1
|
Lu T, Liu F, Jiang C, Cao J, Ma X, Su E. Strategies for cultivation, enhancing lipid production, and recovery in oleaginous yeasts. BIORESOURCE TECHNOLOGY 2025; 416:131770. [PMID: 39528033 DOI: 10.1016/j.biortech.2024.131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As global consumption of oil increases and environmental pollution worsens, people are becoming more concerned with sustainable energy development and environmental protection. There is an urgent need to find a sustainable and environmentally friendly new source of lipids to produce biodiesel and other products. In recent years, oleaginous yeast has garnered widespread interest due to its high lipid content. Compared with traditional plant oil sources, oleaginous yeast offers several significant advantages. Firstly, its cultivation is not affected by seasonal and climatic conditions. Secondly, yeast cultivation does not require large amounts of arable land. Additionally, oleaginous yeast grows rapidly, has a short production cycle, and can efficiently accumulate lipids. This review introduces several prominent oleaginous yeasts, focusing on the impact of cultivation conditions on lipid production, strategies to enhance lipid yield, and the development of lipid recovery methods.
Collapse
Affiliation(s)
- Tingting Lu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Feixiang Liu
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Department of Biological Science and Food Engineering, Bozhou University, Bozhou 236800, PR China
| | - Chenan Jiang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jun Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
2
|
Zhang R, Cui Y, Wang H, Qin D, Li J. In silico characterization of Rhodotorula toruloides ELO-like elongases and production of very-long-chain fatty acids by expressing Rtelo2, RtKCR, RtHCD, and RtECR through IRES-mediated bicistrons. World J Microbiol Biotechnol 2024; 40:395. [PMID: 39604684 DOI: 10.1007/s11274-024-04205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Rhodotorula toruloides, an oleaginous yeast known for its high lipid productivity, produces lipids with low very-long-chain fatty acid (VLCFA) content. Meanwhile, the roles of enzymes, particularly the condensing enzymes, involved in VLCFA biosynthesis in R. toruloides remained unclear. In this study, two elongases, RtELO1 and RtELO2, were identified from R. toruloides U13N3 and their tertiary structure and catalytic mechanism were investigated using molecular dynamic methods. Both enzymes exhibited typical ELO-like characteristics, with active sites located within cavities formed by seven transmembrane helixes. RtELO2 displayed higher binding affinity to acyl-CoAs compared to RtELO1, and at least seven amino acid residues, including two crucial histidines in the "HXXHH" box, were identified as important for the condensation reaction. To enhance VLCFA production, an internal ribosome entry site (IRES)-mediated bicistronic strategy was developed to integrate multiple genes into the R. toruloides genome. The efficiency of IRES-mediated translation initiation reached 85.4% of cap-dependent upstream translation, based on EGFP fluorescent intensity. Using this strategy, four genes encoding enzymes involved in the VLCFA biosynthesis cycle (Rtelo2, RtKCR, RtHCD, and RtECR) were introduced into the U13N3 genome in various combinations. The results indicated that the expression of a single elongase had a modest effect on VLCFA production, but the simultaneous expression of multiple genes resulted in cumulative effects. Notably, the transformant harboring four genes exhibited a remarkable 436.8% increase in C22 and C24 VLCFA yield compared to the original strain.
Collapse
Affiliation(s)
- Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yue Cui
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Dan Qin
- Department of Chemistry, Bengbu Medical University, Bengbu, 233030, China.
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
3
|
Wang J, Singer SD, Chen G. Biotechnological advances in the production of unusual fatty acids in transgenic plants and recombinant microorganisms. Biotechnol Adv 2024; 76:108435. [PMID: 39214484 DOI: 10.1016/j.biotechadv.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources. Moreover, reproducing this success for a wider spectrum of UFAs has remained challenging. This review discusses recent advancements in our understanding of the biosynthesis, accumulation, and heterologous production of UFAs, and addresses the challenges and potential strategies for achieving high UFA content in engineered plants and microorganisms.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
4
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
5
|
Sunder S, Gupta A, Kataria R, Ruhal R. Potential of Rhodosporidium toruloides for Fatty Acids Production Using Lignocellulose Biomass. Appl Biochem Biotechnol 2024; 196:2881-2900. [PMID: 37615852 DOI: 10.1007/s12010-023-04681-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Microbial lipids are ideal for developing liquid biofuels because of their sustainability and no dependence on food crops. Especially the bioprocess for microbial lipids may be made economical by using sustainable approaches, e.g., lignocellulose-based carbon sources. This demand led to a search for ideal microorganisms with the ability to utilize efficiently biomass into value-added products. Rhodosporidium toruloides species belongs to the family of oleaginous (OG) yeast, which aggregates up to 70% of its biomass to produce fatty acids which can be converted to a variety of biofuels. R. toruloides is extremely adaptable to different types of feedstocks. Among all feedstock, a lot of effort is going on to develop a bioprocess of fatty acid production from lignocellulose biomass. The lignocellulose biomass is pretreated using harsh conditions of acid, alkali, and other which leads to the generation of a variety of sugars and toxic compounds. Thus, so obtained lignocellulose hydrolysate may have conditions of different pH, variable carbon and nitrogen ratios, and other non-optimum conditions. Accordingly, a detailed investigation is required for molecular level metabolism of R. toruloides in response to the hydrolysate for producing desired biochemicals like fatty acids. The present review focuses on numerous elements and obstacles, including metabolism, biofuel production, cultivation parameters, and genetic alteration of mutants in extracting fatty acids from lignocellulosic materials utilizing Rhodosporidium spp. This review provides useful information on the research working to develop processes for lignocellulose biomass using oleaginous yeast.
Collapse
Affiliation(s)
- Sushant Sunder
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Anshul Gupta
- Department of Biotechnology, Delhi Technological University, New Delhi, India
- Department of Physics, Technische Universität München, Munich, Germany
| | - Rashmi Kataria
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| | - Rohit Ruhal
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Su H, Shi P, Shen Z, Meng H, Meng Z, Han X, Chen Y, Fan W, Fa Y, Yang C, Li F, Wang S. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun Biol 2023; 6:1125. [PMID: 37935958 PMCID: PMC10630375 DOI: 10.1038/s42003-023-05502-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Collapse
Affiliation(s)
- Hang Su
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Penghui Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhaoshuang Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Huimin Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Ziyue Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xingfeng Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanna Chen
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Weiming Fan
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Yun Fa
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
7
|
Liu F, Lu Z, Lu T, Shi M, Wang H, Wu R, Cao J, Su E, Ma X. Metabolic engineering of oleaginous yeast in the lipogenic phase enhances production of nervonic acid. Metab Eng 2023; 80:193-206. [PMID: 37827446 DOI: 10.1016/j.ymben.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Insufficient biosynthesis efficiency during the lipogenic phase can be a major obstacle to engineering oleaginous yeasts to overproduce very long-chain fatty acids (VLCFAs). Taking nervonic acid (NA, C24:1) as an example, we overcame the bottleneck to overproduce NA in an engineered Rhodosporidium toruloides by improving the biosynthesis of VLCFAs during the lipogenic phase. First, evaluating the catalytic preferences of three plant-derived ketoacyl-CoA synthases (KCSs) rationally guided reconstructing an efficient NA biosynthetic pathway in R. toruloides. More importantly, a genome-wide transcriptional analysis endowed clues to strengthen the fatty acid elongation (FAE) module and identify/use lipogenic phase-activated promoter, collectively addressing the stagnation of NA accumulation during the lipogenic phase. The best-designed strain exhibited a high NA content (as the major component in total fatty acid [TFA], 46.3%) and produced a titer of 44.2 g/L in a 5 L bioreactor. The strategy developed here provides an engineering framework to establish the microbial process of producing valuable VLCFAs in oleaginous yeasts.
Collapse
Affiliation(s)
- Feixiang Liu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Biological Science and Food Engineering, Bozhou University, Bozhou, 236800, China
| | - Zewei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Lu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Manman Shi
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Huimin Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong Wu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jun Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Zhao XR, Chen XL, Yang JL, Gao Q, Shi JT, Hua Q, Wei LJ. De novo synthesis of nervonic acid and optimization of metabolic regulation by Yarrowia lipolytica. BIORESOUR BIOPROCESS 2023; 10:70. [PMID: 38647797 PMCID: PMC10992393 DOI: 10.1186/s40643-023-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/17/2023] [Indexed: 04/25/2024] Open
Abstract
Nervonic acid, a natural fatty acid compound and also a core component of nerve fibers and nerve cells, has been widely used to prevent and treat related diseases of the brain nervous system. At present, fatty acids and their derivatives are mainly obtained by natural extraction or chemical synthesis which are limited by natural resources and production costs. In this study, the de novo synthetic pathway of nervonic acid was constructed in Yarrowia lipolytica by means of synthetic biology, and the yield of nervonic acid was further improved by metabolic engineering and fermentation optimization. Specially, heterologous elongases and desaturases derived from different organism were successfully expressed and evaluated for their potential for the production of nervonic acid in Y. lipolytica. Meanwhile, we overexpressed the genes involved in the lipid metabolism to increase the nervonic acid titer to 111.6 mg/L. In addition, the potential of adding oil as auxiliary carbon sources for nervonic acid production by the engineered Y. lipolytica was analyzed. The results indicated that supplementation with colleseed oil as an auxiliary carbon source can be beneficial for the nervonic acid productivity, which led to the highest concentration of 185.0 mg/L in this work. To summarize, this study describes that the Y. lipolytica can be used as a promising platform for the production of nervonic acid and other very long-chain fatty acids.
Collapse
Affiliation(s)
- Xin-Ru Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xin-Liang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jing-Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jiang-Ting Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
9
|
Brink DP, Mierke F, Norbeck J, Siewers V, Andlid T. Expanding the genetic toolbox of Rhodotorula toruloides by identification and validation of six novel promoters induced or repressed under nitrogen starvation. Microb Cell Fact 2023; 22:160. [PMID: 37598166 PMCID: PMC10440040 DOI: 10.1186/s12934-023-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND The non-conventional yeast Rhodotorula toruloides is an emerging host organism in biotechnology by merit of its natural capacity to accumulate high levels of carotenoids and intracellular storage lipids from a variety of carbon sources. While the number of genetic engineering strategies that employ R. toruloides is increasing, the lack of genetic tools available for modification of this yeast is still limiting strain development. For instance, several strong, constitutive R. toruloides promoters have been characterized, but to date, only five inducible promoters have been identified. Although nitrogen-limited cultivation conditions are commonly used to induce lipid accumulation in this yeast, no promoters regulated by nitrogen starvation have been described for R. toruloides. RESULTS In this study, we used a combination of genomics and transcriptomics methods to identify novel R. toruloides promoter sequences that are either inducible or repressible by nitrogen starvation. RNA sequencing was used to assess gene expression in the recently isolated strain R. toruloides BOT-A2 during exponential growth and during nitrogen starvation, when cultivated with either glucose or xylose as the carbon source. The genome of BOT-A2 was sequenced using a combination of long- and short-read sequencing and annotated with support of the RNAseq data. Differential expression analysis was used to identify genes with a |log2 fold change|≥ 2 when comparing their expression during nitrogen depletion to that during exponential growth. The promoter regions from 16 of these genes were evaluated for their ability to drive the expression of a fluorescent reporter gene. Three promoters that were clearly upregulated under nitrogen starvation and three that were downregulated were selected and further characterized. One promoter, derived from gene RTBOTA2_003877, was found to function like an on-off switch, as it was only upregulated under full nitrogen depletion and downregulated in the presence of the nitrogen source. CONCLUSIONS Six new R. toruloides promoters that were either upregulated or downregulated under nitrogen-starvation were identified. These substantially contribute to the available promoters when engineering this organism and are foreseen to be particularly useful for future engineering strategies requiring specific regulation of target genes in accordance with nitrogen availability.
Collapse
Affiliation(s)
- Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Friederike Mierke
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Wu CC, Honda K, Kazuhito F. Current advances in alteration of fatty acid profile in Rhodotorula toruloides: a mini-review. World J Microbiol Biotechnol 2023; 39:234. [PMID: 37358633 PMCID: PMC10293357 DOI: 10.1007/s11274-023-03595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/27/2023]
Abstract
Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries. Rhodotorula toruloides is an intriguing oleaginous yeast strain that can accumulate more than 70% of its dry biomass as lipid content. It can utilize a wide range of substrates, including low-cost sugars and industrial waste. It is also robust against various industrial inhibitors. However, precise control of the fatty acid profile of the lipids produced by R. toruloides is essential for broadening its biotechnological applications. This mini-review describes recent progress in identifying fatty synthesis pathways and consolidated strategies used for specific fatty acid-rich lipid production via metabolic engineering, strain domestication. In addition, this mini-review summarized the effects of culture conditions on fatty acid profiles in R. toruloides. The perspectives and constraints of harnessing R. toruloides for tailored lipid production are also discussed in this mini-review.
Collapse
Affiliation(s)
- Chih-Chan Wu
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fujiyama Kazuhito
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Wang K, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Combining orthogonal plant and non-plant fatty acid biosynthesis pathways for efficient production of microbial oil enriched in nervonic acid in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 378:129012. [PMID: 37019413 DOI: 10.1016/j.biortech.2023.129012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nervonic acid has proven efficacy in brain development and the prevention of neurodegenerative diseases. Here, an alternative and sustainable strategy for nervonic acid-enriched plant oil production was established. Different β-ketoacyl-CoA synthases and heterologous Δ15 desaturase were co-expressed, combined with the deletion of the β-oxidation pathway to construct orthogonal plant and non-plant nervonic acid biosynthesis pathways in Yarrowia lipolytica. A "block-pull-restrain" strategy was further applied to improve the supply of stearic acid as the precursor of the non-plant pathway. Then, lysophosphatidic acid acyltransferase from Malania oleifera (MoLpaat) was identified, which showed specificity for nervonic acid. Endogenous LPAAT was exchanged by MoLPAAT resulted in 17.10 % nervonic acid accumulation. Finally, lipid metabolism was engineered and cofactor supply was increased to boost the lipid accumulation in a stable null-hyphal strain. The final strain produced 57.84 g/L oils with 23.44 % nervonic acid in fed-batch fermentation, which has the potential to substitute nervonic acid-enriched plant oil.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
12
|
Kim J, Lee EJ, Lee KE, Nho YH, Ryu J, Kim SY, Yoo JK, Kang S, Seo SW. Docsubty: FLALipid extract derived from newly isolated Rhodotorula toruloides LAB-07 for cosmetic applications. Comput Struct Biotechnol J 2023; 21:2009-2017. [PMID: 36968014 PMCID: PMC10036517 DOI: 10.1016/j.csbj.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Rhodotorula toruloides is a non-conventional yeast with a natural carotenoid pathway. In particular, R. toruloides is an oleaginous yeast that can accumulate lipids in high content, thereby gaining interest as a promising industrial host. In this study, we isolated and taxonomically identified a new R. toruloides LAB-07 strain. De novo genome assembly using PacBio and Illumina hybrid platforms yielded 27 contigs with a 20.78 Mb genome size. Subsequent genome annotation analysis based on RNA-seq predicted 5296 protein-coding genes, including the fatty acid production pathway. We compared lipid production under different media; it was highest in the yeast extract salt medium with glycerol as a carbon source. Polyunsaturated α-linolenic acid was detected among the fatty acids, and docking phosphatidylcholine as a substrate to modeled Fad2, which annotated as Δ12-fatty acid desaturase showed bifunctional Δ12, 15-desaturation is structurally possible in that the distances between the diiron center and the carbon-carbon bond in which desaturation occurs were similar to those of structurally identified mouse stearoyl-CoA desaturase. Finally, the applicability of the extracted total lipid fraction of R. toruloides was investigated, demonstrating an increase in filaggrin expression and suppression of heat-induced MMP-1 expression when applied to keratinocytes, along with the additional antioxidant activity. This work presents a new R. toruloides LAB-07 strain with genomic and lipidomic data, which would help understand the physiology of R. toruloides. Also, the various skin-related effect of R. toruloides lipid extract indicates its potential usage as a promising cosmetic ingredient.
Collapse
|
13
|
Strategies to Enhance the Biosynthesis of Monounsaturated Fatty Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
14
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Overproducing nervonic acid by synergism of fatty acid elongases in engineered Saccharomyces cerevisiae. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Deep Eutectic Solvent Pretreatment of Water Hyacinth for Improved Holocellulosic Saccharification and Fermentative Co-Production of Xylitol and Lipids Using Rhodosporidium toruloides NCIM 3547. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, delignification of water hyacinth (WH) using a mild ionic liquid-like chemical deep eutectic solvent (DES) synthesized using choline chloride and urea was conducted and the process parameters were optimized by Box–Behnken design (BBD)-based response surface methodology (RSM). From the results, a delignification of 64.32 ± 4.08% (w/w) was obtained under 1:12.5 (biomass:DES ratio), 4.63 h (time) and 87 °C (temperature). Further, a dilute sulphuric acid (2%, v/v) hydrolysis was carried out to destabilize the hemicellulose that resulted in 23.7 ± 0.50 g/L of xylose. Fermentation of the obtained xylose was carried out using a red oleaginous yeast, Rhodosporidium toruloides NCIM 3547, with free and Ca2+-alginate-immobilized cells for xylitol production under microaerophilic conditions and obtained yields of 4.73 ± 0.40 g/L (168 h) and 9.18 ± 0.10 g/L (packed bed reactor with a retention time of 18 h), respectively. Further, when the same fermentation was performed under aerobic conditions about 40.93 ± 0.73% lipid accumulation was observed with free cells. For saccharification, Aspergillus-niger-derived cellulase was used and this resulted in a yield of 27.45 ± 0.04 g/L of glucose. The glucose-enriched hydrolysate was supplemented for fermentation under nitrogen starved conditions from which 46.81 ± 2.60% (w/w) lipid content was obtained.
Collapse
|
17
|
Liu F, Wu R, Ma X, Su E. The Advancements and Prospects of Nervonic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12772-12783. [PMID: 36166330 DOI: 10.1021/acs.jafc.2c05770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nervonic acid (NA) is a monounsaturated very long-chain fatty acid (VLCFA) and has been identified with critical biological functions in medical and health care for brain development and injury repair. Yet, the approaches to producing NA from the sources of plants or animals continue to pose challenges to meet increasing market demand, as they are generally associated with high costs, a lack of natural resources, a long life cycle, and low production efficiency. The recent technological advance in metabolic engineering allows us to precisely engineer oleaginous microbes to develop high-content NA-producing strains, which has the potential to provide a possible solution to produce NA on a commercial fermentation scale. In this Review, the biosynthetic pathway, natural sources, and metabolic engineering of NA are summarized. The strategies of metabolic engineering that could be adopted to modify oleaginous yeast to produce NA are discussed in detail, providing the prospecting views for the microbial cells producing NA.
Collapse
Affiliation(s)
- Feixiang Liu
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Department of Biological Science and Food Engineering, Bozhou University, Bozhou 236800, China
| | - Rong Wu
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erzheng Su
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Comparative Fatty Acid Compositional Profiles of Rhodotorula toruloides Haploid and Diploid Strains under Various Storage Conditions. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial-based fatty acids (FAs), biofuels and oleochemicals are potential alternatives to fossil fuels and other non-renewable resources. Rhodotorula toruloides (formerly Rhodosporidium toruloides) is a basidiomycetous oleaginous yeast, and cells of the wild-type diploids can accumulate lipids to over 70 wt% on a dry cell weight basis in nutrient-limited conditions. Meanwhile, several haploid strains have been applied as hosts for producing high-value fatty acid derivatives through genetic modification and metabolic engineering. However, the differences in fatty acid compositional profiles and their stability between diploid and haploid strains remain unknown in this oleaginous yeast. Here, we grew a haploid strain R. toruloides NP11 and its parental diploid strain R. toruloides CGMCC 2.1389 (4#) under identical conditions and compared the profiles in terms of cell growth, lipid production, fatty acid compositions of lipids as well as storage stability of fatty acid methyl esters (FAMEs). It was found that lipids from R. toruloides composed of fatty acids in terms of chain length ranged from short-chain FAs (C6–C9) to very long-chain FAs (VLCFAs, C20–C24) and some odd-chain FAs (C15 and C17), while long-chain fatty acids (C14–C18) were the most abundant ones. In addition, NP11 produced a little more (1 wt%) VLCFAs than that of the diploid strain 4#. Moreover, no major changes were found for FAMEs being held under varied storage conditions, suggesting that FAMEs samples were stable and robust for fatty acid compositional analysis of microbial lipids. This work revealed the fatty acid profiles of lipids from R. toruloides haploid and diploid strains, and their stability under various storage conditions. The information is valuable for reliable assessment of fatty acid compositions of lipids from oleaginous yeasts and related microbial cell factories.
Collapse
|
19
|
Wen Z, Al Makishah NH. Recent advances in genetic technology development of oleaginous yeasts. Appl Microbiol Biotechnol 2022; 106:5385-5397. [PMID: 35930037 DOI: 10.1007/s00253-022-12101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
As important chemical raw materials and potential nutritional supplements, microbial lipids play an important role in ensuring economic development, food security, and energy security. Compared with non-natural hosts, oleaginous yeasts exhibit obvious advantages in lipid yield and productivity and have great potential to be genetically engineered into an oil cell factory. The main bottleneck in the current oleaginous yeasts engineering is the lack of genetic manipulation tools. Fortunately, the rapid development of synthetic biology has provided numerous new approaches, resources, and ideas for the field. Most importantly, gene editing technology mediated by CRISPR/Cas systems has been successfully applied to some oleaginous yeasts, almost completely rewriting the development pattern of genetic manipulation technology applicable. This paper reviews recent progress in genetic technology with regard to oleaginous yeasts, with a special focus on transformation methods and genome editing tools, discussing the effects of some important genetic parts. KEY POINTS: •Contribution of microbiotechnology in food safety and biofuel by oleaginous yeasts. •Advancement of genetic manipulation and transformation for oleaginous yeasts.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Naief H Al Makishah
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
20
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to Produce Tailored Chain-Length Fatty Acids and Their Derivatives. ACS Synth Biol 2022; 11:2564-2577. [DOI: 10.1021/acssynbio.2c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People’s Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kindom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
21
|
Gajdoš P, Urbaníková V, Vicenová M, Čertík M. Enhancing very long chain fatty acids production in Yarrowia lipolytica. Microb Cell Fact 2022; 21:138. [PMID: 35818073 PMCID: PMC9275168 DOI: 10.1186/s12934-022-01866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Very long chain fatty acids (VLCFA) and their derivatives are industrially attractive compounds. The most important are behenic acid (C22:0) and erucic acid (C22:1Δ13), which are used as lubricants, and moisturizers. C22:0 and C22:1Δ13 have also potential for biofuel production. These fatty acids are conventionally obtained from plant oils. Yarrowia lipolytica is an oleaginous yeast with a long history of gene manipulations resulting in the production of industrially interesting compounds, such as organic acids, proteins, and various lipophilic molecules. It has been shown previously that it has potential for the production of VLCFA enriched single cell oils. Results The metabolism of Y. lipolytica was redesigned to achieve increased production of VLCFA. The effect of native diacylglycerol acyltransferases of this yeast YlLro1p, YlDga1p, and YlDga2p on the accumulation of VLCFA was examined. It was found that YlDga1p is the only enzyme with a beneficial effect. Further improvement of accumulation was achieved by overexpression of 3-ketoacyl-CoA synthase (TaFAE1) under 8UAS-pTEF promoter and blockage fatty acid degradation pathway by deletion of YlMFE1. The best-producing strain YL53 (Δmfe, pTEF-YlDGA1, 8UAS-pTEF-TaFAE1) produced 120 µg of very long chain fatty acids per g of produced biomass, which accounted for 34% of total fatty acids in biomass. Conclusions Recombinant strains of Y. lipolytica have proved to be good producers of VLCFA. Redesign of lipid metabolism pathways had a positive effect on the accumulation of C22:1Δ13 and C22:0, which are technologically attractive compounds.
Collapse
Affiliation(s)
- Peter Gajdoš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237, Bratislava, Slovak Republic.
| | - Veronika Urbaníková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237, Bratislava, Slovak Republic
| | - Mária Vicenová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237, Bratislava, Slovak Republic
| | - Milan Čertík
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237, Bratislava, Slovak Republic
| |
Collapse
|
22
|
Bonturi N, Pinheiro MJ, Monteiro de Oliveira P, Rusadze E, Eichinger T, Liudžiūtė G, De Biaggi JS, Brauer A, Remm M, Miranda EA, Ledesma-Amaro R, Lahtvee PJ. Development of a dedicated Golden Gate Assembly Platform (RtGGA) for Rhodotorula toruloides. Metab Eng Commun 2022; 15:e00200. [PMID: 35662893 PMCID: PMC9157227 DOI: 10.1016/j.mec.2022.e00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 10/29/2022] Open
|
23
|
Wang K, Shi TQ, Wang J, Wei P, Ledesma-Amaro R, Ji XJ. Engineering the Lipid and Fatty Acid Metabolism in Yarrowia lipolytica for Sustainable Production of High Oleic Oils. ACS Synth Biol 2022; 11:1542-1554. [PMID: 35311250 DOI: 10.1021/acssynbio.1c00613] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oleic acid is widely applied in the chemical, material, nutritional, and pharmaceutical industries. However, the current production of oleic acid via high oleic plant oils is limited by the long growth cycle and climatic constraints. Moreover, the global demand for high oleic plant oils, especially the palm oil, has emerged as the driver of tropical deforestation causing tropical rainforest destruction, climate change, and biodiversity loss. In the present study, an alternative and sustainable strategy for high oleic oil production was established by reprogramming the metabolism of the oleaginous yeast Yarrowia lipolytica using a two-layer "push-pull-block" strategy. Specifically, the fatty acid synthesis pathway was first engineered to increase oleic acid proportion by altering the fatty acid profiles. Then, the content of storage oils containing oleic acid was boosted by engineering the synthesis and degradation pathways of triacylglycerides. The strain resulting from this two-layer engineering strategy produced the highest titer of high oleic microbial oil reaching 56 g/L with 84% oleic acid in fed-batch fermentation, representing a remarkable improvement of a 110-fold oil titer and 2.24-fold oleic acid proportion compared with the starting strain. This alternative and sustainable method for high oleic oil production shows the potential of substitute planting.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People’s Republic of China
| | - Jinpeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
24
|
Zhang Y, Pang J, Liu S, Nie K, Deng L, Wang F, Liu J. Harnessing transcription factor Mga2 and fatty acid elongases to overproduce palmitoleic acid in Saccharomyces cerevisiae. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Zhao Y, Song B, Li J, Zhang J. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol 2021; 38:13. [PMID: 34873661 DOI: 10.1007/s11274-021-03201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Requirement of clean energy sources urges us to find substitutes for fossil fuels. Microorganisms provide an option to produce feedstock for biofuel production by utilizing inexpensive, renewable biomass. Rhodotorula toruloides (Rhodosporidium toruloides), a non-conventional oleaginous yeast, can accumulate intracellular lipids (single cell oil, SCO) more than 70% of its cell dry weight. At present, the SCO-based biodiesel is not a price-competitive fuel to the petroleum diesel. Many efforts are made to cut the cost of SCO by strengthening the performance of genetically modified R. toruloides strains and by valorization of low-cost biomass, including crude glycerol, lignocellulosic hydrolysates, food and agro waste, wastewater, and volatile fatty acids. Besides, optimization of fermentation and SCO recovery processes are carefully studied as well. Recently, new R. toruloides strains are developed via metabolic engineering and synthetic biology methods to produce value-added chemicals, such as sesquiterpenes, fatty acid esters, fatty alcohols, carotenoids, and building block chemicals. This review summarizes recent advances in the main aspects of R. toruloides studies, namely, construction of strains with new traits, valorization of low-cost biomass, process detection and optimization, and product recovery. In general, R. toruloides is a promising microbial cell factory for production of biochemicals.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
26
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
27
|
Uprety BK, Morrison EN, Emery RJN, Farrow SC. Customizing lipids from oleaginous microbes: leveraging exogenous and endogenous approaches. Trends Biotechnol 2021; 40:482-508. [PMID: 34625276 DOI: 10.1016/j.tibtech.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
To meet the growing demands of the oleochemical industry, tailored lipid sources are expanding to oleaginous microbes. To control the fatty acid composition of microbial lipids, ground-breaking exogenous and endogenous approaches are being developed. Exogenous approaches employ extracellular tools such as product-specific feedstocks, process optimization, elicitors, and magnetic and mechanical energy, whereas endogenous approaches leverage biology through the use of product-specific microbes, adaptive laboratory evolution (ALE), and the creation of custom strains via random and targeted cellular engineering. We consolidate recent advances from both fields into a review that will serve as a resource for those striving to fulfill the vision of microbial cell factories for tailored lipid production.
Collapse
Affiliation(s)
- Bijaya K Uprety
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Erin N Morrison
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada
| | - R J Neil Emery
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Scott C Farrow
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
28
|
Jagtap SS, Deewan A, Liu JJ, Walukiewicz HE, Yun EJ, Jin YS, Rao CV. Integrating transcriptomic and metabolomic analysis of the oleaginous yeast Rhodosporidium toruloides IFO0880 during growth under different carbon sources. Appl Microbiol Biotechnol 2021; 105:7411-7425. [PMID: 34491401 DOI: 10.1007/s00253-021-11549-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
Rhodosporidium toruloides is an oleaginous yeast capable of producing a variety of biofuels and bioproducts from diverse carbon sources. Despite numerous studies showing its promise as a platform microorganism, little is known about its metabolism and physiology. In this work, we investigated the central carbon metabolism in R. toruloides IFO0880 using transcriptomics and metabolomics during growth on glucose, xylose, acetate, or soybean oil. These substrates were chosen because they can be derived from plants. Significant changes in gene expression and metabolite concentrations were observed during growth on these four substrates. We mapped these changes onto the governing metabolic pathways to better understand how R. toruloides reprograms its metabolism to enable growth on these substrates. One notable finding concerns xylose metabolism, where poor expression of xylulokinase induces a bypass leading to arabitol production. Collectively, these results further our understanding of central carbon metabolism in R. toruloides during growth on different substrates. They may also help guide the metabolic engineering and development of better models of metabolism for R. toruloides.Key points• Gene expression and metabolite concentrations were significantly changed.• Reduced expression of xylulokinase induces a bypass leading to arabitol production.• R. toruloides reprograms its metabolism to allow growth on different substrates.
Collapse
Affiliation(s)
- Sujit Sadashiv Jagtap
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Anshu Deewan
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Jing-Jing Liu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Hanna E Walukiewicz
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Eun Ju Yun
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois At Urbana-Champaign, Urbana, IL, USA
| | - Christopher V Rao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois At Urbana-Champaign, Urbana, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
29
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
30
|
Liu F, Wang P, Xiong X, Zeng X, Zhang X, Wu G. A Review of Nervonic Acid Production in Plants: Prospects for the Genetic Engineering of High Nervonic Acid Cultivars Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:626625. [PMID: 33747006 PMCID: PMC7973461 DOI: 10.3389/fpls.2021.626625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/29/2021] [Indexed: 05/15/2023]
Abstract
Nervonic acid (NA) is a very-long-chain monounsaturated fatty acid that plays crucial roles in brain development and has attracted widespread research interest. The markets encouraged the development of a refined, NA-enriched plant oil as feedstocks for the needed further studies of NA biological functions to the end commercial application. Plant seed oils offer a renewable and environmentally friendly source of NA, but their industrial production is presently hindered by various factors. This review focuses on the NA biosynthesis and assembly, NA resources from plants, and the genetic engineering of NA biosynthesis in oil crops, discusses the factors that affect NA production in genetically engineered oil crops, and provides prospects for the application of NA and prospective trends in the engineering of NA. This review emphasizes the progress made toward various NA-related topics and explores the limitations and trends, thereby providing integrated and comprehensive insight into the nature of NA production mechanisms during genetic engineering. Furthermore, this report supports further work involving the manipulation of NA production through transgenic technologies and molecular breeding for the enhancement of crop nutritional quality or creation of plant biochemical factories to produce NA for use in nutraceutical, pharmaceutical, and chemical industries.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Pandi Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojuan Xiong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinhua Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- Life Science and Technology Center, China National Seed Group Co. Ltd., Wuhan, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
31
|
Chattopadhyay A, Mitra M, Maiti MK. Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnol Adv 2021; 53:107722. [PMID: 33631187 DOI: 10.1016/j.biotechadv.2021.107722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/12/2023]
Abstract
With the increasing demand to develop a renewable and sustainable biolipid feedstock, several species of non-conventional oleaginous yeasts are being explored. Apart from the platform oleaginous yeast Yarrowia lipolytica, the understanding of metabolic pathway and, therefore, exploiting the engineering prospects of most of the oleaginous species are still in infancy. However, in the past few years, enormous efforts have been invested in Rhodotorula, Rhodosporidium, Lipomyces, Trichosporon, and Candida genera of yeasts among others, with the rapid advancement of engineering strategies, significant improvement in genetic tools and techniques, generation of extensive bioinformatics and omics data. In this review, we have collated these recent progresses to make a detailed and insightful summary of the major developments in metabolic engineering of the prominent oleaginous yeast species. Such a comprehensive overview would be a useful resource for future strain improvement and metabolic engineering studies for enhanced production of lipid and lipid-derived chemicals in oleaginous yeasts.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mohor Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
32
|
Single Cell Oil Production by Oleaginous Yeasts Grown in Synthetic and Waste-Derived Volatile Fatty Acids. Microorganisms 2020; 8:microorganisms8111809. [PMID: 33213005 PMCID: PMC7698568 DOI: 10.3390/microorganisms8111809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022] Open
Abstract
Four yeast isolates from the species—Apiotrichum brassicae, Candida tropicalis, Metschnikowia pulcherrima, and Pichia kudriavzevii—previously selected by their oleaginous character and growth flexibility in different carbon sources, were tested for their capacity to convert volatile fatty acids into lipids, in the form of single cell oils. Growth, lipid yields, volatile fatty acids consumption, and long-chain fatty acid profiles were evaluated in media supplemented with seven different volatile fatty acids (acetic, butyric, propionic, isobutyric, valeric, isovaleric, and caproic), and also in a dark fermentation effluent filtrate. Yeasts A. brassicae and P. kudriavzevii attained lipid productivities of more than 40% (w/w), mainly composed of oleic (>40%), palmitic (20%), and stearic (20%) acids, both in synthetic media and in the waste-derived effluent filtrate. These isolates may be potential candidates for single cell oil production in larger scale applications by using alternative carbon sources, combining economic and environmental benefits.
Collapse
|
33
|
Gao Q, Yang JL, Zhao XR, Liu SC, Liu ZJ, Wei LJ, Hua Q. Yarrowia lipolytica as a Metabolic Engineering Platform for the Production of Very-Long-Chain Wax Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10730-10740. [PMID: 32896122 DOI: 10.1021/acs.jafc.0c04393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oleaginous yeast Yarrowia lipolytica is an attractive cell factory platform strain and can be used for sustainable production of high-value oleochemical products. Wax esters (WEs) have a good lubricating property and are usually used as a base for the production of advanced lubricants and emollient oils. In this study, we reported the metabolic engineering of Y. lipolytica to heterologously biosynthesize high-content very-long-chain fatty acids (VLCFAs) and fatty alcohols and efficiently esterify them to obtain very-long-chain WEs. Co-expression of fatty acid elongases from different sources in Y. lipolytica could yield VLCFAs with carbon chain lengths up to 24. Combining with optimization of the central metabolic modules could further enhance the biosynthesis of VLCFAs. Furthermore, through the screening of heterologous fatty acyl reductases (FARs), we enabled high-level production of fatty alcohols. Genomic integration and heterologous expression of wax synthase (WS) and FAR in a VLCFA-producing Y. lipolytica strain yielded 95-650 mg/L WEs with carbon chain lengths from 32 to 44. Scaled-up fermentation in 5 L laboratory bioreactors significantly increased the production of WEs to 2.0 g/L, the highest content so far in yeasts. This study contributes to the further efficient biosynthesis of VLCFAs and their derivatives.
Collapse
Affiliation(s)
- Qi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jing-Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ru Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhi-Jie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
34
|
Wen Z, Zhang S, Odoh CK, Jin M, Zhao ZK. Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond. FEMS Yeast Res 2020; 20:foaa038. [PMID: 32614407 PMCID: PMC7334043 DOI: 10.1093/femsyr/foaa038] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The red yeast Rhodosporidium toruloides naturally produces microbial lipids and carotenoids. In the past decade or so, many studies demonstrated R. toruloides as a promising platform for lipid production owing to its diverse substrate appetites, robust stress resistance and other favorable features. Also, significant progresses have been made in genome sequencing, multi-omic analysis and genome-scale modeling, thus illuminating the molecular basis behind its physiology, metabolism and response to environmental stresses. At the same time, genetic parts and tools are continuously being developed to manipulate this distinctive organism. Engineered R. toruloides strains are emerging for enhanced production of conventional lipids, functional lipids as well as other interesting metabolites. This review updates those progresses and highlights future directions for advanced biotechnological applications.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei St, Nanjing 210094, China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| | - Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei St, Nanjing 210094, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| |
Collapse
|
35
|
Fatma Z, Schultz JC, Zhao H. Recent advances in domesticating non‐model microorganisms. Biotechnol Prog 2020; 36:e3008. [DOI: 10.1002/btpr.3008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zia Fatma
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - J. Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Departments of Chemistry, Biochemistry, and Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
36
|
Harnessing β-estradiol inducible expression system to overproduce nervonic acid in Saccharomyces cerevisiae. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Gajdoš P, Hambalko J, Slaný O, Čertík M. Conversion of waste materials into very long chain fatty acids by the recombinant yeast Yarrowia lipolytica. FEMS Microbiol Lett 2020; 367:5780224. [DOI: 10.1093/femsle/fnaa042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 01/17/2023] Open
Abstract
ABSTRACT
Erucic acid (C22:1Δ13) has several industrial applications including its use as a lubricant, surfactant and biodiesel and composite material constituent. It is produced by plants belonging to the Brassicaceae family, especially by the high erucic acid rapeseed. The ability to convert oleic acid into erucic acid is facilitated by FAE1. In this study, FAD2 (encoding Δ12-desaturase) was deleted in the strain Po1d to increase oleic acid content. Subsequently, FAE1 from Thlaspi arvense was overexpressed in Yarrowia lipolytica with the Δfad2 genotype. This resulted in the YL10 strain producing very long chain fatty acids, especially erucic acid. The YL10 strain was cultivated in media containing crude glycerol and waste cooking oil as carbon substrates. The cells grown using glycerol produced microbial oil devoid of linoleic acid, which was enriched with very long chain fatty acids, mainly erucic acid (9% of the total fatty acids). When cells were grown using waste cooking oil, the highest yield of erucic acid was obtained (887 mg L–1). However, external linoleic and α-linolenic were accumulated in cellular lipids when yeasts were grown in an oil medium. This study describes the possibility of conversion of waste material into erucic acid by a recombinant yeast strain.
Collapse
Affiliation(s)
- Peter Gajdoš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 81237, Slovak Republic
| | - Jaroslav Hambalko
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 81237, Slovak Republic
| | - Ondrej Slaný
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 81237, Slovak Republic
| | - Milan Čertík
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 81237, Slovak Republic
| |
Collapse
|
38
|
Matsuzawa T, Kamisaka Y, Maehara T, Takaku H, Yaoi K. Identification and characterization of two fatty acid elongases in Lipomyces starkeyi. Appl Microbiol Biotechnol 2020; 104:2537-2544. [PMID: 32025762 DOI: 10.1007/s00253-020-10401-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 11/28/2022]
Abstract
The oleaginous yeast Lipomyces starkeyi is a potential cost-effective source for the production of microbial lipids. Fatty acid elongases have vital roles in the syntheses of long-chain fatty acids. In this study, two genes encoding fatty acid elongases of L. starkeyi, LsELO1, and LsELO2 were identified and characterized. Heterologous expression of these genes in Saccharomyces cerevisiae revealed that LsElo1 is involved in the production of saturated long-chain fatty acids with 24 carbon atoms (C24:0) and that LsElo2 is involved in the conversion of C16 fatty acids to C18 fatty acids. In addition, both LsElo1 and LsElo2 were able to elongate polyunsaturated fatty acids. LsElo1 elongated linoleic acid (C18:2) to eicosadienoic acid (C20:2), and LsElo2 elongated α-linolenic acid (C18:3) to eicosatrienoic acid (C20:3). Overexpression of LsElo2 in L. starkeyi caused a reduction in C16 fatty acids, such as palmitic and palmitoleic acids, and an accumulation of C18 fatty acids such as oleic and linoleic acids. Our findings have the potential to contribute to the remodeling of fatty acid composition and the production of polyunsaturated long-chain fatty acids in oleaginous yeasts.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yasushi Kamisaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomoko Maehara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroaki Takaku
- Department of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
39
|
Tsakona S, Papadaki A, Kopsahelis N, Kachrimanidou V, Papanikolaou S, Koutinas A. Development of a Circular Oriented Bioprocess for Microbial Oil Production Using Diversified Mixed Confectionery Side-Streams. Foods 2019; 8:E300. [PMID: 31370368 PMCID: PMC6723147 DOI: 10.3390/foods8080300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/27/2023] Open
Abstract
Diversified mixed confectionery waste streams were utilized in a two-stage bioprocess to formulate a nutrient-rich fermentation media for microbial oil production. Solid-state fermentation was conducted for the production of crude enzyme consortia to be subsequently applied in hydrolytic reactions to break down starch, disaccharides, and proteins into monosaccharides, amino acids, and peptides. Crude hydrolysates were evaluated in bioconversion processes using the red yeast Rhodosporidium toruloides DSM 4444 both in batch and fed-batch mode. Under nitrogen-limiting conditions, during fed-batch cultures, the concentration of microbial lipids reached 16.6-17 g·L-1 with the intracellular content being more than 40% (w/w) in both hydrolysates applied. R. toruloides was able to metabolize mixed carbon sources without catabolite repression. The fatty acid profile of the produced lipids was altered based on the substrate employed in the bioconversion process. Microbial lipids were rich in polyunsaturated fatty acids, with oleic acid being the major fatty acid (61.7%, w/w). This study showed that mixed food side-streams could be valorized for the production of microbial oil with high unsaturation degree, pointing towards the potential to produce tailor-made lipids for specific food applications. Likewise, the proposed process conforms unequivocally to the principles of the circular economy, as the entire quantity of confectionery by-products are implemented to generate added-value compounds that will find applications in the same original industry, thus closing the loop.
Collapse
Affiliation(s)
- Sofia Tsakona
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | | | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| |
Collapse
|
40
|
A mini review of nervonic acid: Source, production, and biological functions. Food Chem 2019; 301:125286. [PMID: 31382110 DOI: 10.1016/j.foodchem.2019.125286] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022]
Abstract
Nervonic acid (NA) has attracted considerable attention because of its close relationship with brain development. Sources of NA include oil crop seeds, oil-producing microalgae, and other microorganisms. Transgenic technology has also been applied to improve the sources and production of NA. NA can be separated and purified by urea adduction fractionation, molecular distillation, and crystallization. Studies on NA functionality involved treatments for demyelinating diseases and acquired immunodeficiency syndrome, as well as prediction of mortality due to cardiovascular diseases and chronic kidney disease. This mini review focuses on the sources, production, and biological functions of NA and provides prospective trends in the investigation of NA.
Collapse
|
41
|
Tsai YY, Ohashi T, Wu CC, Bataa D, Misaki R, Limtong S, Fujiyama K. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. J Biosci Bioeng 2019; 127:430-440. [DOI: 10.1016/j.jbiosc.2018.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023]
|
42
|
Wenning L, Ejsing CS, David F, Sprenger RR, Nielsen J, Siewers V. Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis. Microb Cell Fact 2019; 18:49. [PMID: 30857535 PMCID: PMC6410506 DOI: 10.1186/s12934-019-1098-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fatty acids (FAs) with a chain length of more than 18 carbon atoms (> C18) are interesting for the production of specialty compounds derived from these FAs. These compounds include free FAs, like erucic acid (C22:1-Δ13), primary fatty alcohols (FOHs), like docosanol (C22:0-FOH), as well as jojoba-like wax esters (WEs) (C38-WE to C44-WE), which are esters of (very) long-chain FAs and (very) long-chain FOHs. In particular, FAs, FOHs and WEs are used in the production of chemicals, pharmaceuticals and cosmetic products. Jojoba seed oil is highly enriched in diunsaturated WEs with over 70 mol% being composed of C18:1-C24:1 monounsaturated FOH and monounsaturated FA moieties. In this study, we aim for the production of jojoba-like WEs in the yeast Saccharomyces cerevisiae by increasing the amount of very long-chain, monounsaturated FAs and simultaneously expressing enzymes required for WE synthesis. RESULTS We show that the combined expression of a plant-derived fatty acid elongase (FAE/KCS) from Crambe abyssinica (CaKCS) together with the yeast intrinsic fatty acid desaturase (FAD) Ole1p leads to an increase in C20:1 and C22:1 FAs in S. cerevisiae. We also demonstrate that the best enzyme candidate for C24:1 FA production in S. cerevisiae is a FAE derived from Lunaria annua (LaKCS). The combined overexpression of CaKCS and Ole1p together with a fatty acyl reductase (FAR/FAldhR) from Marinobacter aquaeolei VT8 (MaFAldhR) and a wax synthase (WS) from Simmondsia chinensis (SciWS) in a S. cerevisiae strain, overexpressing a range of other enzymes involved in FA synthesis and elongation, leads to a yeast strain capable of producing high amounts of monounsaturated FOHs (up to C22:1-FOH) as well as diunsaturated WEs (up to C46:2-WE). CONCLUSIONS Changing the FA profile of the yeast S. cerevisiae towards very long-chain monounsaturated FAs is possible by combined overexpression of endogenous and heterologous enzymes derived from various sources (e.g. a marine copepod or plants). This strategy was used to produce jojoba-like WEs in S. cerevisiae and can potentially be extended towards other commercially interesting products derived from very long-chain FAs.
Collapse
Affiliation(s)
- Leonie Wenning
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230, Odense, Denmark
| | - Florian David
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.,Biopetrolia AB, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230, Odense, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Verena Siewers
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
43
|
Jiao X, Zhang Q, Zhang S, Yang X, Wang Q, Zhao ZK. Efficient co-expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res 2018; 18:5061629. [DOI: 10.1093/femsyr/foy086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/29/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Xiang Jiao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Lu, Beijing 100049, China
| | - Qi Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Lu, Beijing 100049, China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaobing Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Qian Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Zongbao Kent Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
44
|
Coradetti ST, Pinel D, Geiselman GM, Ito M, Mondo SJ, Reilly MC, Cheng YF, Bauer S, Grigoriev IV, Gladden JM, Simmons BA, Brem RB, Arkin AP, Skerker JM. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. eLife 2018. [PMID: 29521624 PMCID: PMC5922974 DOI: 10.7554/elife.32110] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. The fungus Rhodosporidium toruloides can grow on substances extracted from plant matter that is inedible to humans such as corn stalks, wood pulp, and grasses. Under some growth conditions, the fungus can accumulate massive stores of hydrocarbon-rich fats and pigments. A community of scientists and engineers has begun genetically modifying R. toruloides to convert these naturally produced fats and pigments into fuels, chemicals and medicines. These could form sustainable replacements for products made from petroleum or harvested from threatened animal and plant species. Fungi, plants, animals and other eukaryotes store fat in specialized compartments called lipid droplets. The genes that control the metabolism – the production, use and storage – of fat in lipid bodies have been studied in certain eukaryotes, including species of yeast. However, R. toruloides is only distantly related to the most well-studied of these species. This means that we cannot be certain that a gene will play the same role in R. toruloides as in those species. To assemble the most comprehensive list possible of the genes in R. toruloides that affect the production, use, or storage of fat in lipid bodies, Coradetti, Pinel et al. constructed a population of hundreds of thousands of mutant fungal strains, each with its own unique DNA ‘barcode’. The effects that mutations in over 6,000 genes had on growth and fat accumulation in these fungi were measured simultaneously in several experiments. This general approach is not new, but technical limitations had, until now, restricted its use in fungi to a few species. Coradetti, Pinel et al. identified hundreds of genes that affected the ability of R. toruloides to metabolise fat. Many of these genes were related to genes with known roles in fat metabolism in other eukaryotes. Other genes are involved in different cell processes, such as the recycling of waste products in the cell. Their identification adds weight to the view that the links between these cellular processes and fat metabolism are deep and widespread amongst eukaryotes. Finally, some of the genes identified by Coradetti, Pinel et al. are not closely related to any well-studied genes. Further study of these genes could help us to understand why R. toruloides can accumulate much larger amounts of fat than most other fungi. The methods developed by Coradetti, Pinel et al. should be possible to implement in many species of fungi. As a result these techniques may eventually contribute to the development of new treatments for human fungal diseases, the protection of important food crops, and a deeper understanding of the roles various fungi play in the broader ecosystem.
Collapse
Affiliation(s)
| | - Dominic Pinel
- Energy Biosciences Institute, Berkeley, United States
| | | | - Masakazu Ito
- Energy Biosciences Institute, Berkeley, United States
| | - Stephen J Mondo
- United States Department of Energy Joint Genome Institute, Walnut Creek, United States
| | - Morgann C Reilly
- Joint BioEnergy Institute, Emeryville, United States.,Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, United States
| | - Ya-Fang Cheng
- Energy Biosciences Institute, Berkeley, United States
| | - Stefan Bauer
- Energy Biosciences Institute, Berkeley, United States
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | | | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Rachel B Brem
- The Buck Institute for Research on Aging, Novato, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Adam P Arkin
- Energy Biosciences Institute, Berkeley, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, United States
| | - Jeffrey M Skerker
- Energy Biosciences Institute, Berkeley, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
45
|
Fan Y, Meng HM, Hu GR, Li FL. Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms. Appl Microbiol Biotechnol 2018; 102:3027-3035. [PMID: 29478140 DOI: 10.1007/s00253-018-8859-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
Nervonic acid (NA) is a major very long-chain monounsaturated fatty acid found in the white matter of mammalian brains, which plays a critical role in the treatment of psychotic disorders and neurological development. In the nature, NA has been synthesized by a handful plants, fungi, and microalgae. Although the metabolism of fatty acid has been studied for decades, the biosynthesis of NA has yet to be illustrated. Generally, the biosynthesis of NA is considered starting from oleic acid through fatty acid elongation, in which malonyl-CoA and long-chain acyl-CoA are firstly condensed by a rate-limiting enzyme 3-ketoacyl-CoA synthase (KCS). Heterologous expression of kcs gene from high NA producing species in plants and yeast has led to synthesis of NA. Nevertheless, it has also been reported that desaturases in a few plants can catalyze very long-chain saturated fatty acid into NA. This review highlights recent advances in the biosynthesis, the sources, and the biotechnological aspects of NA.
Collapse
Affiliation(s)
- Yong Fan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Hui-Min Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Guang-Rong Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
46
|
Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 2018; 102:2509-2523. [DOI: 10.1007/s00253-018-8813-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
|
47
|
Wang Y, Zhang S, Zhu Z, Shen H, Lin X, Jin X, Jiao X, Zhao ZK. Systems analysis of phosphate-limitation-induced lipid accumulation by the oleaginous yeast Rhodosporidium toruloides. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:148. [PMID: 29849765 PMCID: PMC5968551 DOI: 10.1186/s13068-018-1134-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/28/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lipid accumulation by oleaginous microorganisms is of great scientific interest and biotechnological potential. While nitrogen limitation has been routinely employed, low-cost raw materials usually contain rich nitrogenous components, thus preventing from efficient lipid production. Inorganic phosphate (Pi) limitation has been found sufficient to promote conversion of sugars into lipids, yet the molecular basis of cellular response to Pi limitation and concurrent lipid accumulation remains elusive. RESULTS Here, we performed multi-omic analyses of the oleaginous yeast Rhodosporidium toruloides to shield lights on Pi-limitation-induced lipid accumulation. Samples were prepared under Pi-limited as well as Pi-repleted chemostat conditions, and subjected to analysis at the transcriptomic, proteomic, and metabolomic levels. In total, 7970 genes, 4212 proteins, and 123 metabolites were identified. Results showed that Pi limitation facilitates up-regulation of Pi-associated metabolism, RNA degradation, and triacylglycerol biosynthesis while down-regulation of ribosome biosynthesis and tricarboxylic acid cycle. Pi limitation leads to dephosphorylation of adenosine monophosphate and the allosteric activator of isocitrate dehydrogenase key to lipid biosynthesis. It was found that NADPH, the key cofactor for fatty acid biosynthesis, is limited due to reduced flux through the pentose phosphate pathway and transhydrogenation cycle and that this can be overcome by over-expression of an endogenous malic enzyme. These phenomena are found distinctive from those under nitrogen limitation. CONCLUSIONS Our data suggest that Pi limitation activates Pi-related metabolism, RNA degradation, and TAG biosynthesis while inhibits ribosome biosynthesis and TCA cycle, leading to enhanced carbon fluxes into lipids. The information greatly enriches our understanding on microbial oleaginicity and Pi-related metabolism. Importantly, systems data may facilitate designing advanced cell factories for production of lipids and related oleochemicals.
Collapse
Affiliation(s)
- Yanan Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Zhiwei Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Hongwei Shen
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034 People’s Republic of China
| | - Xiang Jin
- Beijing Bio-Fly Bioscience Co. Ltd., Beijing, 100080 People’s Republic of China
| | - Xiang Jiao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Zongbao Kent Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| |
Collapse
|
48
|
Park YK, Nicaud JM, Ledesma-Amaro R. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol 2017; 36:304-317. [PMID: 29132754 DOI: 10.1016/j.tibtech.2017.10.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022]
Abstract
Moving our society towards a bioeconomy requires efficient and sustainable microbial production of chemicals and fuels. Rhodotorula (Rhodosporidium) toruloides is a yeast that naturally synthesizes substantial amounts of specialty chemicals and has been recently engineered to (i) enhance its natural production of lipids and carotenoids, and (ii) produce novel industrially relevant compounds. The use of R. toruloides by companies and research groups has exponentially increased in recent years as a result of recent improvements in genetic engineering techniques and the availability of multiomics information on its genome and metabolism. This review focuses on recent engineering approaches in R. toruloides for bioproduction and explores its potential as a biotechnological chassis.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | |
Collapse
|