing, we evaluated how protist taxonomic and functional group composition is structured by seasonal climate and environmental variation. We found a high relative abundance of Ochrophyta, Ciliophora, and Cryptophyta, each of which showcased a unique spatial pattern in the wet and dry seasons. The proportion of consumers, parasites and phototrophs groups were stable among the functional zones and also between the seasons, with consumers dominating communities in terms of richness, while phototrophic taxa dominated in terms of relative abundance. Protist and each functional group were rather regulated by deterministic than stochastic processes, with water quality having a strong control on communities. Salinity and pH were the most important environmental factors at shaping protistan community. The protist co-occurrence network dominated by the positive edge indicating the communities resisted extreme environmental conditions through close cooperation, and more consumers were determined as the keystones in wet season and more phototrophic taxa in dry season. Our results provided the baseline of the protist taxonomic and functional group composition in the highest wetland, and highlighted environmental selections drive protist distribution, implying the alpine wetland ecosystem are sensitive to climate changes and human activities.
Collapse
Affiliation(s)
- Ruizhi An
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Yang Liu
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Chengmei Pan
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Zhen Da
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Peng Zhang
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Nanqian Qiao
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Feng Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Sang Ba
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China.
| |
Collapse
|
12
|
Lin X, Zhang C, Xie W. Deterministic processes dominate archaeal community assembly from the Pearl River to the northern South China Sea. Front Microbiol 2023; 14:1185436. [PMID: 37426005 PMCID: PMC10324572 DOI: 10.3389/fmicb.2023.1185436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Archaea play a significant role in the biogeochemical cycling of nutrients in estuaries. However, comprehensive researches about their assembly processes remain notably insufficient. In this study, we systematically examined archaeal community dynamics distinguished between low-salinity and high-salinity groups in water and surface sediments over a 600-kilometer range from the upper Pearl River (PR) to the northern South China Sea (NSCS). Neutral community model analysis together with null model analysis showed that their C-score values were greater than 2, suggesting that deterministic processes could dominate the assembly of those planktonic or benthic archaeal communities at both the low-salinity and high-salinity sites. And deterministic processes contributed more in the low-salinity than high-salinity environments from the PR to the NSCS. Furthermore, through the co-occurrence network analysis, we found that the archaeal communities in the low-salinity groups possessed closer interactions and higher proportions of negative interactions than those in the high-salinity groups, which might be due to the larger environmental heterogeneities reflected by the nutrient concentrations of those low-salinity samples. Collectively, our work systematically investigated the composition and co-occurrence networks of archaeal communities in water as well as sediments from the PR to the NSCS, yielding new insights into the estuary's archaeal community assembly mechanisms.
Collapse
Affiliation(s)
- Xizheng Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| |
Collapse
|
13
|
Deterministic Processes Shape Abundant and Rare Bacterial Communities in Drinking Water. Curr Microbiol 2023; 80:111. [PMID: 36808560 DOI: 10.1007/s00284-023-03210-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
The deep mechanisms shaping bacterial assembly are a crucial challenge in drinking water ecosystem. However, much less is known about seasonal diversity distributions and assembly mechanisms of abundant and rare bacteria in drinking water. The combination of environmental variables and high-throughput 16S rRNA gene sequencing was conducted to examine the composition, assembly, co-occurrence patterns of abundant and rare bacteria from five drinking water sites across four seasons in one year in China. The results indicated that abundant taxa were mainly composed of Rhizobiales_UG1, Sphingomonadales_UG1, and Comamonadaceae, while rare taxa were Sphingomonadales_UG1, Rhizobiales_UG2, and Rhizobiales_UG1. The richness of rare bacteria was greater than that of abundant ones, and the richness had no differences among seasons. The beta diversity was significantly discrepant in abundant and rare communities and among seasons. Deterministic mechanism accounted for a larger contribution to abundant taxa than rare taxa. Furthermore, water temperature had higher effects on abundant microbiome than rare ones. Co-occurrence network analysis indicated that abundant taxa that occupied frequently in central positions had stronger effect on co-occurrence network. In our study, these results collectively suggested that rare bacteria respond to environmental variables with an analogical pattern to abundant counterparts (similar community assembly), but their ecological diversities, driving forces, and co-occurrence patterns were not equivalent in drinking water.
Collapse
|
14
|
Determinants and Assembly Mechanism of Bacterial Community Structure in Ningxia Section of the Yellow River. Microorganisms 2023; 11:microorganisms11020496. [PMID: 36838461 PMCID: PMC9967387 DOI: 10.3390/microorganisms11020496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The Yellow River is a valuable resource in the Ningxia Hui Autonomous Region and plays a vital role in local human activities and biodiversity. Bacteria are a crucial component of river ecosystems, but the driving factors and assembly mechanisms of bacterial community structure in this region remain unclear. Herein, we documented the bacterial community composition, determinants, co-occurrence pattern, and assembly mechanism for surface water and sediment. In comparison to sediment, the bacterioplankton community showed significant seasonal variation, as well as less diversity and abundance. The network topology parameters indicated that the sediment bacterial network was more stable than water, but the bacterioplankton network had higher connectivity. In this lotic ecosystem, CODMn, Chl a, and pH affected the structure of the bacterioplankton community, while TP was the primary factor influencing the structure of the sediment bacterial community. The combined results of the neutral community model and the phylogenetic null model indicate that Bacterial communities in both habitats were mainly affected by stochastic processes, with ecological processes dominated by ecological drift for bacterioplankton and dispersal limitation for sediment bacteria. These results provide essential insights into future research on microbial ecology, environmental monitoring, and classified management in the Ningxia section of the Yellow River.
Collapse
|
15
|
Sun M, Li M, Zhou Y, Liu J, Shi W, Wu X, Xie B, Deng Y, Gao Z. Nitrogen deposition enhances the deterministic process of the prokaryotic community and increases the complexity of the microbial co-network in coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158939. [PMID: 36170917 DOI: 10.1016/j.scitotenv.2022.158939] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Global nitrogen deposition has increased significantly in recent years. At present, research on the effects of different amounts and types of nitrogen deposition on soil microorganisms in coastal wetlands is scarce. In this study, based on 7 years of simulated nitrogen deposition at multiple levels (low, medium, high) and of multiple types (NH4NO3, NH4Cl, KNO3), the effects of different nitrogen deposition conditions on the diversity, community assembly processes, co-networks, and community function of soil prokaryotes in coastal wetlands were examined. The results showed that, compared with that in control, the microbial α diversity increased significantly under nitrogen deposition (P < 0.05). However, it decreased significantly in the high-NH4NO3 and high-NH4Cl treatments (P < 0.05). The deterministic process of community assembly was strengthened under the different types of nitrogen deposition. Compared with that under NH4+-N deposition, the microbial co-network under NO3--N deposition was more complex. Network stability significantly decreased under different NH4+-N deposition levels. In addition, the results of FAPROTAX functional prediction showed that microbial community functional groups associated with carbon and nitrogen cycling changed significantly (P < 0.05). In conclusion, our results emphasize that nitrogen deposition environments cause changes in soil microbial community structure and interactions, and may also affect soil carbon and nitrogen cycling, but the effects of different forms and levels of nitrogen deposition are not consistent. This study provides new insights for evaluating the changes in soil microbial communities in coastal wetlands caused by different types of long-term nitrogen deposition, and has scientific significance for assessing the ecological effects of long-term nitrogen deposition.
Collapse
Affiliation(s)
- Mengyue Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Mingcong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Tai'an 271018, China
| | - Yuqi Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jiai Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wenchong Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | | | - Baohua Xie
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, CAS, Shandong provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying 257500, China.
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Tai'an 271018, China.
| |
Collapse
|
16
|
Zhang X, Zhang C, Liu Y, Zhang R, Li M. Non-negligible roles of archaea in coastal carbon biogeochemical cycling. Trends Microbiol 2022; 31:586-600. [PMID: 36567186 DOI: 10.1016/j.tim.2022.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Coastal zones are among the world's most productive ecosystems. They store vast amounts of organic carbon, as 'blue carbon' reservoirs, and impact global climate change. Archaeal communities are integral components of coastal microbiomes but their ecological roles are often overlooked. However, archaeal diversity, metabolism, evolution, and interactions, revealed by recent studies using rapidly developing cutting-edge technologies, place archaea as important players in coastal carbon biogeochemical cycling. We here summarize the latest advances in the understanding of archaeal carbon cycling processes in coastal ecosystems, specifically, archaeal involvement in CO2 fixation, organic biopolymer transformation, and methane metabolism. We also showcase the potential to use of archaeal communities to increase carbon sequestration and reduce methane production, with implications for mitigating climate change.
Collapse
Affiliation(s)
- Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Rui Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Shen Z, Shang Z, Wang F, Liang Y, Zou Y, Liu F. Bacterial diversity in surface sediments of collapsed lakes in Huaibei, China. Sci Rep 2022; 12:15784. [PMID: 36138093 PMCID: PMC9500014 DOI: 10.1038/s41598-022-20148-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
The collapse lake area due to coal mining in Huaibei shows high biodiversity, but the bacterial community composition and diversity in the lake sediments are still rarely studied. Therefore, based on 16S rRNA high-throughput sequencing and combined with analysis of environmental factors, we comparatively analyzed the bacterial community composition and diversity of surface sediments from East Lake (DH) and South Lake (NH) and Middle Lake (ZH) in the collapse lake area of Huaibei. The bacterial community compositions are significantly different in the sediments among Huaibei collapsed lakes, with DH having the largest number of species, and NH having a higher species diversity. Pseudomonadota is the most abundant phylum in the sediments of DH and NH, while the most abundant phyla in ZH are Bacteroidales, Chloroflexales, Acidobacteriales, and Firmicutes. Anaerolineae (24.05% ± 0.20%) is the most abundant class in the DH sediments, and Gammaproteobacteria (25.94% ± 0.40%) dominates the NH sediments, Bacteroidia (32.12% ± 1.32%) and Clostridia (21.98% ± 0.90%) contribute more than 50% to the bacteria in the sediments of ZH. Redundancy analysis (RDA) shows that pH, TN, and TP are the main environmental factors affecting the bacterial community composition in the sediments of the collapsed lake area. The results reveal the bacterial community composition and biodiversity in the sediments of the Huaibei coal mining collapsed lakes, and provide new insights for the subsequent ecological conservation and restoration of the coal mining collapsed lakes.
Collapse
Affiliation(s)
- Zijian Shen
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Zijian Shang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Faxin Wang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanhong Liang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Youcun Zou
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Fei Liu
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
18
|
Da Silva RRP, White CA, Bowman JP, Ross DJ. Composition and functionality of bacterioplankton communities in marine coastal zones adjacent to finfish aquaculture. MARINE POLLUTION BULLETIN 2022; 182:113957. [PMID: 35872476 DOI: 10.1016/j.marpolbul.2022.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Finfish aquaculture is a fast-growing primary industry and is increasingly common in coastal ecosystems. Bacterioplankton is ubiquitous in marine environment and respond rapidly to environmental changes. Changes in bacterioplankton community are not well understood in semi-enclosed stratified embayments. This study aims to examine aquaculture effects in the composition and functional profiles of the bacterioplankton community using amplicon sequencing along a distance gradient from two finfish leases in a marine embayment. Results revealed natural stratification in bacterioplankton associated to NOx, conductivity, salinity, temperature and PO4. Among the differentially abundant bacteria in leases, we found members associated with nutrient enrichment and aquaculture activities. Abundant predicted functions near leases were assigned to organic matter degradation, fermentation, and antibiotic resistance. This study provides a first effort to describe changes in the bacterioplankton community composition and function due to finfish aquaculture in a semi-enclosed and highly stratified embayment with a significant freshwater input.
Collapse
Affiliation(s)
- R R P Da Silva
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia.
| | - C A White
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia
| | - J P Bowman
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - D J Ross
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia
| |
Collapse
|
19
|
Xu L, Xiang P, Zhang B, Yang K, Liu F, Wang Z, Jin Y, Deng L, Gan W, Song Z. Host Species Influence the Gut Microbiota of Endemic Cold-Water Fish in Upper Yangtze River. Front Microbiol 2022; 13:906299. [PMID: 35923412 PMCID: PMC9339683 DOI: 10.3389/fmicb.2022.906299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
The fish gut microbiome plays an important role in nutrition absorption and energy metabolism. Studying the gut microbes of cold-water fish is important to understand the dietary adaptation strategies in extreme environments. In this study, the gut samples of Schizothorax wangchiachii (SW, herbivorous), Schizothorax kozlovi (SK, omnivorous), and Percocypris pingi (PP, carnivorous) in the upper Yangtze River were collected, and we sequenced 16S rRNA amplicon to study the potential relationship between gut microbes and host species. The results showed that gut microbial composition and diversity were significantly different between the three cold-water fishes. These fishes had different key taxa in their gut microbes, including bacteria involved in the breakdown of food (e.g., Cetobacterium, Aeromonas, and Clostridium sensu stricto 10). The highest alpha diversity indices (e.g., Chao 1 index) were identified in the herbivore (SW), followed by the carnivore (PP), and the lowest in the omnivore (SK). Non-metric multidimensional scaling (NMDS) results revealed that the gut microbial community of these species was different between host species. The neutral community model (NCM) showed that the microbial community structure of SW was shaped by stochastic processes, and the highest species dispersal was found in SW, followed by PP, and the lowest in SK. The results of niche breadth agreed with these findings. Our results demonstrated that host species influenced the gut microbiome composition, diversity, and microbial community assembly processes of the three cold-water fishes. These findings implied that the variation of gut microbiome composition and function plays a key role in digesting and absorbing nutrients from different foods in cold-water fish.
Collapse
Affiliation(s)
- Liangliang Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Baowen Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Yang
- Institute of Ecology, China West Normal University, Nanchong, China
| | - Fenglin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zesong Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanjun Jin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
| | - Longjun Deng
- Yalong River Hydropower Development Company, Ltd., Chengdu, China
| | - Weixiong Gan
- Yalong River Hydropower Development Company, Ltd., Chengdu, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Zhaobin Song,
| |
Collapse
|
20
|
Su W, Wang S, Yang J, Yu Q, Wirth S, Huang X, Qi W, Zhang X, Li H. Corpse decay of wild animals leads to the divergent succession of nrfA-type microbial communities. Appl Microbiol Biotechnol 2022; 106:5287-5300. [PMID: 35802158 DOI: 10.1007/s00253-022-12065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022]
Abstract
Animal carcasses introduce large amounts of nitrates and ammonium into the soil ecosystem. Some of this ammonium is transformed from nitrite through the nrfA-type microbial community. However, it is unclear how nrfA-type microorganisms respond to the decomposition of corpses. This study applied high-throughput sequencing to characterize the ecological succession of nrfA-type microbial communities in grassland soil. Our results showed that Cyclobacterium and Trueperella were the predominant genera for nrfA-type communities in soil with a decomposing corpse (experimental group), while Cyclobacterium and Archangium were dominant in soil without a corpse (control group). The alpha diversity indexes and the resistance and resilience indexes of the microbial communities initially increased and then decreased during decomposition. Compared with the control group, nrfA-encoding community structure in the experimental group gradually became divergent with succession and temporal turnover accelerated. Network analysis revealed that the microbial communities of the experimental group had more complex interactions than those of the control groups. Moreover, the bacterial community assembly in the experimental group was governed by stochastic processes, and the communities of the experimental group had a weaker dispersal capacity than those of the control group. Our results reveal the succession patterns of the nrfA-type microbial communities during degradation of wild animal corpses, which can offer references for demonstrating the ecological mechanism underlying the changes in the nrfA-type microbial community during carcass decay. KEY POINTS: • Corpse decay accelerates the temporal turnover of the nrfA-type community in soil. • Corpse decay changes the ecological succession of the nrfA-type community in soil. • Corpse decay leads to a complex co-occurrence pattern of the nrfA-type community in soil.
Collapse
Affiliation(s)
- Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Stephan Wirth
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry, Eberswalder Str. 84, 15374, Muncheberg, Germany
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanpeng Qi
- Genesky Biotechnologies Inc., Shanghai, 201315, China
| | - Xiao Zhang
- Key Laboratory of National Forestry and Grassland Administration On Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China. .,State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
21
|
Zhang H, Yan Y, Lin T, Xie W, Hu J, Hou F, Han Q, Zhu X, Zhang D. Disentangling the Mechanisms Shaping the Prokaryotic Communities in a Eutrophic Bay. Microbiol Spectr 2022; 10:e0148122. [PMID: 35638815 PMCID: PMC9241920 DOI: 10.1128/spectrum.01481-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022] Open
Abstract
Eutrophication occurring in coastal bays is prominent in impacting local ecosystem structure and functioning. To understand how coastal bay ecosystem function responds to eutrophication, comprehending the ecological processes associated with microbial community assembly is critical. However, quantifying the contribution of ecological processes to the assembly of prokaryotic communities is still limited in eutrophic waters. Moreover, the influence of these ecological processes on microbial interactions is poorly understood. Here, we examined the assembly processes and co-occurrence patterns of prokaryotic communities in a eutrophic bay using 156 surface seawater samples collected over 12 months. The variation of prokaryotic community compositions (PCCs) could be mainly explained by environmental factors, of which temperature was the most important. Under high environmental heterogeneity conditions in low-temperature seasons, heterogeneous selection was the major assembly process, resulting in high β-diversity and more tightly connected co-occurrence networks. When environmental heterogeneity decreased in high-temperature seasons, drift took over, leading to decline in β-diversity and network associations. Microeukaryotes were found to be important biological factors affecting PCCs. Our results first disentangled the contribution of drift and microbial interactions to the large unexplained variation of prokaryotic communities in eutrophic waters. Furthermore, a new conceptual model linking microbial interactions to ecological processes was proposed under different environmental heterogeneity. Overall, our study sheds new light on the relationship between assembly processes and co-occurrence of prokaryotic communities in eutrophic waters. IMPORTANCE A growing number of studies have examined roles of microbial community assembly in modulating community composition. However, the relationships between community assembly and microbial interactions are not fully understood and rarely tested, especially in eutrophic waters. In this study, we built a conceptual model that links seasonal microbial interactions to ecological processes, which has not been reported before. The model showed that heterogeneous selection plays an important role in driving community assembly during low-temperature seasons, resulting in higher β-diversity and more tightly connected networks. In contrast, drift became a dominant force during high-temperature seasons, leading to declines in the β-diversity and network associations. This model could function as a new framework to predict how prokaryotic communities respond to intensified eutrophication induced by climate change in coastal environment.
Collapse
Affiliation(s)
- Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Yi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Tenghui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Weijuan Xie
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Jian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Fanrong Hou
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Qingxi Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Xiangyu Zhu
- Environmental Monitoring Center of Ningbo, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Wei Y, Lan G, Wu Z, Chen B, Quan F, Li M, Sun S, Du H. Phyllosphere fungal communities of rubber trees exhibited biogeographical patterns, but not bacteria. Environ Microbiol 2022; 24:3777-3790. [PMID: 35001480 DOI: 10.1111/1462-2920.15894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
Phyllosphere microbiomes play an essential role in maintaining host health and productivity. Still, the diversity patterns and the drivers for the phyllosphere microbial community of the tropical cash crop Rubber tree (Hevea brasiliensis) - are poorly understood. We sampled the phyllosphere of field-grown rubber trees in South China. We examined the phyllosphere bacterial and fungal composition, diversity and main drivers of these microbes using the Illumina® sequencing and assembly. Fungal communities were distinctly different in different climatic regions (i.e. Xishuangbanna and Hainan Island) and climatic factors, especially mean annual temperature, and they were the main driving factors of foliar fungal communities, indicating fungal communities showed a geographical pattern. Significant differences of phyllosphere bacterial communities were detected in different habitats (i.e. endophytic and epiphytic). Most of the differences in taxa composition came from Firmicutes spp., which have been assigned as nitrogen-fixing bacteria. Since these bacteria cannot penetrate the cuticle like fungi, the abundant epiphytic Firmicutes spp. may supplement the deficiency of nitrogen acquisition. And the main factor influencing endophytic bacteria were internal factors, such as total nitrogen, total phosphorus and water content of leaves. External factors (i.e. climate) were the main driving force for epiphytic bacteria community assembly. Our work provides empirical evidence that the assembly of phyllosphere bacterial and fungal differed, which creates a precedent for preventing and controlling rubber tree diseases and pests and rubber tree yield improvement.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.,Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Bangqian Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Fei Quan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Mingmei Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Shuqing Sun
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Haonan Du
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| |
Collapse
|
23
|
Orita R, Yoshida K, Terazono H, Nagano Y, Goto M, Kimura K, Kobayashi G. Weekly Observations of Estuarine Microbial Assemblages during Summer in the Inner Part of Ariake Bay, Japan; Microbial Water-sediment Coupling in Turbid Shallow Waters. Microbes Environ 2022; 37. [PMID: 35676048 PMCID: PMC9530734 DOI: 10.1264/jsme2.me22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estuarine microbial assemblages are altered by a number of environmental factors, and knowledge of these changes is essential for understanding the functions of microbes in estuarine ecosystems. The aims of the present study were to examine the relationship between microbial assemblages in the water column and sediment surface, and to identify the environmental factors that influence the short-term dynamics of microbial assemblages in these two zones in summer in the inner part of Ariake Bay. The microbial assemblage of each sample consisted of a mean of 71.1% operational taxonomic units (OTUs), which commonly occurred in the water column and sediment surface, although their relative composition markedly differed between the two zones. In the water column, spatiotemporal changes in microbial assemblages correlated with several environmental factors, such as the nitrogen content in suspended particles, turbidity, and salinity. On the other hand, temporal changes in the sediment’s microbial assemblages were governed by a single environmental factor, namely, the oxygen reduction potential. These results suggest that the composition of microbial assemblages in the water column and sediment surface differed even in highly turbid brackish waters with high sediment resuspension, and the environmental factors contributing to the change in the assemblage composition also differed between the water column and sediment.
Collapse
Affiliation(s)
- Ryo Orita
- Faculty of Agriculture, Saga University
| | | | | | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University
| | | | | | | |
Collapse
|
24
|
Hussain S, Liu H, Liu S, Yin Y, Yuan Z, Zhao Y, Cao H. Distribution and Assembly Processes of Soil Fungal Communities along an Altitudinal Gradient in Tibetan Plateau. J Fungi (Basel) 2021; 7:jof7121082. [PMID: 34947064 PMCID: PMC8706254 DOI: 10.3390/jof7121082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
In soil ecosystems, fungi exhibit diverse biodiversity and play an essential role in soil biogeochemical cycling. Fungal diversity and assembly processes across soil strata along altitudinal gradients are still unclear. In this study, we investigated the structure and abundance of soil fungal communities among soil strata and elevational gradients on the Tibetan Plateau using Illumina MiSeq sequencing of internal transcribed spacer1 (ITS1). The contribution of neutral and niche ecological processes were quantified using a neutral community model and a null model-based methodology. Our results showed that fungal gene abundance increased along altitudinal gradients, while decreasing across soil strata. Along with altitudinal gradients, fungal α-diversity (richness) decreased from surface to deeper soil layers, while β-diversity showed weak correlations with elevations. The neutral community model showed an excellent fit for neutral processes and the lowest migration rate (R2 = 0.75). The null model showed that stochastic processes dominate in all samples (95.55%), dispersal limitations were dominated at the surface layer and decreased significantly with soil strata, while undominated processes (ecological drift) show a contrary trend. The log-normal model and the null model (βNTI) correlation analysis also neglect the role of niche-based processes. We conclude that stochastic dispersal limitations, together with ecological drifts, drive fungal communities.
Collapse
Affiliation(s)
- Sarfraz Hussain
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Senlin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Yifan Yin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Zhongyuan Yuan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Yuguo Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
- Correspondence:
| |
Collapse
|
25
|
High-Level Diversity of Basal Fungal Lineages and the Control of Fungal Community Assembly by Stochastic Processes in Mangrove Sediments. Appl Environ Microbiol 2021; 87:e0092821. [PMID: 34190611 DOI: 10.1128/aem.00928-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungi are key components of microbial communities in mangrove wetlands, with important roles in the transformation of nutrients and energy. However, existing studies typically focus on cultivable fungi and seldom on the structure and driving factors of entire fungal communities. The compositions, community assembly, and interaction patterns of mangrove fungal communities on a large scale remain elusive. Here, biogeography, assembly, and co-occurrence patterns of fungal communities in mangroves across eastern to southern China were systematically analyzed by targeting the entire internal transcribed spacer (ITS) region with high-throughput Pacific Biosciences single-molecule real-time sequencing. The analysis revealed a high level of fungal diversity, including a number of basal fungal lineages not previously reported in mangroves, such as Rozellomycota and Chytridiomycota. Beta nearest-taxon index analyses suggested a determinant role of dispersal limitation on fungal community in overall and most individual mangroves, with support from the strong distance-decay patterns of community similarity. Further, nonmetric multidimensional scaling analyses revealed similar biogeographies of dominant and rare fungal communities. A minor role of environmental selection on the fungal community was noted, with geographical location and sediment depth as crucial factors driving the distribution of both, the dominant and rare taxa. Finally, network analysis revealed high modularized co-occurrence patterns of fungal community in mangrove sediments, and the keystone taxa might play important roles in microbial interactions and ecological functions. The investigation expands our understanding of biogeography, assembly patterns, driving factors, and co-occurrence relationships of mangrove fungi and will spur the further functional exploration and protection of fungal resources in mangroves. IMPORTANCE As key components of microbial community in mangroves, fungi have important ecological functions. However, the fungal community in mangroves on a large scale is generally elusive, and mangroves are declining rapidly due to climate change and anthropogenic activities. This work provides an overview of fungal community structure and biogeography in mangrove wetlands along a >9,000-km coastline across eastern to southern China. Our study observed a high number of basal fungal lineages, such as Rozellomycota and Chytridiomycota, in mangrove sediments. In addition, our results highlight a crucial role of dispersal limitation and a minor role of environmental selections on fungal communities in mangrove sediments. These novel findings add important knowledge about the structure, assembly processes, and driving factors of fungal communities in mangrove sediments.
Collapse
|
26
|
Zou K, Wang R, Xu S, Li Z, Liu L, Li M, Zhou L. Changes in protist communities in drainages across the Pearl River Delta under anthropogenic influence. WATER RESEARCH 2021; 200:117294. [PMID: 34102388 DOI: 10.1016/j.watres.2021.117294] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Drainages in the Pearl River Delta urban agglomeration (PRDUA) host vital aquatic ecosystems and face enormous pressures from human activities in one of the largest urban agglomerations in the world. Despite being crucial components of aquatic ecosystems, the interactions and assembly processes of the protistan community are rarely explored in areas with serious anthropogenic disturbance. To elucidate the mechanisms of these processes, we used environmental DNA sequencing of 18S rDNA to investigate the influence of environmental factors and species interactions on the protistan community and its assembly in drainages of the PRDUA during summer. The protistan community showed a high level of diversity and a marked spatial pattern in this region. Community assembly was driven primarily by stochastic processes based on the Sloan neutral community model, explaining 74.28%, 75.82%, 73.67%, 74.40% and 51.24% of community variations in the BJ (Beijiang), XJ (Xijiang), PRD (Pearl River Delta), PRE (Pearl River Estuary) areas and in total, respectively. Meanwhile, environmental variables including temperature, pH, dissolved oxygen, transparency, nutrients and land use were strongly correlated with the composition and assembly of the protistan community, explaining 40.40% of variation in the protistan community. Furthermore, the bacterial community was simultaneously analysed by the 16S rDNA sequencing. Co-occurrence network analysis revealed that species interactions within bacteria (81.41% positive) or protists (82.80% positive), and those between bacteria and protists (50% positive and 50% negative) impacted the protistan community assembly. In summary, stochastic processes dominated, whereas species interactions and environmental factors also played important roles in shaping the protistan communities in drainages across the PRDUA. This study provides insights into the ecological patterns, assembly processes and species interactions underlying protistan dynamics in urban aquatic ecosystems experiencing serious anthropogenic disturbance.
Collapse
Affiliation(s)
- Keshu Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Ruili Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Shannan Xu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, China
| | - Zhuoying Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, China.
| | - Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China.
| |
Collapse
|
27
|
Zhang ZF, Pan J, Pan YP, Li M. Biogeography, Assembly Patterns, Driving Factors, and Interactions of Archaeal Community in Mangrove Sediments. mSystems 2021; 6:e0138120. [PMID: 34128692 PMCID: PMC8269266 DOI: 10.1128/msystems.01381-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Archaea are a major part of Earth's life. They are believed to play important roles in nutrient biogeochemical cycling in the mangrove. However, only a few studies on the archaeal community in mangroves have been reported. In particular, the assembly processes and interaction patterns that impact the archaeal communities in mangroves have not been investigated to date. Here, the biogeography, assembly patterns, and driving factors of archaeal communities in seven representative mangroves across southeastern China were systematically analyzed. The analysis revealed that the archaeal community is more diverse in surface sediments than in subsurface sediments, and more diverse in mangroves at low latitudes than at high latitudes, with Woesearchaeota and Bathyarchaeota as the most diverse and most abundant phyla, respectively. Beta nearest-taxon index analysis suggested a determinant role of homogeneous selection on the overall archaeon community in all mangroves and in each individual mangrove. In addition, the conditionally rare taxon community was strongly shaped by homogeneous selection, while stochastic processes shaped the dominant taxon and always-rare taxon communities. Further, a moderate effect of environmental selection on the archaeal community was noted, with the smallest effect on the always-rare taxon community. Mangrove location, mean annual temperature, and salinity were the major factors that greatly affected the community composition. Finally, network analysis revealed comprehensive cooccurrence relationships in the archaeal community, with a crucial role of Bathyarchaeota. This study expands the understanding of the biogeography, assembly patterns, driving factors, and cooccurrence relationships of the mangrove archaeal community and inspires functional exploration of archaeal resources in mangrove sediments. IMPORTANCE As a key microbial community component with important ecological roles, archaea merit the attention of biologists and ecologists. The mechanisms controlling microbial community diversity, composition, and biogeography are central to microbial ecology but poorly understood. Mangroves are located at the land-ocean interface and are an ideal environment for examining the above questions. We here provided the first-ever overview of archaeal community structure and biogeography in mangroves located along an over-9,000-km coastline of southeastern China. We observed that archaeal diversity in low-latitude mangroves was higher than that in high-latitude mangroves. Furthermore, our data indicated that homogeneous selection strongly controlled the assembly of the overall and conditionally rare taxon communities in mangrove sediments, while the dominant taxon and always-rare taxon communities were mainly controlled by dispersal limitation.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Wang J, Wang L, Hu W, Pan Z, Zhang P, Wang C, Wang J, Wu S, Li YZ. Assembly processes and source tracking of planktonic and benthic bacterial communities in the Yellow River estuary. Environ Microbiol 2021; 23:2578-2591. [PMID: 33754415 DOI: 10.1111/1462-2920.15480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 01/04/2023]
Abstract
Estuaries connect rivers with the ocean and are considered transition regions due to the continuous inputs from rivers. Microbiota from different sources converge and undergo succession in these transition regions, but their assembly mechanisms along environmental gradients remain unclear. Here, we found that salinity had a stronger effect on planktonic than on benthic microbial communities, and the dominant planktonic bacteria changed more distinctly than the dominant benthic bacteria with changes in salinity. The planktonic bacteria in the brackish water came mainly from seawater, which was confirmed in the laboratory, whereas the benthic bacteria were weakly affected by salinity, which appeared to be a mixture of the bacteria from riverine and oceanic sediments. Benthic bacterial community assembly in the sediments was mainly controlled by homogeneous selection and almost unaffected by changes in salinity, the dominant assemblage processes for planktonic bacteria changed dramatically along the salinity gradient, from homogeneous selection in freshwater to drift in seawater. Our results highlight that salinity is the key driver of estuarine microbial succession and that salinity is more important in shaping planktonic than benthic bacterial communities in the Yellow River estuary.
Collapse
Affiliation(s)
- Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lidong Wang
- National Nature Reserve Administration of Yellow River Delta, Dongying, 257091, China
| | - Weifeng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
29
|
Dai L, Liu C, Peng L, Song C, Li X, Tao L, Li G. Different distribution patterns of microorganisms between aquaculture pond sediment and water. J Microbiol 2021; 59:376-388. [PMID: 33630250 DOI: 10.1007/s12275-021-0635-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
Aquatic microorganisms in the sediment and water column are closely related; however, their distribution patterns between these two habitats still remain largely unknown. In this study, we compared sediment and water microeukaryotic and bacterial microorganisms in aquaculture ponds from different areas in China, and analyzed the influencing environmental factors as well as the inter-taxa relationships. We found that bacteria were significantly more abundant than fungi in both sediment and water, and the bacterial richness and diversity in sediment were higher than in water in all the sampling areas, but no significant differences were found between the two habitats for microeukaryotes. Bacterial taxa could be clearly separated through cluster analysis between the sediment and water, while eukaryotic taxa at all classification levels could not. Spirochaetea, Deltaproteobacteria, Nitrospirae, Ignavibacteriae, Firmicutes, Chloroflexi, and Lentimicrobiaceae were more abundantly distributed in sediment, while Betaproteobacteria, Alphaproteobacter, Cyanobacteria, Roseiflexaceae, Dinghuibacter, Cryomorphaceae, and Actinobacteria were more abundant in water samples. For eukaryotes, only Cryptomonadales were found to be distributed differently between the two habitats. Microorganisms in sediment were mainly correlated with enzymes related to organic matter decomposition, while water temperature, pH, dissolved oxygen, and nutrient levels all showed significant correlation with the microbial communities in pond water. Intensive interspecific relationships were also found among eukaryotes and bacteria. Together, our results indicated that eukaryotic microorganisms are distributed less differently between sediment and water in aquaculture ponds compared to bacteria. This study provides valuable data for evaluating microbial distributions in aquatic environments, which may also be of practical use in aquaculture pond management.
Collapse
Affiliation(s)
- Lili Dai
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Chengqing Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Liang Peng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Chaofeng Song
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Xiaoli Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Ling Tao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Gu Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China.
| |
Collapse
|
30
|
Luo X, Xiang X, Yang Y, Huang G, Fu K, Che R, Chen L. Seasonal effects of river flow on microbial community coalescence and diversity in a riverine network. FEMS Microbiol Ecol 2021; 96:5864679. [PMID: 32597955 DOI: 10.1093/femsec/fiaa132] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Terrestrial microbial communities may take advantage of running waters and runoff to enter rivers and mix with aquatic microorganisms. However, the environmental factors governing the interchange of the microbial community within a watercourse and its surrounding environment and the composition of the resulting community are often underestimated. The present study investigated the effect of flow rate on the mixing of water, soil, sediment and biofilm at four sites along the Lancang River and one branch of the river in winter and summer and, in turn, the resultant changes in the microbial community within each habitat. 16S rRNA gene-based Illumina high-throughput sequencing illustrated that bacterial communities were apparently distinct among biofilm, water, soil and sediment. Biofilms had the lowest richness, Shannon diversity and evenness indices compared with other habitats, and those three indices in all habitats increased significantly from winter to summer. SourceTracker analysis showed a significant coalescence between the bacterial communities of sediment, water and biofilm samples at lower flow rates. Additionally, the proportion of Betaproteobacteria in sediment and biofilms increased with a decrease in flow rate, suggesting the flow rate had a strong impact on microbial community composition and exchange among aquatic habitats. These results were further confirmed by a Mantel test and linear regression analysis. Microbial communities in all samples exhibited a significant but very weak distance-decay relationship (r = 0.093, P = 0.024). Turbidity played a much more important role on water bacterial community structure in summer (i.e. rainy season) (BIOENV, r = 0.92). Together, these results suggest that dispersal is an important factor affecting bacterial community structure in this system.
Collapse
Affiliation(s)
- Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Xinyi Xiang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Yuanhao Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Guoyi Huang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Kaidao Fu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Liqiang Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| |
Collapse
|
31
|
Guo C, Zhang X, Luan S, Zhou H, Liu L, Qu Y. Diversity and structure of soil bacterial community in intertidal zone of Daliao River estuary, Northeast China. MARINE POLLUTION BULLETIN 2021; 163:111965. [PMID: 33450443 DOI: 10.1016/j.marpolbul.2020.111965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Soil samples from the intertidal zone of Daliao River, Northeast China, were collected in three seasons (autumn, L1; winter, L2; and spring, L3) to evaluate the diversity and structure of bacterial community using high-throughput sequencing. Soil physicochemical characteristics varied greatly with seasons, and the potential nitrification rates were detected in the range of 1.04-2.71 μg NO3--N·g-1 dry soil·h-1 with the highest rate in spring (L3). Soil bacterial communities also differed seasonally, and nitrogen nutrients were the important variables affecting the bacterial communities as demonstrated by distance-based redundancy analysis and Mantel tests. Proteobacteria was the predominant phylum in soils showing a descending trend from L1 to L3. Woeseia and Ignatzschineria, both affiliating with Gammaproteobacteria, were the two most dominant genera, but they exerted different seasonal variations. The predicted functional profiles revealed 6 major nitrogen cycling processes, and the functional genes in relation to denitrification process were dominant in intertidal soils.
Collapse
Affiliation(s)
- Chaochen Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Shimeng Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
32
|
Zárate A, Dorador C, Araya R, Guajardo M, Z Florez J, Icaza G, Cornejo D, Valdés J. Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile. PeerJ 2020; 8:e9927. [PMID: 33062423 PMCID: PMC7533063 DOI: 10.7717/peerj.9927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/21/2020] [Indexed: 01/04/2023] Open
Abstract
The Loa River is the only perennial artery that crosses the Atacama Desert in northern Chile. It plays an important role in the ecological and economic development of the most water-stressed region, revealing the impact of the mining industry, which exacerbate regional water shortages for many organisms and ecological processes. Despite this, the river system has remained understudied. To our knowledge, this study provides the first effort to attempt to compare the microbial communities at spatial scale along the Loa River, as well as investigate the physicochemical factors that could modulate this important biological component that still remains largely unexplored. The analysis of the spatial bacterial distribution and their interconnections in the water column and sediment samples from eight sites located in three sections along the river catchment (upper, middle and lower) was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. Among a total of 543 ASVs identified at the family level, over 40.5% were cosmopolitan in the river and distributed within a preference pattern by the sediment substrate with 162 unique ASVs, while only 87 were specific to the column water. Bacterial diversity gradually decreased from the headwaters, where the upper section had the largest number of unique families. Distinct groupings of bacterial communities often associated with anthropogenic disturbance, including Burkholderiaceae and Flavobacteriaceae families were predominant in the less-impacted upstream section. Members of the Arcobacteraceae and Marinomonadaceae were prominent in the agriculturally and mining-impacted middle sector while Rhodobacteraceae and Coxiellaceae were most abundant families in downstream sites. Such shifts in the community structure were also related to the influence of salinity, chlorophyll, dissolved oxygen and redox potential. Network analyses corroborated the strong connectivity and modular structure of bacterial communities across this desert river, shedding light on taxonomic relatedness of co-occurring species and highlighting the need for planning the integral conservation of this basin.
Collapse
Affiliation(s)
- Ana Zárate
- Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Universidad de Antofagasta, Antofagasta, Chile.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile.,Humedales del Caribe colombiano, Universidad del Atlantico, Barranquilla, Colombia
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Ruben Araya
- Laboratorio de Microbiología de Sedimentos, Departamento de Acuicultura, Facultad de Recursos del Mar, Universidad de Antofagasta, Antofagasta, Chile
| | - Mariela Guajardo
- Doctorado en Genómica Integrativa y Centro GEMA, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - July Z Florez
- Humedales del Caribe colombiano, Universidad del Atlantico, Barranquilla, Colombia.,Centro i mar and CeBiB, Universidad de Los Lagos, Puerto Montt, Chile.,Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile
| | - Gonzalo Icaza
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | - Diego Cornejo
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile.,Chair of Technical Biochemistry, Technische Universitāt, Dresden Dresden, Germany
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes, Instituto de Ciencias Naturales A. von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
33
|
Liu J, Zhu S, Liu X, Yao P, Ge T, Zhang XH. Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. THE ISME JOURNAL 2020; 14:1463-1478. [PMID: 32132664 PMCID: PMC7242467 DOI: 10.1038/s41396-020-0621-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Studies of marine benthic archaeal communities are updating our view of their taxonomic composition and metabolic versatility. However, large knowledge gaps remain with regard to community assembly processes and inter taxa associations. Here, using 16S rRNA gene amplicon sequencing and qPCR, we investigated the spatiotemporal dynamics, assembly processes, and co-occurrence relationships of the archaeal community in 58 surface sediment samples collected in both summer and winter from across ~1500 km of the eastern Chinese marginal seas. Clear patterns in spatiotemporal dynamics in the archaeal community structure were observed, with a more pronounced spatial rather than seasonal variation. Accompanying the geographic variation was a significant distance-decay pattern with varying contributions from different archaeal clades, determined by their relative abundance. In both seasons, dispersal limitation was the most important process, explaining ~40% of the community variation, followed by homogeneous selection and ecological drift, that made an approximately equal contribution (~30%). This meant that stochasticity rather than determinism had a greater impact on the archaeal community assembly. Furthermore, we observed seasonality in archaeal co-occurrence patterns: closer inter-taxa connections in winter than in summer, and unmatched geographic patterns between community composition and co-occurrence relationship. These results demonstrate that the benthic archaeal community was assembled under a seasonal-consistent mechanism but the co-occurrence relationships changed over the seasons, indicating complex archaeal dynamic patterns in coastal sediments of the eastern Chinese marginal seas.
Collapse
Affiliation(s)
- Jiwen Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shangqing Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyue Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, 266100, China
| | - Tiantian Ge
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
34
|
Li M, Mi T, Yu Z, Ma M, Zhen Y. Planktonic Bacterial and Archaeal Communities in an Artificially Irrigated Estuarine Wetland: Diversity, Distribution, and Responses to Environmental Parameters. Microorganisms 2020; 8:microorganisms8020198. [PMID: 32023944 PMCID: PMC7074933 DOI: 10.3390/microorganisms8020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
Bacterial and archaeal communities play important roles in wetland ecosystems. Although the microbial communities in the soils and sediments of wetlands have been studied extensively, the comprehensive distributions of planktonic bacterial and archaeal communities and their responses to environmental variables in wetlands remain poorly understood. The present study investigated the spatiotemporal characteristics of the bacterial and archaeal communities in the water of an artificially irrigated estuarine wetland of the Liaohe River, China, explored whether the wetland effluent changed the bacterial and archaeal communities in the Liaohe River, and evaluated the driving environmental factors. Within the study, 16S rRNA quantitative PCR methods and MiSeq high-throughput sequencing were used. The bacterial and archaeal 16S rRNA gene abundances showed significant temporal variation. Meanwhile, the bacterial and archaeal structures showed temporal but not spatial variation in the wetland and did not change in the Liaohe River after wetland drainage. Moreover, the bacterial communities tended to have higher diversity in the wetland water in summer and in the scarce zone, while a relatively higher diversity of archaeal communities was found in autumn and in the intensive zone. DO, pH and PO4-P were proven to be the essential environmental parameters shaping the planktonic bacterial and archaeal community structures in the Liaohe River estuarine wetland (LEW). The LEW had a high potential for methanogenesis, which could be reflected by the composition of the microbial communities.
Collapse
Affiliation(s)
- Mingyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tiezhu Mi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| | - Manman Ma
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu Zhen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Correspondence: ; Tel.: +86-532-6678-1940
| |
Collapse
|
35
|
Chen J, He Y, Wang J, Huang M, Guo C. Dynamics of nitrogen transformation and bacterial community with different aeration depths in malodorous river. World J Microbiol Biotechnol 2019; 35:196. [DOI: 10.1007/s11274-019-2773-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/21/2019] [Indexed: 11/28/2022]
|
36
|
Chen W, Ren K, Isabwe A, Chen H, Liu M, Yang J. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. MICROBIOME 2019; 7:138. [PMID: 31640783 PMCID: PMC6806580 DOI: 10.1186/s40168-019-0749-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 09/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The deep mechanisms (deterministic and/or stochastic processes) underlying community assembly are a central challenge in microbial ecology. However, the relative importance of these processes in shaping riverine microeukaryotic biogeography is still poorly understood. Here, we compared the spatiotemporal and biogeographical patterns of microeukaryotic community using high-throughput sequencing of 18S rRNA gene and multivariate statistical analyses from a subtropical river during wet and dry seasons. RESULTS Our results provide the first description of biogeographical patterns of microeukaryotic communities in the Tingjiang River, the largest river in the west of Fujian province, southeastern China. The results showed that microeukaryotes from both wet and dry seasons exhibited contrasting community compositions, which might be owing to planktonic microeukaryotes having seasonal succession patterns. Further, all components of the microeukaryotic communities (including total, dominant, always rare, and conditionally rare taxa) exhibited a significant distance-decay pattern in both seasons, and these communities had a stronger distance-decay relationship during the dry season, especially for the conditionally rare taxa. Although several variables had a significant influence on the microeukaryotic communities, the environmental and spatial factors showed minor roles in shaping the communities. Importantly, these microeukaryotic communities were strongly driven by stochastic processes, with 89.9%, 88.5%, and 89.6% of the community variation explained by neutral community model during wet, dry, and both seasons, respectively. The neutral community model also explained a large fraction of the community variation across different taxonomic groups and levels. Additionally, the microeukaryotic taxa, which were above and below the neutral prediction, were ecologically and taxonomically distinct groups, which might be interactively structured by deterministic and stochastic processes. CONCLUSIONS This study demonstrated that stochastic processes are sufficient in shaping substantial variation in river microeukaryotic metacommunity across different hydrographic regimes, thereby providing a better understanding of spatiotemporal patterns, processes, and mechanisms of microeukaryotic community in waters.
Collapse
Affiliation(s)
- Weidong Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Kexin Ren
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Alain Isabwe
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Min Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
37
|
Mai YZ, Lai ZN, Li XH, Peng SY, Wang C. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China. MARINE POLLUTION BULLETIN 2018; 136:309-321. [PMID: 30509812 DOI: 10.1016/j.marpolbul.2018.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 06/09/2023]
Abstract
In this study, we used high-throughput sequencing of 16S rRNA gene amplicons, to investigate the spatio-temporal variation in bacterial communities in surface-waters collected from eight major outlets of the Pearl River Estuary, South China. Betaproteobacteria were the most abundant class among the communities, followed by Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Acidimicrobiia. Generally, alpha-diversity increased in winter communities and the taxonomic diversity of bacterial communities differed with seasonal and spatial differences. Temperature, conductivity, salinity, pH and nutrients were the crucial environmental factors associated with shifts in the bacterial community composition. Furthermore, inferred community functions that were associated with amino acid, carbohydrate and energy metabolisms were lower in winter, whereas the relative abundance of inferred functions associated with membrane transport, bacterial motility proteins, and xenobiotics biodegradation and metabolism, were enriched in winter. These results provide new insights into the dynamics of bacterial communities within estuarine ecosystems.
Collapse
Affiliation(s)
- Yong-Zhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zi-Ni Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xin-Hui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Song-Yao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
38
|
Su Z, Dai T, Tang Y, Tao Y, Huang B, Mu Q, Wen D. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area. MARINE POLLUTION BULLETIN 2018; 131:481-495. [PMID: 29886974 DOI: 10.1016/j.marpolbul.2018.04.052] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem.
Collapse
Affiliation(s)
- Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yushi Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yile Tao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
39
|
Distinct distribution patterns of ammonia-oxidizing archaea and bacteria in sediment and water column of the Yellow River estuary. Sci Rep 2018; 8:1584. [PMID: 29371667 PMCID: PMC5785527 DOI: 10.1038/s41598-018-20044-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation is a critical process of estuarine nitrogen cycling involving ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the distribution patterns of ammonia-oxidizing microorganisms (AOMs) between different habitats in the same area remain unclear. The present study investigated the AOMs’ abundance and community compositions in both sediment and water habitats of the Yellow River estuary. Quantitative PCR (qPCR) revealed that AOA showed significant higher abundance than AOB both in sediment and water samples. AOA and AOB abundance distribution trends were consistent in sediment but distinct in water along the sampling sites. Clone library-based analyses showed that AOA sequences were affiliated with Nitrososphaera, Nitrosopumilus and Nitrosotalea clusters. Generally, Nitrososphaera was predominant in sediment, while Nitrosopumilus and Nitrosotalea dominated in water column. AOB sequences were classified into genera Nitrosospira and Nitrosomonas, and Nitrosospira dominated in both habitats. Principal coordinate analysis (PCoA) also indicated AOA community structures exhibited significant differences between two habitats, while AOB were not. Ammonium and carbon contents were the potential key factors to influence AOMs’ abundance and compositions in sediment, while no measured variables were determined to have major influences on communities in water habitat. These findings increase the understanding of the AOMs’ distribution patterns in estuarine ecosystems.
Collapse
|
40
|
Chen W, Pan Y, Yu L, Yang J, Zhang W. Patterns and Processes in Marine Microeukaryotic Community Biogeography from Xiamen Coastal Waters and Intertidal Sediments, Southeast China. Front Microbiol 2017; 8:1912. [PMID: 29075237 PMCID: PMC5644358 DOI: 10.3389/fmicb.2017.01912] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Microeukaryotes play key roles in the structure and functioning of marine ecosystems. Little is known about the relative importance of the processes that drive planktonic and benthic microeukaryotic biogeography in subtropical offshore areas. This study compares the microeukaryotic community compositions (MCCs) from offshore waters (n = 12) and intertidal sediments (n = 12) around Xiamen Island, southern China, using high-throughput sequencing of 18S rDNA. This work further quantifies the relative contributions of spatial and environmental variables on the distribution of marine MCCs (including total, dominant, rare and conditionally rare taxa). Our results showed that planktonic and benthic MCCs were significantly different, and the benthic richness (6627 OTUs) was much higher than that for plankton (4044 OTUs) with the same sequencing effort. Further, we found that benthic MCCs exhibited a significant distance-decay relationship, whereas the planktonic communities did not. After removing two unique sites (N2 and N3), however, 72% variation in planktonic community was explained well by stochastic processes. More importantly, both the environmental and spatial factors played significant roles in influencing the biogeography of total and dominant planktonic and benthic microeukaryotic communities, although their relative effects on these community variations were different. However, a high proportion of unexplained variation in the rare taxa (78.1–97.4%) and conditionally rare taxa (49.0–81.0%) indicated that more complex mechanisms may influence the assembly of the rare subcommunity. These results demonstrate that patterns and processes in marine microeukaryotic community assembly differ among the different habitats (coastal water vs. intertidal sediment) and different communities (total, dominant, rare and conditionally rare microeukaryotes), and provide novel insight on the microeukaryotic biogeography and ecological mechanisms in coastal waters and intertidal sediments at local scale.
Collapse
Affiliation(s)
- Weidong Chen
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yongbo Pan
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lingyu Yu
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Wenjing Zhang
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
41
|
Li F, Li M, Shi W, Li H, Sun Z, Gao Z. Distinct distribution patterns of proteobacterial nirK- and nirS-type denitrifiers in the Yellow River estuary, China. Can J Microbiol 2017; 63:708-718. [PMID: 28414921 DOI: 10.1139/cjm-2017-0053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Denitrification is considered to be the critical process in removing reactive nitrogen in estuarine ecosystems. In the present study, the abundance, diversity, and community structure of nirK- and nirS-type denitrifiers were compared in sediments from the Yellow River estuary. Quantitative polymerase chain reaction showed that the 2 types of denitrifiers exhibited different distribution patterns among the samples, indicating their distinct habitat preference. Phylogenetic analysis revealed that most of the sequences from clusters I, III, IV, and V for nirK-type denitrifiers were dominant and were distributed at sites where dissolved oxygen (DO) was lower, and the sequences in the other clusters were dominant at sites with higher DO. However, there was no spatially heterogeneous distribution for the nirS-type denitrifier community. Canonical correlation analysis and correlation analysis demonstrated that the community structure of nirK was more responsive to environmental factors than was that of nirS. Inversely, the abundance and α-diversity targeting nirS gene could be more easily influenced by environmental parameters. These findings can extend our current knowledge about the distribution patterns of denitrifying bacteria and provide a basic theoretical reference for the dynamics of denitrifying communities in estuarine ecosystem of China.
Collapse
Affiliation(s)
- Fenge Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Mingcong Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Wenchong Shi
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Han Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zhongtao Sun
- b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zheng Gao
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China.,c State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
McCarthy DT, Jovanovic D, Lintern A, Teakle I, Barnes M, Deletic A, Coleman R, Rooney G, Prosser T, Coutts S, Hipsey MR, Bruce LC, Henry R. Source tracking using microbial community fingerprints: Method comparison with hydrodynamic modelling. WATER RESEARCH 2017; 109:253-265. [PMID: 27912100 DOI: 10.1016/j.watres.2016.11.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 05/22/2023]
Abstract
Urban estuaries around the world are experiencing contamination from diffuse and point sources, which increases risks to public health. To mitigate and manage risks posed by elevated levels of contamination in urban waterways, it is critical to identify the primary water sources of contamination within catchments. Source tracking using microbial community fingerprints is one tool that can be used to identify sources. However, results derived from this approach have not yet been evaluated using independent datasets. As such, the key objectives of this investigation were: (1) to identify the major sources of water responsible for bacterial loadings within an urban estuary using microbial source tracking (MST) using microbial communities; and (2) to evaluate this method using a 3-dimensional hydrodynamic model. The Yarra River estuary, which flows through the city of Melbourne in South-East Australia was the focus of this study. We found that the water sources contributing to the bacterial community in the Yarra River estuary varied temporally depending on the estuary's hydrodynamic conditions. The water source apportionment determined using microbial community MST correlated to those determined using a 3-dimensional hydrodynamic model of the transport and mixing of a tracer in the estuary. While there were some discrepancies between the two methods, this investigation demonstrated that MST using bacterial community fingerprints can identify the primary water sources of microorganisms in an estuarine environment. As such, with further optimization and improvements, microbial community MST has the potential to become a powerful tool that could be practically applied in the mitigation of contaminated aquatic systems.
Collapse
Affiliation(s)
- D T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Civil Engineering Department, Monash University, VIC, Australia.
| | - D Jovanovic
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Civil Engineering Department, Monash University, VIC, Australia
| | - A Lintern
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Civil Engineering Department, Monash University, VIC, Australia.
| | - I Teakle
- Water and Environment Group, BMT WBM Pty Ltd, Spring Hill, QLD, Australia
| | - M Barnes
- Water and Environment Group, BMT WBM Pty Ltd, Spring Hill, QLD, Australia
| | - A Deletic
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Civil Engineering Department, Monash University, VIC, Australia
| | - R Coleman
- Melbourne Water Corporation, VIC, Australia
| | - G Rooney
- Melbourne Water Corporation, VIC, Australia
| | - T Prosser
- Melbourne Water Corporation, VIC, Australia
| | - S Coutts
- Micromon, Department of Microbiology, Monash University, Australia
| | - M R Hipsey
- School of Earth & Environment, The University of Western Australia, Crawley, WA, Australia; The Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - L C Bruce
- School of Earth & Environment, The University of Western Australia, Crawley, WA, Australia; The Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - R Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Civil Engineering Department, Monash University, VIC, Australia
| |
Collapse
|