1
|
Lüchtrath C, Lamping F, Hansen S, Finger M, Magnus J, Büchs J. Diffusion-driven fed-batch fermentation in perforated ring flasks. Biotechnol Lett 2024; 46:571-582. [PMID: 38758336 PMCID: PMC11217090 DOI: 10.1007/s10529-024-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Simultaneous membrane-based feeding and monitoring of the oxygen transfer rate shall be introduced to the newly established perforated ring flask, which consists of a cylindrical glass flask with an additional perforated inner glass ring, for rapid bioprocess development. METHODS A 3D-printed adapter was constructed to enable monitoring of the oxygen transfer rate in the perforated ring flasks. Escherichia coli experiments in batch were performed to validate the adapter. Fed-batch experiments with different diffusion rates and feed solutions were performed. RESULTS The adapter and the performed experiments allowed a direct comparison of the perforated ring flasks with Erlenmeyer flasks. In batch cultivations, maximum oxygen transfer capacities of 80 mmol L-1 h-1 were reached with perforated ring flasks, corresponding to a 3.5 times higher capacity than in Erlenmeyer flasks. Fed-batch experiments with a feed reservoir concentration of 500 g glucose L-1 were successfully conducted. Based on the oxygen transfer rate, an ammonium limitation could be observed. By adding 40 g ammonium sulfate L-1 to the feed reservoir, the limitation could be prevented. CONCLUSION The membrane-based feeding, an online monitoring technique, and the perforated ring flask were successfully combined and offer a new and promising tool for screening and process development in biotechnology.
Collapse
Affiliation(s)
- Clara Lüchtrath
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Felix Lamping
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Sven Hansen
- Evonik Operations GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany
| | - Maurice Finger
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Takahashi M, Sawada Y, Aoyagi H. A forced aeration system for microbial culture of multiple shaken vessels suppresses volatilization. Arch Microbiol 2024; 206:246. [PMID: 38704767 DOI: 10.1007/s00203-024-03960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Shake-flask culture, an aerobic submerged culture, has been used in various applications involving cell cultivation. However, it is not designed for forced aeration. Hence, this study aimed to develop a small-scale submerged shaking culture system enabling forced aeration into the medium. A forced aeration control system for multiple vessels allows shaking, suppresses volatilization, and is attachable externally to existing shaking tables. Using a specially developed plug, medium volatilization was reduced to less than 10%, even after 45 h of continuous aeration (~ 60 mL/min of dry air) in a 50 mL working volume. Escherichia coli IFO3301 cultivation with aeration was completed within a shorter period than that without aeration, with a 35% reduction in the time-to-reach maximum bacterial concentration (26.5 g-dry cell/L) and a 1.25-fold increase in maximum concentration. The maximum bacterial concentration achieved with aeration was identical to that obtained using the Erlenmeyer flask, with a 65% reduction in the time required to reach it.
Collapse
Affiliation(s)
- Masato Takahashi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshisuke Sawada
- Iwashiya Bio Science, LLC, 2-18-4, Higashi Shinmachi, Itabashi-ku, Tokyo, 174-0074, Japan
| | - Hideki Aoyagi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
3
|
Pillaca-Pullo OS, Lopes AM, Estela-Escalante WD. Reusing wastewater from Coffea arabica processing to produce single-cell protein using Candida sorboxylosa: Optimizing of culture conditions. Biotechnol Prog 2024; 40:e3393. [PMID: 37792408 DOI: 10.1002/btpr.3393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/24/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
Coffee is a crop of significant socioeconomic importance, and the reuse of agri-food by-products and biowaste has great potential across several industries. Coffee wastewater (CWW) is a valuable resource containing essential nutrients that can be utilized by Candida sorboxylosa for single-cell protein (SCP) production. This utilization contributes to mitigating the negative impacts of agro-industrial waste. The optimization of culture conditions using the design of experiments (DoE) technique is crucial in understanding the environmental factors influencing metabolite production. In our study, the DoE technique was employed to analyze culture conditions, including room temperature, pH 8.4, agitation at 200 rpm, a headspace of 60% (v/v), and an inoculum of 0.75 DO600nm over 28-h period. This approach resulted in a remarkable SCP yield of 64.4% and dry cell weight (DCW) of 2.26 g/L. It is noteworthy that there is no literature reporting SCP production under alkaline pH conditions in yeast. Interestingly, our work demonstrated that an alkaline pH of 8.4 significantly influenced SCP production by C. sorboxylosa. The DoE technique proved to be an efficient statistical tool for optimizing culture conditions, offering several advantages, such as: (i) conducting cultures at room temperature to minimize unnecessary energy consumption; (ii) reducing the incubation time from 46 to 28 h, thereby enhancing overall productivity; (iii) achieving 1.7-fold increase in SCP yield compared to previous basal production levels.
Collapse
Affiliation(s)
- Omar Santiago Pillaca-Pullo
- Facultad de Química e Ingeniería Química, Laboratorio de Bioprocesos y Tecnología de Fermentación, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - André Moreni Lopes
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo (EEL/USP), Lorena, Brazil
| | - Waldir D Estela-Escalante
- Facultad de Química e Ingeniería Química, Laboratorio de Bioprocesos y Tecnología de Fermentación, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
4
|
Takahashi M, Aoyagi H. Control of carbon dioxide concentration in headspace of multiple flasks using both non-electric bellows pump and shaking incubator. J Biosci Bioeng 2022; 134:240-247. [PMID: 35840513 DOI: 10.1016/j.jbiosc.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
Abstract
Current methods of controlling gas in the headspace involve constant speed aeration and proportional-integral-differential (PID) controlled aeration using improved monitoring devices or gas cylinders. However, these approaches are restricted and inconvenient to use. In this study, we propose a method to control the CO2 concentration in the headspace while maintaining the convenience of shake-flask culture. A combination of a non-electric bellows pump for shake-flask (NeBP-sf) and a CO2 incubator was used to control the flask gas phase by shaking without additional external power. The CO2 half-life, as an indicator of the ventilation ability of the system, was measured using a circulation direct monitoring and sampling system, and the NeBP-sf was optimised. The ventilation capacity varied depending on the shaking speed, and under optimal conditions, was 10 min compared with 45 min when only a breathable culture plug was used. In conventional microbial shaking culture, the CO2 concentration in the flask gas phase remained higher than the 5% set-value with a maximum of 9%, resulting in a large concentration difference with the set point. Therefore, the ventilation capacity of the conventional shake-flask culture was insufficient for aerobic culture. Cultivation of Escherichia coli and Lactiplantibacillus plantarum using the system showed no significant difference between the set point and real point values. Thus, the system combined an NeBP-sf and a gas incubator built-in shaking table to achieve the reproducibility of gas control while maintaining a high level of convenience.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
5
|
Takahashi M, Aoyagi H. Development of a bellows pumping device for enhancing ventilation to shake-flask systems. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Takahashi M, Aoyagi H. Analysis of porous breathable stopper and development of PID control for gas phase during shake-flask culture with microorganisms. Appl Microbiol Biotechnol 2020; 104:8925-8936. [PMID: 32870338 DOI: 10.1007/s00253-020-10847-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
We evaluated the ventilation ability of two types (plug-type and cap-type) of culture-stoppers having standard air permeability. The culture-stoppers were evaluated using the circulation direct monitoring and sampling system with CO2 concentration in the gas phase of a shake-flask culture as an index. The half-lives of CO2 in the headspace of the shake flask with the plug-type and cap-type stoppers were about 51.5 min and about 30.3 min, respectively. Based on these half-lives, we formulated a model equation to simulate the behaviour of CO2 with different culture-stoppers. After validating the model equation by shake-flask culture with Saccharomyces cerevisiae, we investigated the effect of different ventilation abilities of the culture-stoppers on the growth of Pelomonas saccharophila and Escherichia coli: the sensitivity of the culture-stopper to the ventilation ability was dependent on the microorganism species. In the case of P. saccharophila, when the plug-type culture-stopper was combined with controlled CO2 concentration (6%) in the flask, the maximum yield increased by twofold compared to that of the control. This study shows the importance of ventilation in headspace and conventional culture-stoppers during the shake-flask culture of microorganisms. The problems that may occur between the conventional shake-flask culture approach using a breathable culture-stopper and the next-generation shake-flask culture without a conventional culture-stopper were clarified from the evaluation of gas-permeable culture-stoppers. The importance of controlled gaseous phase in the headspace during shake-flask culture of the microorganisms was also elucidated. KEY POINTS: • Ventilation capacity of culture-stoppers was evaluated using the CO2 half-life concentration. • Behaviour of microorganisms varies with the type of culture-stopper. • Developed a PID system for control of CO2 in flask gas phase to enhance the shake-flask culture.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
7
|
Takahashi M, Honzawa T, Tominaga R, Aoyagi H. Analysis of the influence of flame sterilization included in sampling operations on shake-flask cultures of microorganisms. Sci Rep 2020; 10:10385. [PMID: 32606322 PMCID: PMC7326993 DOI: 10.1038/s41598-020-66810-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Shake-flask cultures of microorganisms involve flame sterilization during sampling, which produces combustion gas with high CO2 concentrations. The gaseous destination has not been deeply analyzed. Our aim was to investigate the effect of flame sterilization on the headspace of the flask and on the shake-flask culture. In this study, the headspace CO2 concentration was found to increase during flame sterilization ~0.5–2.0% over 5–20 s empirically using the Circulation Direct Monitoring and Sampling System. This CO2 accumulation was confirmed theoretically using Computational Fluid Dynamics; it was 9% topically. To evaluate the influence of CO2 accumulation without interference from other sampling factors, the flask gas phase formed by flame sterilization was reproduced by aseptically supplying 99.8% CO2 into the headspace, without sampling. We developed a unit that can be sampled in situ without interruption of shaking, movement to a clean bench, opening of the culture-plug, and flame sterilization. We observed that the growth behaviour of Escherichia coli, Pelomonas saccharophila, Acetobacter pasteurianus, and Saccharomyces cerevisiae was different depending on the CO2 aeration conditions. These results are expected to contribute to improving microbial cell culture systems.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takafumi Honzawa
- Combustion of Thermo and Fluid Dynamics, Department of Fundamental Technology, Tokyo Gas Co. Ltd., Yokohama, Kanagawa, 230-0045, Japan
| | - Ryuichi Tominaga
- Combustion of Thermo and Fluid Dynamics, Department of Fundamental Technology, Tokyo Gas Co. Ltd., Yokohama, Kanagawa, 230-0045, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
8
|
Takahashi M, Aoyagi H. Analysis and effect of conventional flasks in shaking culture of Escherichia coli. AMB Express 2020; 10:77. [PMID: 32307613 PMCID: PMC7167391 DOI: 10.1186/s13568-020-01013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
The circulation direct monitoring and sampling system (CDMSS) is used as a monitoring device for CO2 and O2 concentrations of bypass type in shake-culture flask. The CDMSS could measure kLa, an index for evaluating the performance of aerobic culture incubators, and kG, an indicator of the degree of CO2 ventilation in the flask gas phase. We observed that cylindrical flasks provided a different culture environment, yielded a much higher kG than the Erlenmeyer and Sakaguchi flasks, and yielded kLa equivalent to that by Erlenmeyer flask by setting the ring-type baffle appropriately. Baffled cylindrical flask used for Escherichia coli K12 IFO3301 shake culture maintained lower CO2 concentrations in the headspace than conventional flasks; therefore, CO2 accumulation in the culture broth could be suppressed. Cell growth in baffled cylindrical flask (with kLa equivalent to that of the Erlenmeyer flask) was about 1.3 and 1.4 times that in the Erlenmeyer and Sakaguchi flasks, respectively. This study focused on the batch culture at the flask scale and designed the headspace environment with low CO2 accumulation. Therefore, we conclude that redesign of flasks based on kLa and kG may contribute to a wide range of fields employing microorganism culture.
Collapse
|
9
|
Chopda VR, Holzberg T, Ge X, Folio B, Wong L, Tolosa M, Kostov Y, Tolosa L, Rao G. Real-time dissolved carbon dioxide monitoring II: Surface aeration intensification for efficient CO 2 removal in shake flasks and mini-bioreactors leads to superior growth and recombinant protein yields. Biotechnol Bioeng 2020; 117:992-998. [PMID: 31840800 PMCID: PMC7078866 DOI: 10.1002/bit.27252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
Mass transfer is known to play a critical role in bioprocess performance and henceforth monitoring dissolved O2 (DO) and dissolved CO2 (dCO2 ) is of paramount importance. At bioreactor level these parameters can be monitored online and can be controlled by sparging air/oxygen or stirrer speed. However, traditional small-scale systems such as shake flasks lack real time monitoring and also employ only surface aeration with additional diffusion limitations imposed by the culture plug. Here we present implementation of intensifying surface aeration by sparging air in the headspace of the reaction vessel and real-time monitoring of DO and dCO2 in the bioprocesses to evaluate the impact of intensified surface aeration. We observed that sparging air in the headspace allowed us to keep dCO2 at low level, which significantly improved not only biomass growth but also protein yield. We expect that implementing such controlled smart shake flasks can minimize the process development gap which currently exists in shake flask level and bioreactor level results.
Collapse
Affiliation(s)
- Viki R. Chopda
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Timothy Holzberg
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Xudong Ge
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Brandon Folio
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Lynn Wong
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Michael Tolosa
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Yordan Kostov
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Leah Tolosa
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| | - Govind Rao
- Department of Chemical, Biochemical and Environmental EngineeringCenter for Advanced Sensor Technology, University of MarylandBaltimoreMaryland
| |
Collapse
|
10
|
Chopda VR, Holzberg T, Ge X, Folio B, Tolosa M, Kostov Y, Tolosa L, Rao G. Real-time dissolved carbon dioxide monitoring I: Application of a novel in situ sensor for CO 2 monitoring and control. Biotechnol Bioeng 2020; 117:981-991. [PMID: 31840812 PMCID: PMC7079146 DOI: 10.1002/bit.27253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
Dissolved carbon dioxide (dCO2 ) is a well-known critical parameter in bioprocesses due to its significant impact on cell metabolism and on product quality attributes. Processes run at small-scale faces many challenges due to limited options for modular sensors for online monitoring and control. Traditional sensors are bulky, costly, and invasive in nature and do not fit in small-scale systems. In this study, we present the implementation of a novel, rate-based technique for real-time monitoring of dCO2 in bioprocesses. A silicone sampling probe that allows the diffusion of CO2 through its wall was inserted inside a shake flask/bioreactor and then flushed with air to remove the CO2 that had diffused into the probe from the culture broth (sensor was calibrated using air as zero-point calibration). The gas inside the probe was then allowed to recirculate through gas-impermeable tubing to a CO2 monitor. We have shown that by measuring the initial diffusion rate of CO2 into the sampling probe we were able to determine the partial pressure of the dCO2 in the culture. This technique can be readily automated, and measurements can be made in minutes. Demonstration experiments conducted with baker's yeast and Yarrowia lipolytica yeast cells in both shake flasks and mini bioreactors showed that it can monitor dCO2 in real-time. Using the proposed sensor, we successfully implemented a dCO2 -based control scheme, which resulted in significant improvement in process performance.
Collapse
Affiliation(s)
- Viki R. Chopda
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Timothy Holzberg
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Xudong Ge
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Brandon Folio
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Michael Tolosa
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Yordan Kostov
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Leah Tolosa
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Govind Rao
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| |
Collapse
|
11
|
Munch G, Schulte A, Mann M, Dinger R, Regestein L, Rehmann L, Büchs J. Online measurement of CO2 and total gas production in parallel anaerobic shake flask cultivations. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Zhang J, Zhao Y, Li M, Liu T. Optimization of defined medium for recombinant Komagataella phaffii expressing cyclodextrin glycosyltransferase. Biotechnol Prog 2019; 35:e2867. [PMID: 31187591 DOI: 10.1002/btpr.2867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
Abstract
The cyclodextrin glycosyltransferase (CGTase) is an important enzyme for cyclodextrin (CD) production, and is also widely used in the biotechnology, food, and pharmaceuticals industries. Secretory CGTase production by recombinant Komagataella phaffii using defined medium is a promising approach because of low cost, less impurity protein. It was found that no CGTase was expressed using traditional defined medium (basal salt medium [BSM]) because of pH value decreasing significantly. CGTase was expressed by recombinant K. phaffii through pH maintenance in range of 5.5-7.0. β-CGTase activity increased to 122.0 U/mL after optimization of glycerol, phosphate buffer, pH value, ammonium sulfate, temperature, methanol, and additives based on BSM, establishing a modified defined medium. These results showed that it was necessary to establish recombinant K. phaffii-based special defined medium although the same host cell used for different heterologous protein expression.
Collapse
Affiliation(s)
- Jianguo Zhang
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yixin Zhao
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengla Li
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Taiyu Liu
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|