1
|
Chunduri JR, Sagar SP. Insect Brain Proteomics: A Case Study of Periplaneta americana. Methods Mol Biol 2025; 2884:99-118. [PMID: 39716000 DOI: 10.1007/978-1-0716-4298-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Insects are known invertebrate species with economic, ecological, pathological, and medicinal value, as well as closely associated with human populations. Entomophagy and entomotherapy are future promising prospects largely attributable to the abundant availability, high protein content, and climatic sustainability of insects. In particular, the insect brain is an important system with a secluded, compact, and protective exoskeleton. It is immunologically privileged and capable of producing a robust immune response against pathogens. It is also a source of materials that initiate key activity throughout the body. Proteomic interrogation of Periplaneta americana enables understanding the role of this insect in the fields of food and pharmacology. Proximate analyses of P. americana highlights its richness in proteins. Here we perform a simple proteomic analysis to study the brain proteome of P. americana. The processes applied during the study include gel-based isolation and separation of proteins, followed by NanoLC-MS (Orbitrap) analyses and bioinformatic interrogation of the data. The results demonstrated that this insect proteome comprises antimicrobial proteins, allergens, and proteins required for metabolic processes.
Collapse
Affiliation(s)
- Jayaprada R Chunduri
- Freelance Researcher and Reviewer, Mumbai, India
- Prarambh Science Academy, Sangli, Maharashtra, India
| | - Siddharth P Sagar
- Freelance Researcher and Reviewer, Mumbai, India
- Prarambh Science Academy, Sangli, Maharashtra, India
| |
Collapse
|
2
|
Xie Y, Yu Q, Yao S, Peng R, Li J. Transcriptomic Insights into the Molecular Mechanisms of Indole Analogues from the Periplaneta americana Extract and Their Therapeutic Effects on Ulcerative Colitis. Animals (Basel) 2024; 15:63. [PMID: 39795006 PMCID: PMC11718871 DOI: 10.3390/ani15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease of the intestinal mucosa, and its incidence is steadily increasing worldwide. As a traditional Chinese medicinal insect, Periplaneta americana has been broadly utilized in clinical practice to treat wound healing. The tryptophan (Trp), tryptamine (Try), and 1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (Thcc) identified from P. americana concentrated ethanol-extract liquid (PACEL) exhibit significant cell proliferation-promoting and anti-inflammatory effects in the treatment of UC, but the mechanism involved remains obscure. Here, a dextran sulfate sodium (DSS)-induced UC mouse model was used to investigate the efficacy of high/low doses of PACEL, Trp, Try, and Thcc. Transcriptome sequencing was employed to detect the gene expression in the mouse intestine. The results showed that high doses of PACEL, Trp, Try, and Thcc could significantly improve weight loss and diarrhea, notably in the PACEL and Trp groups. Transcriptome analysis indicated that statistically changed genes in four treatment groups were specifically enriched in the immune system. Of these, the integrated analysis identified six hub genes (IL1β, CCL4, CXCL5, CXCR2, LCN2, and MMP9) regulated by NF-κB, which were significantly downregulated. This study investigates the molecular mechanisms underlying the UC treatment properties of indole analogues from PACEL, potentially through the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuchen Xie
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qi Yu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China;
| | - Rui Peng
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Liang S, Chen H, Chen Y, Ali A, Yao S. Multi-dynamic-bond cross-linked antibacterial and adhesive hydrogel based on boronated chitosan derivative and loaded with peptides from Periplaneta americana with on-demand removability. Int J Biol Macromol 2024; 273:133094. [PMID: 38878926 DOI: 10.1016/j.ijbiomac.2024.133094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The design and development of a bio-adhesive hydrogel with on-demand removability and excellent antibacterial activities are meaningful to achieve high wound closure effectiveness and post-wound-closure care, which is desirable in clinical applications. In this work, a series of adhesive antioxidant antibacterial hydrogels containing peptides from Periplaneta americana (PAP) were prepared through multi-dynamic-bond cross-linking among 3,4-dihydroxybenzaldehyde (DBA) containing catechol and aldehyde groups and chitosan grafted with 3-carboxy-4-fluorophenylboronic acid (CS-FPBA) to enable the effective adhesion of skin tissues and prevention of bacterial infection of wound. PAP was derived from alcohol-extracted residues generated during the pharmaceutical process, aiming to minimize resource wastage and achieve the high-value development of such a medicinal insect. The hydrogel was prepared by freezing-thawing with no toxic crosslinkers. The multi-dynamic-bond cross-linking of dynamic borate ester bonds and dynamic Schiff base bonds can achieve reversible breakage and re-formation and the adhesive strength of CS-FPBA-DBA-P-gel treated with a 20 % glucose solution dramatically decreased from 3.79 kPa to 0.35 kPa within 10 s. Additionally, the newly developed hydrogel presents ideal biocompatibility, hemostasis and antibacterial activity against Staphylococcus aureus and Escherichia coli compared to commercial chitosan gel (approximately 50 % higher inhibition rate), demonstrating its great potential in dealing with infected full-thickness skin wounds.
Collapse
Affiliation(s)
- Siwei Liang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ahamd Ali
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Ouango M, Cissé H, Romba R, Drabo SF, Semdé R, Savadogo A, Gnankiné O. Entomotherapy as an alternative treatment for diseases due to Gram-negative bacteria in Burkina Faso. Sci Rep 2024; 14:7. [PMID: 38167478 PMCID: PMC10762221 DOI: 10.1038/s41598-023-50622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Insects are known for their harmful effects. However, they also benefit humans, animals, plants, and ecosystems. Its beneficial uses include entomophagy and entomotherapy. This study aimed to evaluate the antibacterial activity of insect extracts against Gram-negative bacteria. Antibacterial activities of thirteen crude extracts of medicinal insects were tested against twelve Gram-negative bacteria by diffusion on agar. Imipenem was used as an antibiotic for positive control. The thirteen extracts acted differently against certain Gram-negative bacteria. The largest inhibition diameter was for extracts of Cirina butyrospermi and Mylabris variabilis against Pseudomonas aeruginosa ATCC27853 and Salmonella enteritidis ATCC13076, respectively. The diameters of inhibition obtained using imipenem against these same bacterial strains were 13.0 ± 0.0 mm and 22 ± 1.0 mm, respectively. The lowest inhibition diameter (7.5 ± 0.0 mm) was obtained using Anopheles gambiae extract against Salmonella Typhimurium ATCC14028. Imipenem was active on all strains tested. The highest values of the index multi-resistance to insect's extracts were reported for Pseudomonas aeruginosa ATCC9027 and Serratia odorifera 652411. Overall, the results of this study confirmed the antibacterial activities of insects used by traditional health practitioners to treat different pathologies. Entomotherapy could be an alternative treatment for certain infectious pathologies caused by gram-negative bacteria.
Collapse
Affiliation(s)
- Mamadou Ouango
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso.
- Laboratoire de Biochimie et Immunologie Appliquées, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso.
- Laboratoire du Développement du Médicament, Centre de Formation, de Recherche et d'Expertise en Sciences du Médicament, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso.
| | - Hama Cissé
- Laboratoire de Biochimie et Immunologie Appliquées, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Rahim Romba
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Samuel Fogné Drabo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Rasmané Semdé
- Laboratoire du Développement du Médicament, Centre de Formation, de Recherche et d'Expertise en Sciences du Médicament, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Aly Savadogo
- Laboratoire de Biochimie et Immunologie Appliquées, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Olivier Gnankiné
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso
- Laboratoire du Développement du Médicament, Centre de Formation, de Recherche et d'Expertise en Sciences du Médicament, Université Joseph KI ZERBO, 03 BP 7021, Ouagadougou, Burkina Faso
| |
Collapse
|
5
|
Siddiqui R, Khan NA. Is the gut microbiome of insects a potential source to meet UN sustainable development goals to eliminate plastic pollution? ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:455-458. [PMID: 37688332 PMCID: PMC10667635 DOI: 10.1111/1758-2229.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/05/2023] [Indexed: 09/10/2023]
Abstract
As insects such as cockroaches can endure high radiation, flourish in unsanitary circumstances, thrive on germ-infested feed, and can even digest the organic polymer cellulose, the gut microbiota of these species likely produces enzymes contributing to their ability to digest a variety of materials. The use of cockroaches as a bio-resource to eliminate plastic is discussed. We explore whether species such as cockroaches are a potential bio-resource to eliminate plastic pollution and contribute to the sustainable development goals adopted by the United Nations as well as the global community to reduce and/or eliminate plastic pollution.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and SciencesAmerican University of SharjahSharjahUnited Arab Emirates
- Department of Medical Biology, Faculty of MedicineIstinye UniversityIstanbulTurkey
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of MedicineIstinye UniversityIstanbulTurkey
- Department of Clinical Sciences, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| |
Collapse
|
6
|
Ma C, Li X, Ding W, Zhang X, Chen H, Feng Y. Effects of hTERT transfection on the telomere and telomerase of Periplaneta americana cells in vitro. AMB Express 2023; 13:118. [PMID: 37864620 PMCID: PMC10590340 DOI: 10.1186/s13568-023-01624-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023] Open
Abstract
Telomere and telomerase are crucial factors in cell division and chromosome stability. Telomerase activity in most cells depends on the transcription control by the telomerase reverse transcriptase (TERT). The introduction of an exogenous human TERT (hTERT) in cultured cells could enhance telomerase activity and elongate the lifespan of various cells. Telomere elongation mechanisms vary between insects and are complex and unusual. Whether the use of exogenous hTERT can immortalize primary insect cells remains to be investigated. In this study, we used a recombinant virus expressing hTERT to infect primary cultured cells of Periplaneta americana and evaluated its effects on insect cell immortalization. We found that hTERT was successfully expressed and promoted the growth of P. americana cells, shortening their doubling time. This was due to the ability of hTERT to increase the activity of telomerase in P. americana cells, thus prolonging the telomeres. Our study lays the foundation for understanding the mechanisms of telomere elongation in P. americana, and suggests that the introduction of hTERT into insect cells could be an efficient way to establish certain insect cell lines.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
- Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Weifeng Ding
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China.
| | - Hang Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| |
Collapse
|
7
|
Xie Y, Liang S, Zhang Y, Wu T, Shen Y, Yao S, Li J. Discovery of indole analogues from Periplaneta americana extract and their activities on cell proliferation and recovery of ulcerative colitis in mice. Front Pharmacol 2023; 14:1282545. [PMID: 37927593 PMCID: PMC10623332 DOI: 10.3389/fphar.2023.1282545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Background: As an important medicinal insect, Periplaneta americana (PA) has been applied for the treatment of wounds, burns, and ulcers with fewer side effects and a reduced recurrence rate, which provides great potential for developing new drugs based on its active constituents. Materials and methods: The main chromatographic peaks determined by high performance liquid chromatography (HPLC) in the PA concentrated ethanol-extract liquid (PACEL) were separated, purified, and identified by semi-preparative LC, mass spectrum, and 1H NMR spectroscopic analysis. The biological activities of the identified compounds were investigated by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method based on in vitro human skin fibroblasts (HSF) and in vivo experiments based on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model. Furthermore, RT-qPCR of six genes related to inflammation or intestinal epithelial cell proliferation was employed to investigate the molecular mechanism of the indole analogues recovering UC in mice. Results: Five indole analogues were purified and identified from PACEL, including tryptophan (Trp), tryptamine (pa01), 1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa02), (1S, 3S)-1-methyl-1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa03), and (1R, 3S)-1-methyl-1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa04), among which the pa02 and pa04 were reported in PA for the first time. In vitro and in vivo experiments showed that PACEL, Trp, and pa02 had promoting HSF proliferation activity and intragastric administration of them could alleviate symptoms of weight loss and colon length shortening in the UC mice. Although recovery activity of the compound pa01 on the colon length was not as obvious as other compounds, it showed anti-inflammatory activity in histological analysis. In addition, The RT-qPCR results indicated that the three indole analogues could alleviate DSS-induced intestinal inflammation in mice by inhibiting pro-inflammatory cytokines (MMP7, IL1α) and down-regulating BMP8B expression. Conclusion: This study reported the isolation, purification, structure identification, and biological activity of the active indole analogues in PACEL. It was found for the first time that the PA extract contained many indole analogues and Trp, which exhibited good proliferation activity on HSF fibroblasts as well as anti-UC activity in mice. These indole analogues probably are important components related to the pharmacological activity in PA.
Collapse
Affiliation(s)
- Yuchen Xie
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Siwei Liang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yifan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Taoqing Wu
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Yongmei Shen
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Siddiqui R, Akbar N, Soares NC, Al-Hroub HM, Semreen MH, Maciver SK, Khan NA. Mass spectrometric analysis of bioactive conditioned media of bacteria isolated from reptilian gut. Future Sci OA 2023; 9:FSO861. [PMID: 37180607 PMCID: PMC10167718 DOI: 10.2144/fsoa-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Aim To determine whether selected gut bacteria of crocodile exhibit antibacterial properties. Materials & methods Two bacteria isolated from Crocodylus porosus gut were used, namely: Pseudomonas aeruginosa and Aeromonas dhakensis. Conditioned media were tested against pathogenic bacteria and metabolites were analyzed using liquid chromatography-mass spectrometry. Results & conclusion Antibacterial assays revealed that conditioned media showed potent effects against pathogenic Gram-positive and Gram-negative bacteria. LC-MS revealed identity of 210 metabolites. The abundant metabolites were, N-Acetyl-L-tyrosine, Acetaminophen, Trans-Ferulic acid, N, N-Dimethylformamide, Pyrocatechol, Cyclohexanone, Diphenhydramine, Melatonin, Gamma-terpinene, Cysteamine, 3-phenoxypropionic acid, Indole-3-carbinol, Benzaldehyde, Benzocaine, 2-Aminobenzoic acid, 3-Methylindole. These findings suggest that crocodile gut bacteria are potential source of novel bioactive molecules that can be utilized as pre/post/antibiotics for the benefit of human health.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts & Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Noor Akbar
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nelson Cruz Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamza Mohammad Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammad Harb Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
9
|
Microbiome and One Health: Potential of Novel Metabolites from the Gut Microbiome of Unique Species for Human Health. Microorganisms 2023; 11:microorganisms11020481. [PMID: 36838446 PMCID: PMC9958914 DOI: 10.3390/microorganisms11020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
For thousands of years, the notion that human health and performance are concomitant with the health and diversity of the microbiome has been deliberated upon [...].
Collapse
|
10
|
Antimicrobial Activity of Novel Deep Eutectic Solvents. Sci Pharm 2023. [DOI: 10.3390/scipharm91010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Herein, we utilized several deep eutectic solvents (DES) that were based on hydrogen donors and hydrogen acceptors for their antibacterial application. These DES were tested for their bactericidal activities against Gram-positive (Streptococcus pyogenes, Bacillus cereus, Streptococcus pneumoniae, and methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) bacteria. Using lactate dehydrogenase assays, DES were evaluated for their cytopathic effects towards human cells. Results from antibacterial tests revealed that DES prepared from the combination of methyl-trioctylammonium chloride and glycerol (DES-4) and DES prepared form methyl-trioctylammonium chloride and fructose (DES-11) at a 2 µL dose showed broad-spectrum antibacterial behavior and had the highest bactericidal activity. Moreover, DES-4 showed 40% and 68% antibacterial activity against P. aeruginosa and E. coli K1, respectively. Similarly, DES-11 eliminated 65% and 61% E. coli K1 and P. aeruginosa, respectively. Among Gram-positive bacteria, DES-4 showed important antibacterial activity, inhibiting 75% of B. cereus and 51% of S. pneumoniae. Likewise, DES-11 depicted 70% B. cereus and 50% S. pneumoniae bactericidal effects. Finally, the DES showed limited cytotoxic properties against human cell lines with the exception of the DES prepared from Methyltrioctylammonium chloride and Citric acid (DES-10), which had 88% cytotoxic effects. These findings suggest that DES depict potent antibacterial efficacies and cause minimal damage to human cells. It can be concluded that the selected DES in this study could be utilized as valuable and novel antibacterial drugs against bacterial infections. In future work, the mechanisms for bactericides and the cytotoxicity effects of these DES will be investigated.
Collapse
|
11
|
Zhao B, Zhang Y, Xu J, Li Y, Yuan Q, Zhou C. Periplaneta Americana extract inhibits osteoclastic differentiation in vitro. Cell Prolif 2023; 56:e13341. [PMID: 36210640 PMCID: PMC9890529 DOI: 10.1111/cpr.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Periplaneta americana extract (PAE) is proven to be promising in treating fever, wound healing, liver fibrosis, and cardiovascular disease. However, the role of PAE in skeletal disorders remains unclear. This study investigated whether PAE regulates osteoclastic differentiation in vitro via the culture using RAW264.7 cells and bone marrow derived macrophages (BMDMs). MATERIALS AND METHODS RAW264.7 cells and BMDMs were cultured and induced for osteoclastic differentiation supplementing with different concentrations of PAE (0, 0.1, 1, and 10 mg/mL). Cell counting kit-8 (CCK-8) assay was used to detect the cytotoxicity and cell proliferation. TRAP staining, actin ring staining, real-time quantitative PCR (RT-qPCR), and bone resorption activity test were performed to detect osteoclastic differentiation. RT-qPCR and enzyme-linked immunosorbent assay (ELISA) were conducted to assay the expression and secretion of inflammatory factors. RNA sequencing (RNA-seq) and western blot analysis were carried out to uncover the underlying mechanism. RESULTS CCK-8 results showed that 10 mg/mL and a lower concentration of PAE did not affect cell proliferation. RT-qPCR analysis verified that PAE down-regulated the osteoclastic genes Nfatc1, Ctsk, and Acp5 in macrophages. Moreover, PAE restrained the differentiation, formation, and function of osteoclasts. Besides, RT-qPCR and ELISA assays showed that PAE decreased inflammatory genes expression and reduced the secretion of inflammatory factors, including IL1β, IL6, and TNFα. Subsequent RNA-seq analysis identified possible genes and signaling pathways of PAE-mediated osteoclastogenesis suppression. CONCLUSIONS Our study indicates that PAE has inhibitive effects on osteoclastogenesis and may be a potential therapeutic alternative for bone diseases.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jie Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral Implantology, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric Dentistry, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
12
|
Siddiqui R, Elmashak Y, Khan NA. Cockroaches: a potential source of novel bioactive molecule(s) for the benefit of human health. APPLIED ENTOMOLOGY AND ZOOLOGY 2022; 58:1-11. [PMID: 36536895 PMCID: PMC9753028 DOI: 10.1007/s13355-022-00810-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Cockroaches are one of the hardiest insects that have survived on this planet for millions of years. They thrive in unhygienic environments, are able to survive without food for up to 30 days, without air for around 45 min and being submerged under water for 30 min. Cockroaches are omnivorous and feed on a variety of foods, including cellulose and plastic, to name a few. It is intriguing that cockroaches are able to endure and flourish under conditions that are harmful to Homo sapiens. Given the importance of the gut microbiome on its' host physiology, we postulate that the cockroach gut microbiome and/or its metabolites, may be contributing to their "hardiness", which should be utilized for the discovery of biologically active molecules for the benefit of human health. Herein, we discuss the biology, diet/habitat of cockroaches, composition of gut microbiome, cellular senescence, and resistance to infectious diseases and cancer. Furthermore, current knowledge of the genome and epigenome of these remarkable species is considered. Being one of the most successful and diverse insects, as well as their extensive use in traditional and Chinese medicine, the lysates/extracts and gut microbial metabolites of cockroaches may offer a worthy resource for novel bioactive molecule(s) of therapeutic potential for the benefit of human health and may be potentially used as probiotics.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, 26666 Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Yara Elmashak
- College of Arts and Sciences, American University of Sharjah, University City, 26666 Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| |
Collapse
|
13
|
Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248882. [PMID: 36558015 PMCID: PMC9782659 DOI: 10.3390/molecules27248882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
In traditional Chinese medicine (TCM), insects from the family Blattidae have a long history of application, and their related active compounds have excellent pharmacological properties, making them a prominent concern with significant potential for medicinal and healthcare purposes. However, the medicinal potential of the family Blattidae has not been fully exploited, and many problems must be resolved urgently. Therefore, a comprehensive review of its chemical composition, pharmacological activities, current research status, and existing problems is necessary. In order to make the review clearer and more systematic, all the contents were independently elaborated and summarized in a certain sequence. Each part started with introducing the current situation or a framework and then was illustrated with concrete examples. Several pertinent conclusions and outlooks were provided after discussing relevant key issues that emerged in each section. This review focuses on analyzing the current studies and utilization of medicinal insects in the family Blattidae, which is expected to provide meaningful and valuable relevant information for researchers, thereby promoting further exploration and development of lead compounds or bioactive fractions for new drugs from the insects.
Collapse
|
14
|
Novel Sources of Bioactive Molecules: Gut Microbiome of Species Routinely Exposed to Microorganisms. Vet Sci 2022; 9:vetsci9080380. [PMID: 35893773 PMCID: PMC9331562 DOI: 10.3390/vetsci9080380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The majority of antibiotics available in the market are produced by bacteria isolated from soil. However, the low-hanging fruit has been picked; hence, there is a need to mine bacteria from unusual sources. With this in mind, it is important to note that animals and pests, such as cockroaches, snake, crocodiles, water monitor lizards, etc., come across pathogenic bacteria regularly, yet flourish in contaminated environments. These species must have developed methods to defend themselves against pathogens. Besides the immunity they may confer, bacteria associated with animals/pests may offer a potential source of novel antibacterial agents. This paper discusses the current knowledge of bacteria isolated from land and marine animals with antibacterial properties and proposes untapped sources for the isolation of bacteria to mine potentially novel antibiotic molecules. Abstract The development of novel bioactive molecules is urgently needed, especially with increasing fatalities occurring due to infections by bacteria and escalating numbers of multiple-drug-resistant bacteria. Several lines of evidence show that the gut microbiome of cockroaches, snakes, crocodiles, water monitor lizards, and other species may possess molecules that are bioactive. As these animals are routinely exposed to a variety of microorganisms in their natural environments, it is likely that they have developed methods to counter these microbes, which may be a contributing factor in their persistence on the planet for millions of years. In addition to the immune system, the gut microbiota of a host may thwart colonization of the gastro-intestine by pathogenic and/or foreign microorganisms through two mechanisms: (i) production of molecules with antibacterial potential targeting foreign microorganisms, or (ii) production of molecules that trigger host immunity targeting foreign microorganisms that penetrate the host. Herein, we discuss and deliberate on the current literature examining antibacterial activities that stem from the gut bacteria of animals such as crocodiles, cockroaches, and water monitor lizards, amongst other interesting species, which likely encounter a plethora of microorganisms in their natural environments. The overall aim is to unveil a potential library of novel bioactive molecules for the benefit of human health and for utilization against infectious diseases.
Collapse
|
15
|
Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Hesperidin-, Curcumin-, and Amphotericin B- Based Nano-Formulations as Potential Antibacterials. Antibiotics (Basel) 2022; 11:696. [PMID: 35625340 PMCID: PMC9137731 DOI: 10.3390/antibiotics11050696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
To combat the public health threat posed by multiple-drug-resistant (MDR) pathogens, new drugs with novel chemistry and modes of action are needed. In this study, several drugs including Hesperidin (HES), curcumin (CUR), and Amphotericin B (AmpB) drug-nanoparticle formulations were tested for antibacterial strength against MDR Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, Methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae, and Gram-negative bacteria, including Escherichia coli K1, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens. Nanoparticles were synthesized and subjected to Atomic force microscopy, Fourier transform-infrared spectroscopy, and Zetasizer for their detailed characterization. Antibacterial assays were performed to determine their bactericidal efficacy. Lactate dehydrogenase (LDH) assays were carried out to measure drugs' and drug-nanoparticles' cytotoxic effects on human cells. Spherical NPs ranging from 153 to 300 nm were successfully synthesized. Results from antibacterial assays revealed that drugs and drug-nanoparticle formulations exerted bactericidal activity against MDR bacteria. Hesperidin alone failed to exhibit antibacterial effects but, upon conjugation with cinnamic-acid-based magnetic nanoparticle, exerted significant bactericidal activity against both the Gram-positive and Gram-negative isolates. AmpB-LBA-MNPs produced consistent, potent antibacterial efficacy (100% kill) against all Gram-positive bacteria. AmpB-LBA-MNPs showed strong antibacterial activity against Gram-negative bacteria. Intriguingly, all the drugs and their conjugated counterpart except AmpB showed minimal cytotoxicity against human cells. In summary, these innovative nanoparticle formulations have the potential to be utilized as therapeutic agents against infections caused by MDR bacteria and represent a significant advancement in our effort to counter MDR bacterial infections.
Collapse
Affiliation(s)
- Noor Akbar
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 26521, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| |
Collapse
|
16
|
Ma C, Zhang X, Li X, Ding W, Feng Y. An embryonic cell line from the American cockroach Periplaneta americana L. (Blattaria: Blattidae) exhibits susceptibility to AcMNPV. In Vitro Cell Dev Biol Anim 2022; 58:278-288. [PMID: 35460045 DOI: 10.1007/s11626-021-00628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 11/05/2022]
Abstract
Although the baculovirus expression vector system (BEVS) is widely used in the production of recombinant proteins, only a few lepidopteran insect cell lines have been successfully used so far. This study aimed at evaluating the characteristics of an embryonic cell line from the American cockroach Periplaneta americana L., RIRI-PA1, and determining whether it could be used in recombinant protein expression. Wild type Autographa californica multiple nucleopolyhedrovirus (AcMNPV-wt) and green fluorescent protein (GFP)-replicating recombinant baculoviruses (AcMNPV-GFP) were used to infect RIRI-PA1 respectively, demonstrating that RIRI-PA1 cells could be infected by AcMNPV and express recombinant proteins. Within 24 h of infection with AcMNPV-GFP, the GFP expression was higher than that in Sf21 cells. Furthermore, the infection of RIRI-PA1 cells increased gradually (multiplicity of infection, 10) within 24 h, while in Sf21 cells, the infection only began to increase within 48 h. However, after exposure for 96-168 h, the virus progeny and recombinant protein production of RIRI-PA1 cells was lower than those of Sf21 cells. Western blotting revealed that RIRI-PA1 cells could express recombinant GFP, and the protein expression level positively correlated with the multiplicity of infection. In conclusion, this is the first report that a cell line from P. americana has shown susceptibility to infection from a baculovirus and likewise express recombinant protein. Although the yield of recombinant GFP was not as high as that of Sf21 cells, the results nonetheless showed that RIRI-PA1 had an infection rate advantage in the short term (within 24 h of infection), which is of great value for further development and utilization.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China.
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Weifeng Ding
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| |
Collapse
|
17
|
Non-proteinaceous salivary compounds of a predatory bug cause histopathological and cytotoxic effects in prey. Toxicon 2022; 213:76-82. [DOI: 10.1016/j.toxicon.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
|
18
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
19
|
Li Y, Cai J, Du C, Lin Y, Li S, Ma A, Qin Y. Bioinformatic analysis and antiviral effect of Periplaneta americana defensins. Virus Res 2021; 308:198627. [PMID: 34785275 DOI: 10.1016/j.virusres.2021.198627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 01/08/2023]
Abstract
Due to the lack of an adaptive immune system, insects rely on innate immune mechanisms to fight against pathogenic infections. Two major innate immune pathways, Toll and IMD, orchestrate anti-pathogen responses by regulating the expression of antimicrobial peptide (AMP) genes. Although the antifungal or antibacterial function of AMPs has been well characterized, the antiviral role of AMPs in insects remains largely unclear. Periplaneta americana (P. americana), or the American cockroach, is used in traditional Chinese medicine as an antiviral agent; however, the underlying mechanism of action of P. americana extracts is unclear. Our previous study showed that the P. americana genome encodes multiple antimicrobial peptide genes. Based on these data, we predicted five novel P. americana defensins (PaDefensins) and analyzed their primary structure, secondary structure, and physicochemical properties. The putative antiviral, antifungal, antibacterial, and anticancer activities suggested that PaDefensin5 is a desirable therapeutic candidate against viral diseases. As the first experimental evidence of the antiviral effects of insect defensins, we also showed the antiviral effect of PaDefensin5 in Drosophila Kc cells and Drosophila embryos in vivo . In conclusion, results of both in silico predictions and subsequent antiviral experiments suggested PaDefensin5 a promising antiviral drug.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Jie Cai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Chunyu Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Yuhua Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Anping Ma
- Insititution of chemical surveillance, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Insititution of chemical surveillance, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Khan NA, Soopramanien M, Maciver SK, Anuar TS, Sagathevan K, Siddiqui R. Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites. Molecules 2021; 26:4999. [PMID: 34443585 PMCID: PMC8398445 DOI: 10.3390/molecules26164999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Crocodiles are remarkable animals that have the ability to endure extremely harsh conditions and can survive up to a 100 years while being exposed to noxious agents that are detrimental to Homo sapiens. Besides their immunity, we postulate that the microbial gut flora of crocodiles may produce substances with protective effects. In this study, we isolated and characterized selected bacteria colonizing the gastrointestinal tract of Crocodylusporosus and demonstrated their inhibitory effects against three different cancerous cell lineages. Using liquid chromatography-mass spectrometry, several molecules were identified. For the first time, we report partial analyses of crocodile's gut bacterial molecules.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 26666, United Arab Emirates;
| | | | - Sutherland Kester Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Tengku Shahrul Anuar
- Centre of Medical Laboratory Technology, Faculty of Health Sciences, Puncak Alam Campus, Universiti Teknologi MARA, Kuala Selangor 42300, Selangor, Malaysia;
| | - Kuppusamy Sagathevan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 26666, United Arab Emirates;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates;
| |
Collapse
|
21
|
Lee H, Hwang JS, Lee DG. dinF Elicits Nitric Oxide Signaling Induced by Periplanetasin-4 from American Cockroach in Escherichia coli. Curr Microbiol 2021; 78:3550-3561. [PMID: 34313814 DOI: 10.1007/s00284-021-02615-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/16/2021] [Indexed: 01/07/2023]
Abstract
Modern antibiotics have been developed with the aim of destroying cellular function; however, the risk of antibiotic-resistance is increasing continuously. As a result, antimicrobial peptide (AMP) is considered a novel strategy to substitute traditional drugs. This study focused on revealing the antibacterial mechanism(s) of periplanetasn-4, an AMP identified from Cockroach. To elucidate whether periplanetasin-4 generates reactive oxygen species (ROS), a crucial stress factor for cell death, intracellular ROS was measured in Escherichia coli. The degree of membrane and DNA damage was determined using the properties that ROS causes oxidative stress to cell components. Unlike normal cell death, membrane depolarization was observed but DNA fragmentation did not occur. In addition, accumulation of nitric oxide (NO), a free radical with high toxicity, was measured and the byproduct of NO also induced severe intracellular damage. Periplanetasin-4-induced NO also impacted on cytosol calcium levels and triggered lipid peroxidation and DNA oxidation. These features were weakened when NO synthesis was interrupted, and this data suggested that perplanetasin-4-induced NO participates in E. coli cell damage. Moreover, this AMP-induced NO stimulates expression of SOS repair proteins and activation of RecA, a bacterial caspase-like protein. Features of nitrosative damage did not occur especially without dinF gene which is associated with oxidative stress. Therefore, it was indicated that when there is a NO signal, dinF promotes cell death. In conclusion, the combined investigations demonstrated that the antibacterial mechanism(s) of periplanetasin-4 was a NO-induced cell death, and dinF gene is closely related to cell death pathway.
Collapse
Affiliation(s)
- Heejeong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
22
|
Ali SM, Siddiqui R, Sagathevan KA, Khan NA. Antibacterial activity of selected invertebrate species. Folia Microbiol (Praha) 2021; 66:285-291. [PMID: 33704690 DOI: 10.1007/s12223-021-00860-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
The evolution of multiple-drug resistant bacteria is contributing to the global antimicrobial crisis, hence driving us to search for novel antimicrobial(s). Among animals, invertebrates represent up to 80% of all known species suggesting their wide distribution. Despite their ubiquitous and plentiful nature, they have been largely unexplored as potential source of antibacterials. In this study, we selected a broad range of invertebrates from terrestrial and marine environments and tested their lysates for antibacterial activity against methicillin-resistant Staphylococcus aereus (MRSA) and neuropathogenic Escherichia coli K1. Cockroaches, centipedes, tarantulas, prawns, lobster, and mud crabs showed antibacterial activity with selected lysates exhibiting more than 90% bactericidal effects. The red-headed centipede's hemolymph showed 90% and 50% bacteriostatic activity against MRSA and E. coli K1, respectively. Tarantula's body extracts exhibited antibacterial activity against MRSA and E. coli K1. Gut extracts of tiger prawn exhibited more than 90% bacteriostatic activity against both bacteria. The selected lobster and mud crab extract exhibited up to 90% growth inhibitory activity against MRSA. Overall, these results showed that selected invertebrates are an untapped source of broad-spectrum antibacterial activity and suggest the presence of biologically active molecules.
Collapse
Affiliation(s)
- Salwa Mansur Ali
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Ruqaiyayh Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | | | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE. .,Research Institute of Health and Medical Sciences, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
23
|
Soopramanien M, Khan N, Neerooa BNHM, Sagathevan K, Siddiqui R. Gut Bacteria of Columbia livia Are a Potential Source of Anti-Tumour Molecules. Asian Pac J Cancer Prev 2021; 22:733-740. [PMID: 33773536 PMCID: PMC8286664 DOI: 10.31557/apjcp.2021.22.3.733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives: The overall aim was to determine whether gut bacteria of Columbia livia are a potential source of antitumour molecules. Methods: Faecal and gut microbiota of Columbia livia were isolated, identified and conditioned media were prepared containing metabolites. Growth inhibition, lactate dehydrogenase cytotoxicity and cell survival assays were accomplished against cervical cancer cells. Next, liquid-chromatography mass spectrometry was conducted to elucidate the molecules present. Results: A plethora of bacteria from faecal matter and gastrointestinal tract were isolated. Selected conditioned media exhibited potent anticancer effects and displayed cytotoxicity to cervical cancer cells at IC50 concentration of 10.65 and 15.19 µg/ml. Moreover, cells treated with conditioned media exhibited morphological changes, including cell shrinking and rounding; indicative of apoptosis, when compared to untreated cells. A total of 111 and 71 molecules were revealed from these gut and faecal metabolites. The identity of 60 molecules were revealed including, dihydroxymelphalan. Nonetheless, 122 molecules remain unidentified and are the subject of future studies. Conclusion: These findings suggest that gut bacteria of Columbia livia possess molecules, which may have anticancer activities. Further in silico testing and/or high throughput screening will determine potential anticancer properties of these molecules.
Collapse
Affiliation(s)
| | - Naveed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
| | | | | | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
24
|
Isolation and characterization of a novel antimicrobial oxatetracyclo ketone from Bacillus stercoris MBTDCMFRI Ba37 isolated from the tropical estuarine habitats of Cochin. Mol Biol Rep 2021; 48:1299-1310. [PMID: 33590414 DOI: 10.1007/s11033-021-06146-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Antimicrobial compounds from the safest source have gained greater relevance because of their wide spectrum of possible applications, especially in aquaculture industry, where pathogenic threat and antibacterial resistance are serious concerns. Bacillus stercoris MBTDCMFRI Ba37 isolated from mangrove environment of tropical estuarine habitats of Cochin exhibited a wide spectrum of antibacterial activity against major aquaculture pathogens belonging to genus Vibrio and Aeromonas. The structural characterization of the antibacterial compound from this strain may help in identifying their role as a biocontrol agent in aquaculture and allied sectors. The highest antibacterial activity was detected in 3rd day culture, grown in a modified Bacillus medium containing 1% of glycerol and 0.5% of glutamic acid at 30 °C, pH 8.0 and 15 ppt saline conditions. The inhibitory activity of the cell free supernatant was evident even at 20% v/v dilution. Preliminary studies on the nature of antibacterial action indicated that the bioactive principle is stable at temperatures up to 70 °C, between pH 6-9 and instable to lyzozyme and proteolytic enzymes. Bioassay guided purification followed by spectroscopic characterization of active fractions of B. stercoris MBTDCMFRI Ba37 revealed that the compound 1-(1-Hydroxyethyl)-1,7,10,12,13,15,17 heptamethyl-16-oxatetracyclo[8.7.0.02,3.012,13]heptadecan-5-one, is responsible for its major antibacterial activity. This is the first report on isolation and characterization of an antibacterial compound from the species B. stercoris. The results of this study indicated that B. stercoris MBTDCMFRI Ba37 has beneficial antibacterial properties which could be useful in developing novel antimicrobial therapeutics against a variety of aquaculture and other pathogens.
Collapse
|
25
|
He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, Zhang D, Yuan C, Deng J, Zhao P, Zhou Q. A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol 2020; 167:182-192. [PMID: 33259842 DOI: 10.1016/j.ijbiomac.2020.11.168] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Conventional wound-dressing materials with structural and functional deficiencies are not effective in promoting wound healing. The development of multifunctional wound dressings is emerging as a promising strategy to accelerate blood coagulation, inhibit bacterial infection, and trigger full-thickness wound into a regenerative process. Herein, multifunctional composite sponges were developed by incorporation of traditional Chinese medicine Kangfuxin (KFX) into alginate (AG)/carboxymethyl chitosan (CMC) via green crosslinking, electrostatic interaction, and freeze-drying methods. It is demonstrated that the AG/CMC/KFX (ACK) sponges exhibit a highly interconnected and porous structure, suitable water vapor transmittance, excellent elastic properties, antibacterial behavior, cytocompatibility, and rapid hemostasis. Further, in a rat full-thickness wounds model, the ACK sponge containing 10% KFX (ACK-10) significantly facilitates wound closure compared to the AC group and ACK sponge containing 5% and 15% KFX. Thus, the multifunctional ACK-10 composite sponge has great promise for the application of full-thickness wound healing.
Collapse
Affiliation(s)
- Yun He
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zuoxiang Dong
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yanjing Ji
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Min Li
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yuanping Hao
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Demeng Zhang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co. Ltd., Qingdao 266400, China
| | - Changqing Yuan
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jing Deng
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Peng Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
26
|
Guzman J, Vilcinskas A. Bacteria associated with cockroaches: health risk or biotechnological opportunity? Appl Microbiol Biotechnol 2020; 104:10369-10387. [PMID: 33128616 PMCID: PMC7671988 DOI: 10.1007/s00253-020-10973-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Abstract Cockroaches have existed for 300 million years and more than 4600 extant species have been described. Throughout their evolution, cockroaches have been associated with bacteria, and today Blattabacterium species flourish within specialized bacteriocytes, recycling nitrogen from host waste products. Cockroaches can disseminate potentially pathogenic bacteria via feces and other deposits, particularly members of the family Enterobacteriaceae, but also Staphylococcus and Mycobacterium species, and thus, they should be cleared from sites where hygiene is essential, such as hospitals and kitchens. On the other hand, cockroaches also carry bacteria that may produce metabolites or proteins with potential industrial applications. For example, an antibiotic-producing Streptomyces strain was isolated from the gut of the American cockroach Periplaneta americana. Other cockroach-associated bacteria, including but not limited to Bacillus, Enterococcus, and Pseudomonas species, can also produce bioactive metabolites that may be suitable for development as pharmaceuticals or plant protection products. Enzymes that degrade industrially relevant substrates, or that convert biomasses into useful chemical precursors, are also expressed in cockroach-derived bacteria and could be deployed for use in the food/feed, paper, oil, or cosmetics industries. The analysis of cockroach gut microbiomes has revealed a number of lesser-studied bacteria that may form the basis of novel taxonomic groups. Bacteria associated with cockroaches can therefore be dangerous or useful, and this review explores the bacterial clades that may provide opportunities for biotechnological exploitation. Key points • Members of the Enterobacteriaceae are the most frequently cultivated bacteria from cockroaches. • Cultivation-independent studies have revealed a diverse community, led by the phyla Bacteroidetes and Firmicutes. • Although cockroaches may carry pathogenic bacteria, most strains are innocuous and may be useful for biotechnological applications. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-10973-6.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
27
|
Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R. Crocodylus porosus: a potential source of anticancer molecules. BMJ OPEN SCIENCE 2020; 4:e100040. [PMID: 35047686 PMCID: PMC8749261 DOI: 10.1136/bmjos-2019-100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/09/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Background Cancer remains a global threat resulting in significant morbidity and mortality despite advances in therapeutic interventions, suggesting urgency for identification of anticancer agents. Crocodiles thrive in polluted habitat, feed on germ-infested meat, are exposed to carcinogenic heavy metals, are the very few species to survive the catastrophic Cretaceous–Paleogene extinction event, yet have a prolonged lifespan and rarely been reported to develop cancer. Therefore, we hypothesised that animals living in polluted environments such as crocodiles possess anticancer molecules/mechanisms. Methods Crocodylus porosus was procured, blood collected, dissected and lysates prepared from internal organs. Organ lysates and sera were tested for growth inhibition, cytotoxic effects and cell survival against HeLa, PC3 and MCF7 cells and subjected to liquid chromatography mass spectrometry. RNA transcriptome analysis and differential gene analysis were performed using Galaxy Bioinformatics. Results Sera exhibited potent growth inhibition and cytotoxic effects against cancer cells. 80 molecules were detected from C. porosus and 19 molecules were putatively identified. Additionally, more than 100 potential anticancer peptides were identified from sera using bioinformatics based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition. Following transcriptome analysis, 14 genes in treated HeLa cells, 51 genes in treated MCF7 cells and 2 genes in treated PC3 cells, were found to be expressed, compared with untreated controls. Conclusion Animals residing in polluted milieus are an unexploited source for prospective pharmaceutical drugs, and could lead to identification of novel antitumour compound(s) and/or further understanding of the mechanisms of cancer resistance.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - K Sagathevan
- Science and Technology, Sunway College, Bandar Sunway, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
28
|
Farrag HMM, Mostafa FAAM, Mohamed ME, Huseein EAM. Green biosynthesis of silver nanoparticles by Aspergillus niger and its antiamoebic effect against Allovahlkampfia spelaea trophozoite and cyst. Exp Parasitol 2020; 219:108031. [PMID: 33091422 DOI: 10.1016/j.exppara.2020.108031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Fungi represent an interesting candidate for the synthesis of nanoparticles. The biosynthesis of silver nanoparticles (AgNPs) has many industrial and biomedical indications. We aimed in this work to biologically synthesize silver nanoparticles using Aspergillus niger and to evaluate its effect against the newly identified Allovahlkampfia spelaea that causes resistant human keratitis. MATERIAL AND METHODS Aspergillus niger (soil isolate) was treated with silver nitrate to produce silver nanoparticles. AgNPs were characterized by Ultraviolet-Visible Spectroscopy, Transmission Electron Microscopy, and Fourier Transform Infrared Spectroscopy. The effect of the synthesized nanoparticles against Allovahlkampfia spelaea growth, encystation, excystation, and toxicity in host cells was evaluated. RESULTS AgNPs exhibited significant inhibition of Allovahlkampfia spelaea viability and growth of both trophozoites and cysts, with a reduction of amoebic cytotoxic activity in host cells. CONCLUSION AgNPs may give a promising future to the treatment of Allovahlkampfia spelaea infections in humans.
Collapse
Affiliation(s)
- Haiam Mohamed Mahmoud Farrag
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt; Faculty of Applied Medical Sciences, Shaqra University, Saudi Arabia.
| | | | - Mona Embarek Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | |
Collapse
|
29
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Micol V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020; 8:E405. [PMID: 33050619 PMCID: PMC7601869 DOI: 10.3390/biomedicines8100405] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain
| |
Collapse
|
30
|
Kim IW, Lee JH, Seo M, Lee HJ, Baek M, Kim MA, Shin YP, Kim SH, Kim I, Hwang JS. Anti-Inflammatory Activity of Antimicrobial Peptide Periplanetasin-5 Derived from the Cockroach Periplaneta americana. J Microbiol Biotechnol 2020; 30:1282-1289. [PMID: 32522957 PMCID: PMC9728328 DOI: 10.4014/jmb.2004.04046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Previously, we performed an in silico analysis of the Periplaneta americana transcriptome. Antimicrobial peptide candidates were selected using an in silico antimicrobial peptide prediction method. It was found that periplanetasin-5 had antimicrobial activity against yeast and grampositive and gram-negative bacteria. In the present study, we demonstrated the anti-inflammatory activities of periplanetasin-5 in mouse macrophage Raw264.7 cells. No cytotoxicity was observed at 60 μg/ml periplanetasin-5, and treatment decreased nitric oxide production in Raw264.7 cells exposed to lipopolysaccharide (LPS). In addition, quantitative RT-PCR and enzyme-linked immunosorbent assay revealed that periplanetasin-5 reduced cytokine (tumor necrosis factor-α, interleukin-6) expression levels in the Raw264.7 cells. Periplanetasin-5 controlled inflammation by inhibiting phosphorylation of MAPKs, an inflammatory signaling element, and reducing the degradation of IκB. Through LAL assay, LPS toxicity was found to decrease in a periplanetasin-5 dose-dependent manner. Collectively, these data showed that periplanetasin-5 had antiinflammatory activities, exemplified in LPS-exposed Raw264.7 cells. Thus, we have provided a potentially useful antibacterial peptide candidate with anti-inflammatory activities.
Collapse
Affiliation(s)
- In-Woo Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea,College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hwa Jeong Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Minhee Baek
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Mi-Ae Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yong Pyo Shin
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sung Hyun Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Iksoo Kim
- College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea,Iksoo Kim E-mail:
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea,Corresponding author Jae Sam Hwang Phone: +82-63-238-2974 E-mail:
| |
Collapse
|
31
|
Gut bacteria of Varanus salvator possess potential antitumour molecules. Int Microbiol 2020; 24:47-56. [PMID: 32737845 DOI: 10.1007/s10123-020-00139-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Pollution, unhygienic conditions and organic waste are detrimental to human health. On the contrary, animals living in polluted environments, feeding on organic waste and exposed to noxious agents such as heavy metals must possess remarkable properties against contracting diseases. Species such as cockroaches and water monitor lizards thrive in unhygienic conditions and feed on decaying matter. Here, we investigated the antitumour properties of metabolites produced by gut bacteria isolated from Varanus salvator (Asian water monitor lizard). An adult water monitor lizard and a juvenile water monitor lizard were acquired, and dissected. Their aerobic gut bacteria were isolated and identificated through 16S rDNA sequencing. Next, bacterial conditioned media (CM) were prepared and utilised for subsequent assays. Growth inhibition, MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay, cytotoxicity and cell survival assays were accomplished against a panel of cancer cells as well as a normal cell line. Furthermore, liquid chromatography-mass spectrometry (LC-MS) was employed to identify potential antitumour molecules. A plethora of bacteria were isolated from the gut of juvenile and adult V. salvator respectively. Moreover, CM prepared from selected bacteria exhibited antitumour activity. Of note, LC-MS results indicated the presence of several molecules with reported antitumour activity, namely, 3-butylidene-7-hydroxyphthalide, C75, enigmol, estrone 16-oxime, proglumide and S-allyl-L-cysteine. Furthermore, 356 potentially novel molecules from juvenile V. salvator and 184 from adult V. salvator were depicted. Thus, the gut microbiota of V. salvator might be considered as a great niche of antitumour molecules; however, further in vitro and in vivo studies are needed to assess the antitumour properties of these molecules.
Collapse
|
32
|
Zou Y, Zhang M, Zeng D, Ruan Y, Shen L, Mu Z, Zou J, Xie C, Yang Z, Qian Z, Xu R, Li S, Kang Q, Zou H, Zhao S, Liu L, Wang K, Wang X, Zhang X. Periplaneta americana Extracts Accelerate Liver Regeneration via a Complex Network of Pathways. Front Pharmacol 2020; 11:1174. [PMID: 32848780 PMCID: PMC7413023 DOI: 10.3389/fphar.2020.01174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Successful recovery from hepatectomy is partially contingent upon the rate of residual liver regeneration. The traditional Chinese medicines known as Periplaneta americana extracts (PAEs) positively influence wound healing by promoting tissue repair. However, the effect of PAEs on liver regeneration is unknown. We used a mouse liver regeneration model after 70% partial hepatectomy (PH) and a hepatocyte culture to determine whether PAEs can promote liver regeneration as effectively as skin regeneration and establish their modes of action. L02 cells were divided into serum-starved control (NC) and three PAEs (serum starvation + 0.1 mg/ml, 0.5 mg/ml, or 1 mg/ml PAEs) groups. L02 cell proliferation was assessed at 24 h, 48 h, and 72 h by CCK-8 assay. Forty male C57 mice were randomly divided into control (NC), normal saline (NS), PAEs400 (400 mg/kg/d), and PAEs800 (800 mg/kg/d) groups (n = 10 per group). The NS and both PAEs groups were administered normal saline and PAEs, respectively, by gavage for 10 days. Two hours after the tenth gavage, the NS and both PAEs groups were subjected to 70% PH and the residual liver was harvested after 48 h. The hepatic regeneration rate was evaluated and hepatocyte proliferation was estimated by immunohistochemical (IHC) staining for Ki-67. Twelve DEG libraries (three samples per group) were prepared and sequencing was performed in an Illumina HiSeq 2000 (Mus_musculus) at the Beijing Genomics Institute. The genes expressed in the liver tissues and their expression profiles were analyzed by bioinformatics. KEGG was used to annotate, enrich, and analyze the pathways. PAEs promoted hepatocyte proliferation in vitro and in vivo and accelerated mouse liver regeneration after 70% PH. The screening criteria were fold change (FC) ≥ 2 and q-value < 0.001. We identified 1,092 known DEGs in PAEs400 and PAEs800. Of these, 153 were categorized in cellular processes. The KEGG analysis revealed that the aforementioned DEGs participated in several signaling pathways closely associated with cell proliferation including PI3K-Akt, MAPK, Apelin, Wnt, FoxO, mTOR, Ras, VEGF, ErbB, Hippo, and AMPK. It was concluded that PAEs can effectively improve liver regeneration via the synergistic activation of different signaling pathways.
Collapse
Affiliation(s)
- Yingying Zou
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China.,Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meiyan Zhang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Di Zeng
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Yonghua Ruan
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Lijuan Shen
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhihao Mu
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Jiangmeng Zou
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Chenjian Xie
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhihong Yang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Zhongyi Qian
- Department of Morphological Laboratory, Kunming Medical University, Kunming, China
| | - Ruobing Xu
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Zou
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Songling Zhao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lixin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xie Wang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Xiaowen Zhang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
33
|
Winnie FYM, Siddiqui R, Sagathevan K, Khan NA. Identification of Antibacterial Molecule(s) from Animals Living in Polluted Environments. Curr Pharm Biotechnol 2020; 21:425-437. [PMID: 31577204 DOI: 10.2174/1389201020666191002153435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Snakes feed on germ-infested rodents, while water monitor lizards thrive on rotten matter in unhygienic conditions. We hypothesize that such creatures survive the assault of superbugs and are able to fend off disease by producing antimicrobial substances. In this study, we investigated the potential antibacterial activity of sera/lysates of animals living in polluted environments. METHODS Snake (Reticulatus malayanus), rats (Rattus rattus), water monitor lizard (Varanus salvator), frog (Lithobates catesbeianus), fish (Oreochromis mossambicus), chicken (Gallus gallus domesticus), and pigeon (Columba livia) were dissected and their organ lysates/sera were collected. Crude extracts were tested for bactericidal effects against neuropathogenic E. coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus cereus and Klebsiella pneumoniae. To determine whether lysates/sera protect human cells against bacterialmediated damage, cytotoxicity assays were performed by measuring lactate dehydrogenase release as an indicator of cell death. Lysates/sera were partially characterized using heat-treatment and pronasetreatment and peptide sequences were determined using the Liquid Chromatography Mass Spectrometry (LC-MS). RESULTS Snake and water monitor lizard sera exhibited potent broad-spectrum bactericidal effects against all bacteria tested. Heat inactivation and pronase-treatment inhibited bactericidal effects indicating that activity is heat-labile and pronase-sensitive suggesting that active molecules are proteinaceous in nature. LCMS analyses revealed the molecular identities of peptides. CONCLUSION The results revealed that python that feeds on germ-infested rodents and water monitor lizards that feed on rotten organic waste possess antibacterial activity in a heat-sensitive manner and several peptides were identified. We hope that the discovery of antibacterial activity in the sera of animals living in polluted environments will stimulate research in finding antibacterial agents from unusual sources as this has the potential for the development of novel strategies in the control of infectious diseases.
Collapse
Affiliation(s)
- Foo Y M Winnie
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Kuppusamy Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed A Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
34
|
Siddiqui R, Khan NA. Targeting SARS-CoV-2: Novel Source of Antiviral Compound(s) against COVID-19? ACS Chem Neurosci 2020; 11:1863-1864. [PMID: 32525650 DOI: 10.1021/acschemneuro.0c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
SARS-CoV-2 remains a significant burden on human health. Several lines of evidence suggest that surveillance of sewage and waste can provide an early warning sign for COVID-19 recurrence in a community. In support, SARS-CoV-2 traces were found in sewage in several countries. With this in mind, it is notable that pests, such as cockroaches, are exposed to pathogenic microbes routinely, yet thrive in polluted environments. Such species have likely developed mechanisms to protect themselves against pathogens. In support, recent studies showed that cockroaches possess potent antibacterial molecules to shield themselves from pathogenic bacteria. Among hundreds of molecules, some contained thiazine groups, imidazoles, chromene derivatives, isoquinoline group, sulfonamides, pyrrole-containing analogs, flavanones, and furanones. Here, we propose that cockroaches are a potential source of antiviral molecules to thwart infections. Because this is an unexploited resource for potential antivirals, we believe that cockroaches offer a unique source for novel bioactive molecule(s) to counter COVID-19 with huge clinical impact worldwide.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
35
|
Zeng C, Liao Q, Hu Y, Shen Y, Geng F, Chen L. The Role of Periplaneta americana (Blattodea: Blattidae) in Modern Versus Traditional Chinese Medicine. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 56:1522-1526. [PMID: 31265723 DOI: 10.1093/jme/tjz081] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 02/05/2023]
Abstract
The purpose of this review is to elaborate the role of Periplaneta (P.) americana L. in modern and traditional Chinese medicine (TCM) and compare the use of the species in these two forms of medical treatments. From searches on Google Scholar, PubMed, and Web of Science databases, studies were identified involving TCMs with P. americana, which have a history of use over several thousand years, and demonstrate how extracts from this insect play a role in the treatment of diseases through antibacterial, antiviral, antitumor activity, and enhancement of immune function. Extracts from P. americana have not been fully developed for clinical use because the active components have not been completely purified or their molecular mechanisms thoroughly understood. The development of extraction technology in modern Chinese medicine has revealed that many extracts from P. americana are able to play an important role in the control of diseases such as cancer. Drugs such as 'Kangfuxin Solution' and 'Xinmailong Injection' are now widely used for gastrointestinal ulcers and chronic heart failure, having achieved beneficial curative effects in clinical studies. Based on this, the information from studies of P. americana in TCM and modern medicine should be combined and their respective advantages applied. This review provides an overview of the role of P. americana in modern and TCM and thus contributes to identification of further applications and area requiring drug development.
Collapse
Affiliation(s)
- Chenjuan Zeng
- Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qi Liao
- Gooddoctor Pharmaceutical Group, Chengdu, Sichuan, P.R. China
| | - Ye Hu
- Gooddoctor Pharmaceutical Group, Chengdu, Sichuan, P.R. China
| | - Yongmei Shen
- Gooddoctor Pharmaceutical Group, Chengdu, Sichuan, P.R. China
| | - Funeng Geng
- Gooddoctor Pharmaceutical Group, Chengdu, Sichuan, P.R. China
| | - Lijuan Chen
- Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
36
|
Antibacterial Activities of Selected Pure Compounds Isolated from Gut Bacteria of Animals Living in Polluted Environments. Antibiotics (Basel) 2020; 9:antibiotics9040190. [PMID: 32316471 PMCID: PMC7235713 DOI: 10.3390/antibiotics9040190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 01/16/2023] Open
Abstract
Antibiotic resistance is a global threat to public health, further accelerated by the misuse of antibiotics in humans and animals. Our recent studies have shown that gut bacteria of animals living in polluted environments are a potential source of antibacterials. Gut bacteria of cockroaches, water monitor lizards and the turtle exhibited molecules such as curcumenol, docosanedioic acid, N-acyl-homoserine lactone, L-homotyrosine and Di-rhamnolipids. Using purified compounds, assays were performed to determine their antibacterial properties using serial dilution method, cytotoxic effects using lactate dehydrogenase release, and cell viability using MTT assay. The results revealed that the purified compounds exhibited significant antibacterial activities (p < 0.05) against selected Gram-negative (Pseudomonas aeruginosa) and Gram-positive bacteria (Streptococcus pyogenes) with effective MIC50 and MIC90 at µg concentrations, and with minimal effects on human cells as observed from LDH and MTT assays. These findings are significant and provide a basis for the rational development of therapeutic antibacterials. Future studies are needed to determine in vivo effects of the identified molecules together with their mode of action, which could lead to the development of novel antibacterial(s).
Collapse
|
37
|
Akbar N, Siddiqui R, Sagathevan K, Khan NA. Gut bacteria of animals living in polluted environments exhibit broad-spectrum antibacterial activities. Int Microbiol 2020; 23:511-526. [PMID: 32124096 DOI: 10.1007/s10123-020-00123-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
Infectious diseases, in particular bacterial infections, are the leading cause of morbidity and mortality posing a global threat to human health. The emergence of antibiotic resistance has exacerbated the problem further. Hence, there is a need to search for novel sources of antibacterials. Herein, we explored gut bacteria of a variety of animals living in polluted environments for their antibacterial properties against multi-drug resistant pathogenic bacteria. A variety of species were procured including invertebrate species, Blaptica dubia (cockroach), Gromphadorhina portentosa (cockroach), Scylla serrata (crab), Grammostola rosea (tarantula), Scolopendra subspinipes (centipede) and vertebrate species including Varanus salvator (water monitor lizard), Malayopython reticulatus (python), Cuora amboinensis (tortoise), Oreochromis mossambicus (tilapia fish), Rattus rattus (rat), Gallus gallus domesticus (chicken) and Lithobates catesbeianus (frog). Gut bacteria of these animals were isolated and identified using microbiological, biochemical, analytical profiling index (API) and through molecluar identification using 16S rRNA sequencing. Bacterial conditioned media (CM) were prepared and tested against selected Gram-positive and Gram-negative pathogenic bacteria as well as human cells (HaCaT). The results revealed that CM exhibited significant broad-spectrum antibacterial activities. Upon heat inactivation, CM retained their antibacterial properties suggesting that this effect may be due to secondary metabolites or small peptides. CM showed minimal cytotoxicity against human cells. These findings suggest that gut bacteria of animals living in polluted environments produce broad-spectrum antibacterial molecule(s). The molecular identity of the active molecule(s) together with their mode of action is the subject of future studies which could lead to the rational development of novel antibacterial(s).
Collapse
Affiliation(s)
- Noor Akbar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, 26666, Sharjah, United Arab Emirates
| | - K Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, 26666, Sharjah, United Arab Emirates.
| |
Collapse
|
38
|
Masri A, Anwar A, Khan NA, Siddiqui R. The Use of Nanomedicine for Targeted Therapy against Bacterial Infections. Antibiotics (Basel) 2019; 8:E260. [PMID: 31835647 PMCID: PMC6963790 DOI: 10.3390/antibiotics8040260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023] Open
Abstract
The emergence of drug resistance combined with limited success in the discovery of newer and effective antimicrobial chemotherapeutics poses a significant challenge to human and animal health. Nanoparticles may be an approach for effective drug development and delivery against infections caused by multi-drug resistant bacteria. Here we discuss nanoparticles therapeutics and nano-drug delivery against bacterial infections. The therapeutic efficacy of numerous kinds of nanoparticles including nanoantibiotics conjugates, small molecules capped nanoparticles, polymers stabilized nanoparticles, and biomolecules functionalized nanoparticles has been discussed. Moreover, nanoparticles-based drug delivery systems against bacterial infections have been described. Furthermore, the fundamental limitation of biocompatibility and biosafety of nanoparticles is also conferred. Finally, we propose potential future strategies of nanomaterials as antibacterials.
Collapse
Affiliation(s)
- Abdulkader Masri
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia; (A.M.)
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia; (A.M.)
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, UAE
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, UAE
| |
Collapse
|
39
|
Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules. Sci Rep 2019; 9:17012. [PMID: 31740685 PMCID: PMC6861250 DOI: 10.1038/s41598-019-52738-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance is a major threat to human health, hence there is an urgent need to discover antibacterial molecule(s). Previously, we hypothesized that microbial gut flora of animals are a potential source of antibacterial molecules. Among various animals, Cuora amboinensis (turtle) represents an important reptile species living in diverse ecological environments and feed on organic waste and terrestrial organisms and have been used in folk medicine. The purpose of this study was to mine turtle’s gut bacteria for potential antibacterial molecule(s). Several bacteria were isolated from the turtle gut and their conditioned media were prepared. Conditioned media showed potent antibacterial activity against several Gram-positive (Bacillus cereus, Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus) and Gram-negative (neuropathogenic Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) pathogenic bacteria. Conditioned media-mediated bactericidal activity was heat-resistant when treated at 95°C for 10 min. By measuring Lactate dehydrogenase release, the results showed that conditioned media had no effect on human cell viability. Tandem Mass Spectrometric analysis revealed the presence of various secondary metabolites, i.e., a series of known as well as novel N-acyl-homoserine lactones, several homologues of 4-hydroxy-2-alkylquinolines, and rhamnolipids, which are the signature metabolites of Pseudomonas species. These findings are significant and provide the basis for rational development of therapeutic interventions against bacterial infections.
Collapse
|
40
|
Antibacterial Effects of Quinazolin-4(3 H)-One Functionalized-Conjugated Silver Nanoparticles. Antibiotics (Basel) 2019; 8:antibiotics8040179. [PMID: 31600971 PMCID: PMC6963639 DOI: 10.3390/antibiotics8040179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023] Open
Abstract
Infections due to multi-drug resistant bacteria are on the rise and there is an urgent need to develop new antibacterials. In this regard, a series of six functionally diverse new quinazolinone compounds were synthesized by a facile one-pot reaction of benzoic acid derivatives, trimethoxymethane and aniline derivatives. Three compounds of 3-aryl-8-methylquinazolin-4(3H)-one, and 3-aryl-6,7-dimethoxyquinazolin4(3H)-one were prepared and tested against multi-drug resistant bacteria. Furthermore, we determined whether conjugation with silver nanoparticles improved the antibacterial efficacy of these quinazolinone derivatives. The newly synthesized compounds were characterized by ultraviolet visible spectrophotometry (UV-vis), Zetasizer analysis, Fourier transform infrared spectroscopic methods (FT-IR), and scanning electron microscopy (SEM). Using bactericidal evaluation, effects were determined against selected Gram-negative and Gram-positive bacteria. Furthermore, cytotoxicity of nanoconjugates on human cells were determined. The UV-vis spectrum of silver nanoparticles conjugated quinazolinone displayed surface plasmon resonance band in the range of 400–470 nm, and the size of nanoparticles was detected to be in the range of 100–250 nm by dynamic light scattering (DLS). FT-IR study confirmed the stabilization of silver nanoparticles by the presence of diverse functional arayl on each compound. SEM further revealed the construction of spherical nanoparticles. Among the quinazolinone derivative tested, two compounds (QNZ 4, QNZ 6) conjugated with silver nanoparticles showed enhanced antibacterial activity against Escherichia coli K1, Streptococcus pyogenes, Klebsiella pneumoniae, B. cereus and P. aeruginosa as compared to the compounds.
Collapse
|
41
|
Gut Bacteria of Water Monitor Lizard ( Varanus salvator) Are a Potential Source of Antibacterial Compound(s). Antibiotics (Basel) 2019; 8:antibiotics8040164. [PMID: 31554316 PMCID: PMC6963368 DOI: 10.3390/antibiotics8040164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
For the past few decades, there has been limited progress in the development of novel antibacterials. Previously, we postulated that the gut microbiota of animals residing in polluted environments are a forthcoming supply of antibacterials. Among various species, the water monitor lizard is an interesting species that feeds on organic waste and the carcass of wild animals. Gut microbiota of the water monitor lizard were sequestered, identified and cultivated in RPMI-1640 to produce conditioned medium (CM). Next, the antimicrobial properties of CM were evaluated versus a selection of Gram-negative (Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) and Gram-positive bacteria (Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus, and Bacillus cereus). CM were partially characterized by heat inactivation at 95°C for 10 min and tested against P. aeruginosa and S. pyogenes. CM were also tested against immortalized human keratinocytes (HaCaT) cells lines. The results demonstrated that gut microbiota isolated from water monitor lizard produced molecules with remarkable bactericidal activities. To determine the identity of the active molecules, CM were subjected to Liquid Chromatography-Mass Spectrometry. Several molecules were identified belonging to the classes of flavonoids, terpenoids, alkaloids, polyhydroxy alkaloids, polyacetylenes, bisphenols, amides, oxylipin and pyrazine derivatives with known broad-spectrum antimicrobial, anti-tumour, anti-oxidant, anti-inflammatory, and analgesic attributes. Furthermore, the detailed analysis of these molecules could lead us to develop effective therapeutic antibacterials.
Collapse
|
42
|
Chu J, Wang Y, Zhao B, Zhang XM, Liu K, Mao L, Kalamiyets E. Isolation and identification of new antibacterial compounds from Bacillus pumilus. Appl Microbiol Biotechnol 2019; 103:8375-8381. [DOI: 10.1007/s00253-019-10083-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
|
43
|
Ali SM, Khan NA, Sagathevan K, Anwar A, Siddiqui R. Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity. AMB Express 2019; 9:95. [PMID: 31254123 PMCID: PMC6598926 DOI: 10.1186/s13568-019-0816-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022] Open
Abstract
The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.
Collapse
Affiliation(s)
- Salwa Mansur Ali
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - K. Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
44
|
Anwar A, Abdalla SAO, Aslam Z, Shah MR, Siddiqui R, Khan NA. Oleic acid-conjugated silver nanoparticles as efficient antiamoebic agent against Acanthamoeba castellanii. Parasitol Res 2019; 118:2295-2304. [PMID: 31093751 DOI: 10.1007/s00436-019-06329-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Acanthamoeba castellanii belonging to the T4 genotype is an opportunistic pathogen which is associated with blinding eye keratitis and rare but fatal central nervous system infection. A. castellanii pose serious challenges in antimicrobial chemotherapy due to its ability to convert into resistant, hardy shell-protected cyst form that leads to infection recurrence. The fatty acid composition of A. castellanii trophozoites is known to be most abundant in oleic acid which chemically is an unsaturated cis-9-Octadecanoic acid and naturally found in animal and vegetable fats and oils. This study was designed to evaluate antiacanthamoebic effects of oleic acid against trophozoites, cysts as well as parasite-mediated host cell cytotoxicity. Moreover, oleic acid-conjugated silver nanoparticles (AgNPs) were also synthesized and tested against A. castellanii. Oleic acid-AgNPs were synthesized by chemical reduction method and characterized by ultraviolet-visible spectrophotometry, atomic force microscopy, dynamic light scattering analysis, and Fourier transform infrared spectroscopy. Viability, growth inhibition, encystation, and excystation assays were performed with 10 and 5 μM concentration of oleic acid alone and oleic acid-conjugated AgNPs. Bioassays revealed that oleic acid alone and oleic acid-conjugated AgNPs exhibited significant antiamoebic properties, whereas nanoparticle conjugation further enhanced the efficacy of oleic acid. Phenotype differentiation assays also showed significant inhibition of encystation and excystation at 5 μM. Furthermore, oleic acid and oleic acid-conjugated AgNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release. These findings for the first time suggest that oleic acid-conjugated AgNPs exhibit antiacanthamoebic activity that hold potential for therapeutic applications against A. castellanii.
Collapse
Affiliation(s)
- Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| | | | - Zara Aslam
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
45
|
Akbar N, Siddiqui R, Sagathevan KA, Khan NA. Gut bacteria of animals/pests living in polluted environments are a potential source of antibacterials. Appl Microbiol Biotechnol 2019; 103:3955-3964. [PMID: 30941460 DOI: 10.1007/s00253-019-09783-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022]
Abstract
The morbidity and mortality associated with bacterial infections have remained significant despite chemotherapeutic advances. With the emergence of drug-resistant bacterial strains, the situation has become a serious threat to the public health. Thus, there is an urgent need to identify novel antibacterials. The majority of antibiotics available in the market are produced by bacteria isolated from soil. However, the low-hanging fruit has been picked; hence, there is a need to mine bacteria from unusual sources. With this in mind, it is important to note that animals and pests such as cockroaches, snake, crocodiles, and water monitor lizard come across pathogenic bacteria regularly, yet flourish in contaminated environments. These species must have developed methods to defend themselves to counter pathogens. Although the immune system is known to possess antiinfective properties, gut bacteria of animals/pests may also offer a potential source of novel antibacterial agents, and it is the subject of this study. This paper discusses our current knowledge of bacteria isolated from land and marine animals with antibacterial properties and to propose untapped sources for the isolation of bacteria to mine potentially novel antibiotic molecules.
Collapse
Affiliation(s)
- Noor Akbar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - K A Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
46
|
Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, Siddiqui R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep 2019; 9:3122. [PMID: 30816269 PMCID: PMC6395601 DOI: 10.1038/s41598-019-39528-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023] Open
Abstract
Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.
Collapse
Affiliation(s)
- Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| | - Abdulkader Masri
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Komal Rao
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kavitha Rajendran
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| |
Collapse
|
47
|
Masri A, Anwar A, Ahmed D, Siddiqui RB, Raza Shah M, Khan NA. Silver Nanoparticle Conjugation-Enhanced Antibacterial Efficacy of Clinically Approved Drugs Cephradine and Vildagliptin. Antibiotics (Basel) 2018; 7:antibiotics7040100. [PMID: 30445704 PMCID: PMC6316254 DOI: 10.3390/antibiotics7040100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023] Open
Abstract
This paper sets out to determine whether silver nanoparticles conjugation enhance the antibacterial efficacy of clinically approved drugs. Silver conjugated Cephradine and Vildagliptin were synthesized and thoroughly characterized by ultraviolet visible spectrophotometry (UV-vis), Fourier transform infrared (FT-IR) spectroscopic methods, atomic force microscopy (AFM), and dynamic light scattering (DLS) analysis. Using antibacterial assays, the effects of drugs alone and drugs-conjugated with silver nanoparticles were tested against a variety of Gram-negative and Gram-positive bacteria including neuropathogenic Escherichia coli K1, Pseudomonas aeruginosa, Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus and Streptococcus pyogenes. Cytopathogenicity assays were performed to determine whether pretreatment of bacteria with drugs inhibit bacterial-mediated host cell cytotoxicity. The UV-vis spectra of both silver-drug nanoconjugates showed a characteristic surface plasmon resonance band in the range of 400–450 nm. AFM further confirmed the morphology of nanoparticles and revealed the formation of spherical nanoparticles with size distribution of 30–80 nm. FT-IR analysis demonstrated the involvement of Hydroxyl groups in both drugs in the stabilization of silver nanoparticles. Antibacterial assays showed that silver nanoparticle conjugation enhanced antibacterial potential of both Cephradine and Vildagliptin compared to the drugs alone. Pretreatment of bacteria with drugs inhibited E. coli K1-mediated host cell cytotoxicity. In summary, conjugation with silver nanoparticle enhanced antibacterial effects of clinically approved Cephradine. These findings suggest that modifying and/or repurposing clinically approved drugs using nanotechnology is a feasible approach in our search for effective antibacterial molecules.
Collapse
Affiliation(s)
- Abdulkader Masri
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia.
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia.
| | - Dania Ahmed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74600, Pakistan.
| | - Ruqaiyyah Bano Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia.
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74600, Pakistan.
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
48
|
Mosaheb MUWFZ, Khan NA, Siddiqui R. Cockroaches, locusts, and envenomating arthropods: a promising source of antimicrobials. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:873-877. [PMID: 30524685 PMCID: PMC6272074 DOI: 10.22038/ijbms.2018.30442.7339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To present a brief overview of various natural sources of antimicrobials with the aim of highlighting invertebrates living in polluted environments as additional sources of antimicrobials. MATERIALS AND METHODS A PubMed search using antibacterials, antimicrobials, invertebrates, and natural products as keywords was carried out. In addition, we consulted conference proceedings, original unpublished research undertaken in our laboratories, and discussions in specific forums. RESULTS Representative of a stupefying 95% of the fauna, invertebrates are fascinating organisms which have evolved strategies to survive germ-infested environments, yet they have largely been ignored. Since invertebrates such as cockroaches inhabit hazardous environments which are rampant with pathogens, they must have developed defense mechanisms to circumvent infections. This is corroborated by the presence of antimicrobial molecules in the nervous systems and hemolymph of cockroaches. Antimicrobial compounds have also been unraveled from the nervous, adipose, and salivary glandular tissues of locusts. Interestingly, the venoms of arthropods including ants, scorpions, and spiders harbor toxins, but also possess multiple antimicrobials. CONCLUSION These findings have rekindled the hopes for newer and enhanced therapeutic agents derived from a plentiful and diverse resource to combat fatal infectious diseases. Such antimicrobials from unusual sources can potentially be translated into clinical practice, however intensive research is needed over the next several years to realize these expectations.
Collapse
Affiliation(s)
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| |
Collapse
|
49
|
Ali SM, Siddiqui R, Khan NA. Antimicrobial discovery from natural and unusual sources. ACTA ACUST UNITED AC 2018; 70:1287-1300. [PMID: 30003546 DOI: 10.1111/jphp.12976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Whether vertebrates/invertebrates living in polluted environments are an additional source of antimicrobials. KEY FINDINGS Majority of antimicrobials have been discovered from prokaryotes and those which are of eukaryotic origin are derived mainly from fungal and plant sources. With this in mind, it is important to note that pests, such as cockroaches come across pathogenic bacteria routinely, yet thrive in polluted environments. Other animals, such as snakes thrive from feeding on germ-infested rodents. Logically, such species must have developed an approach to protect themselves from these pathogens, yet they have largely been ignored as a potential source of antimicrobials despite their remarkable capability to fight disease-causing organisms. SUMMARY Animals living in polluted environments are an underutilized source for potential antimicrobials, hence it is believed that several novel bioactive molecule(s) will be identified from these sources to counter increasingly resistant bacterial infections. Further research will be necessary in the development of novel antimicrobial(s) from these unusual sources which will have huge clinical impact worldwide.
Collapse
Affiliation(s)
- Salwa Mansur Ali
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
50
|
Nascimento MTC, Silva KP, Garcia MCF, Medeiros MN, Machado EA, Nascimento SB, Saraiva EM. DNA extracellular traps are part of the immune repertoire of Periplaneta americana. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:62-70. [PMID: 29391174 DOI: 10.1016/j.dci.2018.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Extracellular traps (ETs), web-like structures composed of DNA and histones, are released by innate immune cells in a wide range of organisms. ETs capture microorganisms, thereby avoiding their spread, and also concentrate antimicrobial molecules, which helps to kill microbes. Although vertebrate innate immune systems share homology with the insect immune system, ETosis have yet to be characterized in insects. Here, we report that the hemocytes of the hemimetabolous insect Periplaneta americana release ETs upon in vitro stimulation. We further discuss the relationship between ETs and nodulation and in controlling bacterial spread in vivo.
Collapse
Affiliation(s)
- M T C Nascimento
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - K P Silva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ Brazil
| | - M C F Garcia
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ Brazil
| | - M N Medeiros
- Laboratório de Bioquímica de insetos e Parasitos (Labip), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E A Machado
- Laboratório de Bioquímica de insetos e Parasitos (Labip), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - S B Nascimento
- Laboratório de Bioquímica de insetos e Parasitos (Labip), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E M Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ Brazil.
| |
Collapse
|