1
|
Liu D, Yue Y, Ping L, Sun C, Zheng T, Cheng Y, Huo G, Li B. Lactobacillus delbrueckii subsp. bulgaricus 1.0207 Exopolysaccharides Attenuate Hydrogen Peroxide-Induced Oxidative Stress Damage in IPEC-J2 Cells through the Keap1/Nrf2 Pathway. Antioxidants (Basel) 2024; 13:1150. [PMID: 39334809 PMCID: PMC11429245 DOI: 10.3390/antiox13091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is one of the most commonly employed Lactobacillus in the food industry. Exopolysaccharides (EPS) of Lactobacillus, which are known to exhibit probiotic properties, are secondary metabolites produced during the growth of Lactobacillus. This study identified the structure of the EPS produced by L. bulgaricus 1.0207 and investigated the mitigation of L. bulgaricus 1.0207 EPS on H2O2-induced oxidative stress in IPEC-J2 cells. L. bulgaricus 1.0207 EPS consisted of glucose and galactose and possessed a molecular weight of 4.06 × 104 Da. L. bulgaricus 1.0207 EPS exhibited notable scavenging capacity against DPPH, hydroxyl radicals, superoxide anions, and ABTS radicals. Additionally, L. bulgaricus 1.0207 EPS enhanced cell proliferation, reduced intracellular reactive oxygen species (ROS) accumulation, increased activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC) elevated the relative expression of CAT, SOD, HO-1, NQO1, ZO-1, and Occludin genes. Moreover, L. bulgaricus 1.0207 EPS improved the expression of Nrf2, pNrf2, pNrf2/Nrf2, and Bcl-2 proteins, while decreasing the expression of Keap1, Caspase3, and Bax proteins, with the best effect at a concentration of 100 μg/mL. L. bulgaricus 1.0207 EPS mitigated H2O2-induced oxidative stress injury in IPEC-J2 cells by activating the Keap1/Nrf2 pathway. Meanwhile, L. bulgaricus 1.0207 EPS exhibited the potential to decrease apoptosis and restore the integrity of the gut barrier. The findings establish a theoretical foundation for the development and application of L.bulgaricus 1.0207 and its EPS.
Collapse
Affiliation(s)
- Deyu Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yingxue Yue
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Ping
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Cuicui Sun
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zheng
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yang Cheng
- Food College, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Andrew M, Jayaraman G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14. Prep Biochem Biotechnol 2024:1-19. [PMID: 38963714 DOI: 10.1080/10826068.2024.2370879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Hosseini SP, Mousavi SM, Jafari A. Exploring biosynthesis strategies to boost the yield of exopolysaccharide-protein blend from Bacillus arachidis SY8(T), an isolated native strain, as a potent adsorbent for heavy metals removal. Int J Biol Macromol 2024; 271:132634. [PMID: 38797297 DOI: 10.1016/j.ijbiomac.2024.132634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
This investigation centers on the synthesis of a polysaccharide-protein blend produced by an isolated native strain (99.12 % phylogenetic affinity with Bacillus arachidis SY8(T)). The primary objective was to investigate the production of extracellular polymeric substances (EPS) under diverse stress conditions, encompassing exposure to heavy metal ions, salt, and toxic agents. Additionally, the impact of environmental parameters, namely pH, inoculation percentage, and time, on the production was investigated. Subsequently, the study examined the biosorption potential of the EPS produced for Pb(II), Cu(II), and Mn(II). The EPS obtained was thoroughly characterized via various tests. Rheological evaluations of an EPS solution (2 wt%) confirmed its pseudo-plastic and non-Newtonian fluid properties, while TGA analysis demonstrated its thermal stability up to 600 °C. Additional analyses, including GPC, FTIR, and H-NMR, provide further insights into the produced EPS. The best conditions for EPS production are determined: 5 % NaCl salt, serving as an effective stress inducer, and 37 °C, pH 6, with a 5 % inoculation, over 96 h. EPS demonstrates remarkable removal efficiencies of 99.9, 99.4 and 78.9 % for Pb(II), Cu(II), and Mn(II), respectively. These findings highlight the potential of EPS as an effective agent for removing heavy metal ions.
Collapse
Affiliation(s)
- Seyedeh Parvin Hosseini
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| | - Arezou Jafari
- Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Dev MJ, Mahajan GB, Warke RG, Warke GM, Patil TA, Satardekar MR, Dalvi RC, Singhal RS. Mutagenesis enhances gellan gum production by a novel Sphingomonas spp.: upstream optimization, kinetic modeling, and structural and physico-functional evaluation. Int Microbiol 2024; 27:459-476. [PMID: 37495894 DOI: 10.1007/s10123-023-00399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/11/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Gellan gum (GG) has gained tremendous attention owing to its diversified applications. However, its high production and hence market cost are still a bottleneck in its widespread utilization. In the present study, high GG producing mutant of Sphingomonas spp. was developed by random mutagenesis using ethyl methylsulphonate (EMS) for industrial fermentation and identified as Sphingomonas trueperi after 16S rRNA and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. The fermentation conditions such as pH, temperature, and inoculum ratio were optimized by one factor at a time (OFAT) followed by screening of medium components by the Plackett-Burman statistical design. The most critical nutrients were further optimized by response surface methodology for maximizing GG production. The effect of dissolved oxygen tension in bioreactor on cell growth, substrate consumption, GG production, and batch productivity was elucidated. The highest GG titer (23 ± 2.4 g/L) was attained in optimized medium at 10% inoculum (6.45 ± 0.5 log cfu/mL) under controlled fermentation conditions of pH (7), temperature (30 °C), agitation (300-600 rpm), and aeration (0.5-2.0 SLPM) at 22 ± 2% dissolved oxygen tension in a 10-L bioreactor. Kinetic modeling of optimized batch process revealed that logistic growth model could best explain biomass accumulation, while GG formation and substrate consumption were best explained by Luedeking-Piret and exponential decay model, respectively. Structural and physico-functional features of GG produced by mutant Sphingomonas spp. were characterized by HPLC, FTIR, NMR, DSC, TGA, GPC, SEM, and rheological analysis. The higher productivity (0.51 g/L/h) under optimized fermentation conditions suggests potential consideration of mutant and process for commercial utilization.
Collapse
Affiliation(s)
- Manoj J Dev
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, India
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Girish B Mahajan
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Rahul G Warke
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Gangadhar M Warke
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Tanuja A Patil
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Milan R Satardekar
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Rachana C Dalvi
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
5
|
Chakraborty S, Paidi MK, Dhinakarasamy I, Sivakumar M, Clements C, Thirumurugan NK, Sivakumar L. Adaptive mechanism of the marine bacterium Pseudomonas sihuiensis-BFB-6S towards pCO 2 variation: Insights into synthesis of extracellular polymeric substances and physiochemical modulation. Int J Biol Macromol 2024; 261:129860. [PMID: 38309406 DOI: 10.1016/j.ijbiomac.2024.129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Marine bacteria can adapt to various extreme environments by the production of extracellular polymeric substances (EPS). Throughout this investigation, impact of variable pCO2 levels on the metabolic activity and physiochemical modulation in EPS matrix of marine bacterium Pseudomonas sihuiensis - BFB-6S was evaluated using a fluorescence microscope, excitation-emission matrix (EEM), 2D-Fourier transform infrared correlation spectroscopy (2D-ATR-FTIR-COS), FT-NMR and TGA-DSC. From the results at higher pCO2 levels, there was a substantial reduction in EPS production by 58-62.8 % (DW). In addition to the biochemical composition of EPS, reduction in carbohydrates (8.7-47.6 %), protein (7.1-91.5 %), and lipids (16.9-68.6 %) content were observed at higher pCO2 levels. Functional discrepancies of fluorophores (tyrosine and tryptophan-like) in EPS, speckled differently in response to variable pCO2. The 2D-ATR-FTIR-COS analysis revealed functional amides (CN, CC, CO bending, -NH bending in amines) of EPS were preferentially altered, which led to the domination of polysaccharides relevant functional groups at higher pCO2. 1H NMR analysis of EPS confirmed the absence of chemical signals from H-C-COOH of proteins, α, β anomeric protons, and acetyl group relevant region at higher pCO2 levels. These findings can contribute new insights into the influence of pCO2 on the adaptation of marine microbes in future ocean acidification scenarios.
Collapse
Affiliation(s)
- Subham Chakraborty
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Murali Krishna Paidi
- CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Inbakandan Dhinakarasamy
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - Manikandan Sivakumar
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Clarita Clements
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Naren Kumar Thirumurugan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Lakshminarayanan Sivakumar
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
6
|
Wang Z, Zhang Y, Chen Y, Han F, Shi Y, Pan S, Li Z. Competition of Cd(II) and Pb(II) on the bacterial cells: a new insight from bioaccumulation based on NanoSIMS imaging. Appl Environ Microbiol 2024; 90:e0145323. [PMID: 38224623 PMCID: PMC10880600 DOI: 10.1128/aem.01453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024] Open
Abstract
Polymetallic exposure causes complex toxicity to microorganisms. In this study, we investigated the responses of Escherichia coli under co-existence of cadmium (Cd) and lead (Pb), primarily based on biochemical analysis and RNA sequencing. Cd completely inhibited bacterial growth at a concentration of 2.41 mmol/L, with its removal rate as low as <10%. In contrast, the Pb removal rate was >95% under equimolar sole Pb stress. In addition, the Raman analysis confirmed the loss of proteins for the bacterial cells. Under the co-existence of Cd and Pb, the Cd toxicity to E. coli was alleviated. Meanwhile, the biosorption of Pb cations was more intense during the competitive sorption with Cd. Transmission electron microscopy images showed that a few cells were elongated during incubation, i.e., the average cellular length increased from 1.535 ± 0.407 to 1.845 ± 0.620 µm. Moreover, NanoSIMS imaging showed that the intracellular distribution of Cd and Pb was coupled with sulfur. Genes regulating sulfate transporter were also upregulated to promote sulfate assimilation. Then, the subsequent production of biogenic sulfide and sulfur-containing amino acids was enhanced. Although this strategy based on S enrichment could resist the polymetallic stress, not all related genes were induced to upregulate under sole Cd stress. Therefore, the S metabolism might remodel the microbial resistance to variable occurrence of heavy metals. Furthermore, the competitive sorption (in contrast to sole Cd stress) could prevent microbial cells from strong Cd toxicity.IMPORTANCEMicrobial tolerance and resistance to heavy metals have been widely studied under stress of single metals. However, the polymetallic exposure seems to prevail in the environment. Though microbial resistance can alleviate the effects of exogenous stress, the taxonomic or functional response to polymetallic exposure is still not fully understood. We determined the strong cytotoxicity of cadmium (Cd) on growth, and cell elongation would be driven by Cd stress. The addition of appropriate lead (Pb) showed a stimulating effect on microbial bioactivity. Meanwhile, the biosorption of Pb was more intense during co-existence of Pb and Cd. Our work also revealed the spatial coupling of intracellular S and Cd/Pb. In particular, the S assimilation was promoted by Pb stress. This work elucidated the microbial responses to polymetallic exposure and may provide new insights into the antagonistic function during metal stresses.
Collapse
Affiliation(s)
- Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China.
| | - Ying Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feiyu Han
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shang Pan
- College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, China.
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, Beijing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Maghrawy HH, El Kareem HA, Gomaa OM. Enhanced exopolysaccharide production in gamma irradiated Bacillus subtilis: A biofilm-mediated strategy for ZnO nanoparticles removal. Int J Biol Macromol 2024; 258:128884. [PMID: 38141708 DOI: 10.1016/j.ijbiomac.2023.128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Biofilm-mediated strategy was studied for ZnO nanoparticle removal from aqueous media. Bacillus subtilis isolated from the soil rhizosphere was selected based on its high viscosity (133 Pa/s) of the cultivated culture and biofilm formation. The bacterium was exposed to gamma-irradiation to enhance EPS production along with its cultivation in EPS-producing media. The results show an increase in viscosity that reached 160 Pa/s at 2 kGy. EPS production increased from 4.45 to 7.95 mg/mL and the protein/carbohydrate ratio increased from 3 to 4.4 which reflects the stickiness of EPS. Thermal Gravimetric Analysis (TGA) showed 2 phase weight loss for gamma irradiated EPS and defined protein peaks when characterized using Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF). Native and gamma-irradiated Bacillus subtilis cells with their enhanced EPS were grown as a biofilm on sterile waste gauze fabric, Scanning Electron Microscopy (SEM) showed an increased biofilm attachment in gamma-irradiated samples. The latter was used for the removal of ZnO NP from aqueous media. Energy dispersive X-ray (EDX) mapping confirms that ZnO NPs were entrapped within the carbon and oxygen elements forming the biofilm with net intensities of 14.04, 1713, and 1190, respectively. The results confirm that biofilm-mediated strategy is effective in nanoparticles removal.
Collapse
Affiliation(s)
- Heba Hamed Maghrawy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hussein Abd El Kareem
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
8
|
Li J, Wu B, Xu M, Han X, Xing Y, Zhou Y, Ran M, Zhou Y. Nitrogen source affects non-aeration microalgal-bacterial biofilm growth progression and metabolic function during greywater treatment. BIORESOURCE TECHNOLOGY 2023; 391:129940. [PMID: 39492539 DOI: 10.1016/j.biortech.2023.129940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The non-aeration microalgal-bacteria symbiotic system has attracted great attention due to excellent pollutants removal performance and low greenhouse gas emission. This study investigated how nitrogen (N) sources (ammonia, nitrate and urea) impact biofilm formation, pollutants removal and microbial niches in a microalgal-bacterial biofilm. Results showed that functional genus and enzymes contributed to organics biodegradation and carbon fixation, N transformation and assimilation enabled efficient pollutants removal without CO2 emission. Urea achieved the maximum chemical oxygen demand (89.2%) and linear alkylbenzene sulfonates (95.3%) removal. However, Nitrate significantly influenced microbial community structure and enabled the highest removal of total N (89.7%). Multifarious functional groups enabled the fast adsorption of pollutants, which favored the continuous transformation and fixing of carbon and N. But N source significantly affects the carbon and N dissimilation and fixing pathways. This study offers a promising alternative method that achieving low-carbon-footprint and cost-saving greywater treatment.
Collapse
Affiliation(s)
- Jiake Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Xu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Han
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinuo Xing
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyao Ran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Efremenko E, Senko O, Stepanov N, Aslanli A, Maslova O, Lyagin I. Quorum Sensing as a Trigger That Improves Characteristics of Microbial Biocatalysts. Microorganisms 2023; 11:1395. [PMID: 37374897 DOI: 10.3390/microorganisms11061395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Quorum sensing (QS) of various microorganisms (bacteria, fungi, microalgae) today attracts the attention of researchers mainly from the point of view of clarifying the biochemical basics of this general biological phenomenon, establishing chemical compounds that regulate it, and studying the mechanisms of its realization. Such information is primarily aimed at its use in solving environmental problems and the development of effective antimicrobial agents. This review is oriented on other aspects of the application of such knowledge; in particular, it discusses the role of QS in the elaboration of various prospective biocatalytic systems for different biotechnological processes carried out under aerobic and anaerobic conditions (synthesis of enzymes, polysaccharides, organic acids, etc.). Particular attention is paid to the biotechnological aspects of QS application and the use of biocatalysts, which have a heterogeneous microbial composition. The priorities of how to trigger a quorum response in immobilized cells to maintain their long-term productive and stable metabolic functioning are also discussed. There are several approaches that can be realized: increase in cell concentration, introduction of inductors for synthesis of QS-molecules, addition of QS-molecules, and provoking competition between the participants of heterogeneous biocatalysts, etc.).
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
10
|
Priyadarshanee M, Das S. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants. CHEMOSPHERE 2023; 332:138876. [PMID: 37164199 DOI: 10.1016/j.chemosphere.2023.138876] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Extracellular polymeric substances (EPS) are highly hydrated matrices produced by bacteria, containing various polymers such as polysaccharides, proteins, lipids, and DNA. Extracellular polymer concentrations, ions, and functional groups provide physical stability to the EPS. Constituents of EPS form the three-dimensional architecture and help acquire nutrition for the bacteria. Structural and functional diversity of the extracellular polymer depends on the specific glycosyltransferases, polymerase and transporter proteins. These enzymes are encoded by specific genes present in operons such as crd, alg, wca, and gum reported in Agrobacterium, Pseudomonas, Enterobacteriaceae, and Xanthomonas. The operons regulate the biosynthesis of extracellular polymers such as curdlan, alginate, colonic acid, and xanthan, respectively. Various functional groups in the EPS, such as carbonyl, hydroxyl, phosphoryl, and amide, provide the sorption site for interaction with environmental pollutants. Hydrophobic interactions and coordinate bonds mainly dominate the binding of EPS with environmental pollutants. EPS binds, emulsifies, and solubilizes the organic compounds, enhancing the degradation process. EPS binds with heavy metals through complexation, surface adsorption, precipitation, and ion exchange mechanisms. The biodegradability efficiency and nontoxicity properties of EPS make it an excellent biopolymer for decontaminating environmental pollutants. This review summarizes an overview of the biosynthetic mechanisms and interaction of the bacterial extracellular polymer with environmental pollutants. Interaction mechanisms of pollutants with EPS and EPS-mediated bioremediation will help develop removal applications. Moreover, understanding the genes responsible for EPS production, and implementation of new genetic methodology can be helpful for the enhanced biosynthesis of EPS to control pollution by sequestrating more environmental pollutants.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
11
|
Christophe G, Hou X, Petit E, Traikia M, Le Cerf D, Rihouey C, Gardarin C, Delattre C, Michaud P, Pierre G, Dubessay P. Description of the Wild Strain Rhizobium rosettiformans DSM26376, Reclassified under Peteryoungia rosettiformans comb.nov., for Producing Glucuronan. Polymers (Basel) 2023; 15:polym15092177. [PMID: 37177323 PMCID: PMC10180729 DOI: 10.3390/polym15092177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Glucuronan is a polysaccharide composed of β-(1,4)-linked d-glucuronic acids having intrinsic properties and biological activities recoverable in many fields of application. Currently, the description of Sinorhyzobium meliloti M5N1CS mutant bacterial strain as the sole source of glucuronan makes it relevant to the exploration of new microorganisms producing glucuronan. In this study, the Peteryoungia rosettifformans strain (Rhizobia), was identified as a wild producer of an exopolysaccharide (RhrBR46) related to glucuronan. Structural and biochemical features, using colorimetric assays, Fourier infrared spectroscopy, nuclear magnetic resonance, high pressure size exclusion chromatography coupled to multi-angle light laser scattering, and enzymatic assays allowed the characterization of a polyglucuronic acid, having a molecular mass (Mw¯) of 1.85 × 105 Da, and being partially O-acetylated at C-2 and/or C-3 positions. The concentration of Mg2+ ions in the cultivation medium has been shown to impact the structure of RhrBR46, by reducing drastically its Mw¯ (73%) and increasing its DA (10%). Comparative structural analyses between RhrBR46 and the glucuronan from Sinorhyzobium meliloti M5N1CS strain revealed differences in terms of molecular weight, degree of acetylation (DA), and the distribution of acetylation pattern. These structural divergences of RhrBR46 might contribute to singular properties or biological activities of RhrBR46, offering new perspectives of application.
Collapse
Affiliation(s)
- Gwendoline Christophe
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Xiaoyang Hou
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Emmanuel Petit
- UMRT INRAe 1158 BioEcoAgro, Laboratoire BIOPI, Institut Universitaire et Technologique, Université de Picardie Jules Verne, F-80025 Amiens, France
| | - Mounir Traikia
- CNRS, ICCF, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Didier Le Cerf
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France
| | - Christophe Rihouey
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France
| | - Christine Gardarin
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, F-75005 Paris, France
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Pascal Dubessay
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Dailin DJ, Selvamani S, Michelle K, Jusoh YMM, Chuah LF, Bokhari A, El Enshasy HA, Mubashir M, Show PL. Production of high-value added exopolysaccharide by biotherapeutic potential Lactobacillus reuteri strain. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
14
|
The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration. Carbohydr Polym 2022; 291:119550. [DOI: 10.1016/j.carbpol.2022.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
|
15
|
Vandana, Das S. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydr Polym 2022; 291:119536. [DOI: 10.1016/j.carbpol.2022.119536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
16
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
17
|
|
18
|
A comparative study on chemical characterization and properties of surface active compounds from Gram-positive Bacillus and Gram-negative Ochrobactrum strains utilizing pure hydrocarbons and waste mineral lubricating oils. World J Microbiol Biotechnol 2022; 38:141. [PMID: 35710855 DOI: 10.1007/s11274-022-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Mineral lubricating oils are widely used in various industrial sectors for their applications in maintenance and functioning of machineries. However, indiscriminate dumping of these used oils have resulted in polluting the natural reservoirs which subsequently destroys ecological balance. Bacteria can emulsify or lower surface tension between phases of immiscible substrates and can acquire them as their carbon and energy sources. Such a phenomenon is mediated by production of extracellular polymers which can function as eminent surface active compounds based on their surfactant or emulsifying nature. The comparison between bacterial strains (Gram-positive Bacillus stratosphericus A15 and Gram-negative Ochrobactrum pseudintermedium C1) on utilization of pure straight chain hydrocarbons, waste mineral lubricating oils as sole carbon source and chemical characterization of the synthesized surface active compounds were studied. Characterization analysis by Ultraviolet Visible spectrophotometry, Fourier transform infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, Carbon-Hydrogen-Nitrogen analysis has given detailed structural elucidation of surface active compounds. The contrasting nature of bacterial strains in utilization of different hydrocarbons of waste mineral lubricating oils was observed in Gas Chromatography-Mass Spectroscopy analysis. The variation between both strains in utilization of hydrocarbons can be manifested in chemical structural differences and properties of the produced surface active compounds. Scanning Electron Microscopy has given detailed insight into the microstructural difference of the compounds. The utilization of lubricating oils can address waste disposal problem and offer an economical feasible approach for bacterial production of surface active compounds. Our results suggest that these surface active compounds can maneuver applications in environmental bioremediation and agriculture, pharmaceuticals and food as functional biomaterials.
Collapse
|
19
|
Influence of the Carbon and Nitrogen Sources on Diabolican Production by the Marine Vibrio diabolicus Strain CNCM I-1629. Polymers (Basel) 2022; 14:polym14101994. [PMID: 35631877 PMCID: PMC9145141 DOI: 10.3390/polym14101994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Recent advances in glycobiotechnology show that bacterial exopolysaccharides (EPS) presenting glycosaminoglycan (GAG)-like properties can provide a valuable source of bio-active macromolecules for industrial applications. The HE800 EPS, named diabolican, is a marine-derived anionic high-molecular-weight polysaccharide produced by Vibrio diabolicus CNCM I-1629 which displays original structural features close to those of hyaluronic acid. We investigated the impact of carbon and nitrogen substrates on both Vibrio diabolicus growth and diabolican production. Both substrates were screened by a one-factor-at-a-time method, and experimental designs were used to study the effect of glucose, mannitol, and ammonium acetate various concentrations. Results showed that the medium composition affected not only the bacterium growth and EPS yield, but also the EPS molecular weight (MW). EPS yields of 563 and 330 mg L−1 were obtained in the presence of 69.3 g L−1 glucose and 24.6 g L−1 mannitol, respectively, both for 116.6 mM ammonium acetate. MW was the highest, with 69.3 g L−1 glucose and 101.9 mM ammonium acetate (2.3 × 106 g mol−1). In parallel, the bacterial maximum specific growth rate was higher when both carbon and nitrogen substrate concentrations were low. This work paves the way for the optimization of marine exopolysaccharide production of great interest in the fields of human health and cosmetics.
Collapse
|
20
|
Rocha GA, Ferreira RB. Antimicrobial polysaccharides obtained from natural sources. Future Microbiol 2022; 17:701-716. [PMID: 35392662 DOI: 10.2217/fmb-2021-0257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the increase in resistance to conventional antibiotics among bacterial pathogens, the search for new antimicrobials becomes more and more necessary. Although most studies focus on the discovery of antimicrobial peptides for the development of new antibiotics, several others in the literature have described polysaccharides with the same biological activity with the potential for use as therapeutic alternatives. Here we review the currently available literature on antimicrobial polysaccharides isolated from different sources to demonstrate that there are several possible unconventional carbohydrate polymers that could act as therapeutic alternatives in the battle against drug-resistant pathogens.
Collapse
Affiliation(s)
- Giulia A Rocha
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| | - Rosana Br Ferreira
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| |
Collapse
|
21
|
Nabot M, Guérin M, Sivakumar D, Remize F, Garcia C. Variability of Bacterial Homopolysaccharide Production and Properties during Food Processing. BIOLOGY 2022; 11:171. [PMID: 35205038 PMCID: PMC8869377 DOI: 10.3390/biology11020171] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Various homopolysaccharides (HoPSs) can be produced by bacteria: α- and β-glucans, β-fructans and α-galactans, which are polymers of glucose, fructose and galactose, respectively. The synthesis of these compounds is catalyzed by glycosyltransferases (glycansucrases), which are able to transfer the monosaccharides in a specific substrate to the medium, which results in the growth of polysaccharide chains. The range of HoPS sizes is very large, from 104 to 109 Da, and mostly depends on the carbon source in the medium and the catalyzing enzyme. However, factors such as nitrogen nutrients, pH, water activity, temperature and duration of bacterial culture also impact the size and yield of production. The sequence of the enzyme influences the structure of the HoPS, by modulating the type of linkage between monomers, both for the linear chain and for the ramifications. HoPSs' size and structure have an effect on rheological properties of some foods by their influence on viscosity index. As a consequence, the control of structural and environmental factors opens ways to guide the production of specific HoPS in foods by bacteria, either by in situ or ex situ production, but requires a better knowledge of HoPS production conditions.
Collapse
Affiliation(s)
- Marion Nabot
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| | - Marie Guérin
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| | - Dharini Sivakumar
- Department of Horticulture, Tshwane University of Technology, Pretoria 0001, South Africa;
| | - Fabienne Remize
- SPO, Université de Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France;
| | - Cyrielle Garcia
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| |
Collapse
|
22
|
Xu RZ, Cao JS, Feng G, Luo JY, Wu Y, Ni BJ, Fang F. Modeling molecular structure and behavior of microbial extracellular polymeric substances through interacting-particle reaction dynamics. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
23
|
Yang H, Li W, Chen S, Guo X, Huang F, Zhu P. Optimization and Modeling of Curdlan Production under Multi-physiological-parameters Process Control by Agrobacterium radiobacter Mutant A-15 at High Initial Glucose. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0028-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Izadi P, Izadi P, Eldyasti A. Holistic insights into extracellular polymeric substance (EPS) in anammosx bacterial matrix and the potential sustainable biopolymer recovery: A review. CHEMOSPHERE 2021; 274:129703. [PMID: 33578118 DOI: 10.1016/j.chemosphere.2021.129703] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic ammonia oxidation (anammox) process has been proven to be a favorable and innovative process, for treatment of nitrogen-rich wastewater due to decreased oxygen and carbon requirements at very high nitrogen loading rates. Anammox process is mainly operated through biofilm or granular sludge structures, as for such slow-growing microorganisms, elevated settling velocity of granules allows for adequate biomass retention and lowered potential risk of washouts. Stability of granular sludge biomass is extremely critical, yet the formation mechanism is poorly understood. There are number of important functions linked to Extracellular Polymeric Substance (EPS) in anammox bacterial matrix, such as; structural stability, aggregation promotion, maintenance of physical structure in the granules, water preserving and protective cell barrier. There is an increasing demand to introduce accurate methods for proper EPS extraction and characterization, to expand the perception of anammox granule stability and potential resource recovery. Analyzing EPS with a focus on various (mechanical and physical) properties can lead to biopolymer production from granular sludge. Biopolymers such as EPS are attractive alternatives substituting the conventional chemical polymers furthermore their recovery from the waste sludge and the potential applications in industrial sectors, leads to a radical enhancement of both environmental and economical sustainability, accelerating the circular economy advancements. Here, this study aims to overview the newest understanding on the structure of anammox sludge EPS, obtained recently and to assess the potential challenges and prospects to identify the knowledge gaps towards constructing an inclusive anammox EPS recovery and characterization procedure.
Collapse
Affiliation(s)
- Parin Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Parnian Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Ahmed Eldyasti
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
25
|
Soumya MP, Nampoothiri KM. An overview of functional genomics and relevance of glycosyltransferases in exopolysaccharide production by lactic acid bacteria. Int J Biol Macromol 2021; 184:1014-1025. [PMID: 34171260 DOI: 10.1016/j.ijbiomac.2021.06.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/21/2023]
Abstract
There are many reports on exopolysaccharides of lactic acid bacteria (LAB EPS) such as isolation, production and applications. The LAB EPS have been proved to exhibit significantly improved texture and rheological properties in order to prevent syneresis of fermented foods. Furthermore, they are known to have many biological properties such as mouthwatering flavors, antioxidant activity, cholesterol lowering and antimicrobial activities. Considering their GRAS status, LAB EPS need to be explored for better titre and improved biological properties, where strain improvement by genetic engineering has a major role for making tailor-made EPS. The genetic overview of the EPS production by LAB is an auxiliary area of interest as the process and the biosynthetic pathway involves numerous genes and their proteins. Among them Glycosyltransferases (gtfs) are the key enzymes involved in EPS biosynthesis. Current knowledge of gtfs of LAB and its manipulation is limited. The present review spotlights the importance of glycosyltransferases and their specific role on the biosynthesis of LAB EPS and addresses the functionality and applicability of these enzymes and their products. It enfold the available literature including some patents in recent past to underline the fact that glycosyltransferases are un-reluctantly the key proteins involved in the EPS biosynthesis.
Collapse
Affiliation(s)
- M P Soumya
- Microbial Processes and Technology Division (MPTD), CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division (MPTD), CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
26
|
Microbial Polymers in Edible Films and Coatings of Garden Berry and Grape: Current and Prospective Use. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02666-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Kouzuma A. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1. Biosci Biotechnol Biochem 2021; 85:1572-1581. [PMID: 33998649 DOI: 10.1093/bbb/zbab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/17/2021] [Indexed: 11/14/2022]
Abstract
Electrochemically active bacteria (EAB) interact electrochemically with electrodes via extracellular electron transfer (EET) pathways. These bacteria have attracted significant attention due to their utility in environmental-friendly bioelectrochemical systems (BESs), including microbial fuel cells and electrofermentation systems. The electrochemical activity of EAB is dependent on their carbon catabolism and respiration; thus, understanding how these processes are regulated will provide insights into the development of a more efficient BES. The process of biofilm formation by EAB on BES electrodes is also important for electric current generation because it facilitates physical and electrochemical interactions between EAB cells and electrodes. This article summarizes the current knowledge on EET-related metabolic and cellular functions of a model EAB, Shewanella oneidensis MR-1, focusing specifically on regulatory systems for carbon catabolism, EET pathways, and biofilm formation. Based on recent developments, the author also discusses potential uses of engineered S. oneidensis strains for various biotechnological applications.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
28
|
Sokaribo AS, Perera SR, Sereggela Z, Krochak R, Balezantis LR, Xing X, Lam S, Deck W, Attah-Poku S, Abbott DW, Tamuly S, White AP. A GMMA-CPS-Based Vaccine for Non-Typhoidal Salmonella. Vaccines (Basel) 2021; 9:vaccines9020165. [PMID: 33671372 PMCID: PMC7922415 DOI: 10.3390/vaccines9020165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella are a major cause of gastroenteritis worldwide, as well as causing bloodstream infections in sub-Saharan Africa with a high fatality rate. No vaccine is currently available for human use. Current vaccine development strategies are focused on capsular polysaccharides (CPS) present on the surface of non-typhoidal Salmonella. This study aimed to boost the amount of CPS purified from S. Typhimurium for immunization trials. Random mutagenesis with Tn10 transposon increased the production of CPS colanic acid, by 10-fold compared to wildtype. Immunization with colanic acid or colanic acid conjugated to truncated glycoprotein D or inactivated diphtheria toxin did not induce a protective immune response in mice. However, immunization with Generalized Modules for Membrane Antigens (GMMAs) isolated from colanic acid overproducing isolates reduced Salmonella colonization in mice. Our results support the development of a GMMA-CPS-based vaccine against non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Akosiererem S. Sokaribo
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Sumudu R. Perera
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Zoe Sereggela
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Ryan Krochak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Lindsay R. Balezantis
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Xiaohui Xing
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shirley Lam
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - William Deck
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Sam Attah-Poku
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Dennis Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shantanu Tamuly
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India;
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
- Correspondence: ; Tel.: +01-306-966-7485
| |
Collapse
|
29
|
Exploring the Role of Bacterial Extracellular Polymeric Substances for Sustainable Development in Agriculture. Curr Microbiol 2020; 77:3224-3239. [PMID: 32876713 DOI: 10.1007/s00284-020-02169-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
The incessant need to increase crop yields has led to the development of many chemical fertilizers containing NPK (nitrogen-phosphorous-potassium) which can degrade soil health in the long term. In addition, these fertilizers are often leached into nearby water bodies causing algal bloom and eutrophication. Bacterial secondary metabolites exuded into the extracellular space, termed extracellular polymeric substances (EPS) have gained commercial significance because of their biodegradability, non-toxicity, and renewability. In many habitats, bacterial communities faced with adversity will adhere together by production of EPS which also serves to bond them to surfaces. Typically, hygroscopic, EPS retain moisture in desiccating conditions and modulate nutrient exchange. Many plant growth-promoting bacteria (PGPR) combat harsh environmental conditions like salinity, drought, and attack of pathogens by producing EPS. The adhesive nature of EPS promotes soil aggregation and restores moisture thus combating soil erosion and promoting soil fertility. In addition, these molecules play vital roles in maintaining symbiosis and nitrogen fixation thus enhancing sustainability. Thus, along with other commercial applications, EPS show promising avenues for improving agricultural productivity thus helping to address land scarcity as well as minimizing environmental pollution.
Collapse
|
30
|
Chaves S, Longo M, Gómez López A, Del V Loto F, Mechetti M, Romero CM. Control of microbial biofilm formation as an approach for biomaterials synthesis. Colloids Surf B Biointerfaces 2020; 194:111201. [PMID: 32615520 DOI: 10.1016/j.colsurfb.2020.111201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
The search for new biomaterials with superior mechanical properties is the focus in the area of materials science. A promising pathway is drawing inspiration from nature to design and develop materials with enhanced properties. In this work, a novel strategy to produce functionalized supramolecular bionanomaterials from the microbial biofilm is reported. Tuneable biofilms with specific characteristics were obtained by controlling the culture condition of the microorganism. When the exopolysaccharide (EPS) production was desired the tryptone was the best nutritional component for the EPS production into the biofilm. However, for the expression of a high amount of amyloid protein the combination of peptone and glucose was the best nutritional choice. Each biofilm obtained showed its owner rheology properties. These properties were altered by the addition of extracellular DNA, which increased the viscosity of the biofilm and induced a viscoelastic hydrogel behavior. Besides, as a proof of concept of bionanomaterial, a novel supramolecular polymeric hybrid EPS-Amyloid protein (EPAP) was obtained from the biofilm and it was tested as a new natural functionalized support for enzyme immobilization. The results suggest that this technology could be used as a new concept to obtain biomaterials from biofilms by controlling the nutritional conditions of a microorganism. Understanding environmental factors affecting biofilm formation will help the development of methods for controlling biofilm production and therefore obtaining new biomaterials.
Collapse
Affiliation(s)
- Silvina Chaves
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), CONICET-UNT-SIPROSA, Pje. Dorrego 1080, San Miguel de Tucumán, Argentina
| | - Marianella Longo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - Azucena Gómez López
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - Flavia Del V Loto
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - Magdalena Mechetti
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina.
| |
Collapse
|
31
|
Yang K, Liu M, Yang J, Wei X, Fan M, Zhang G. Physiological and proteomic responses of freeze-dried Oenococcus oeni SD-2a with ethanol-acclimations. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Ron EYC, Sardari RRR, Anthony R, van Niel EWJ, Hreggvidsson GO, Nordberg-Karlsson E. Cultivation technology development of Rhodothermus marinus DSM 16675. Extremophiles 2019; 23:735-745. [PMID: 31522265 PMCID: PMC6801211 DOI: 10.1007/s00792-019-01129-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
This work presents an evaluation of batch, fed-batch, and sequential batch cultivation techniques for production of R. marinus DSM 16675 and its exopolysaccharides (EPSs) and carotenoids in a bioreactor, using lysogeny broth (LB) and marine broth (MB), respectively, in both cases supplemented with 10 g/L maltose. Batch cultivation using LB supplemented with maltose (LBmalt) resulted in higher cell density (OD620 = 6.6) than use of MBmalt (OD620 = 1.7). Sequential batch cultivation increased the cell density threefold (OD620 = 20) in LBmalt and eightfold (OD620 = 14) in MBmalt. In both single and sequential batches, the production of carotenoids and EPSs using LBmalt was detected in the exponential phase and stationary phase, respectively, while in MBmalt formation of both products was detectable in both the exponential and stationary phases of the culture. Heteropolymeric EPSs were produced with an overall volumetric productivity (QE) of 0.67 (mg/L h) in MBmalt and the polymer contained xylose. In LB, QE was lower (0.1 mg/L h) and xylose could not be detected in the composition of the produced EPSs. In conclusion, this study showed the importance of a process design and medium source for production of R. marinus DSM 16675 and its metabolites.
Collapse
Affiliation(s)
- Emanuel Y C Ron
- Division of Biotechnology, Department of Chemistry, Lund University, Naturvetarvägen 14, 22100, Lund, Sweden
| | - Roya R R Sardari
- Division of Biotechnology, Department of Chemistry, Lund University, Naturvetarvägen 14, 22100, Lund, Sweden.
| | - Richard Anthony
- Division of Biotechnology, Department of Chemistry, Lund University, Naturvetarvägen 14, 22100, Lund, Sweden
| | - Ed W J van Niel
- Division of Applied Microbiology, Department of Chemistry, Lund University, Naturvetarvägen 14, 22100, Lund, Sweden
| | | | - Eva Nordberg-Karlsson
- Division of Biotechnology, Department of Chemistry, Lund University, Naturvetarvägen 14, 22100, Lund, Sweden
| |
Collapse
|
33
|
Sengupta D, Datta S, Biswas D. Exploring two contrasting surface‐active exopolysaccharides from a single strain of
Ochrobactrum
utilizing different hydrocarbon substrates. J Basic Microbiol 2019; 59:820-833. [DOI: 10.1002/jobm.201900080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Dipanjan Sengupta
- Department of Chemical Technology, Rajabazar Science College University of Calcutta Kolkata India
| | - Sriparna Datta
- Department of Chemical Technology, Rajabazar Science College University of Calcutta Kolkata India
| | - Dipa Biswas
- Department of Chemical Technology, Rajabazar Science College University of Calcutta Kolkata India
| |
Collapse
|
34
|
Hereher F, ElFallal A, Abou-Dobara M, Toson E, Abdelaziz MM. Cultural optimization of a new exopolysaccharide producer “Micrococcus roseus”. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|