1
|
Zhang Y, He J, Zeng H, Xu D, Li W, Wang Y. Advances in prebiotic carbohydrate-based targeted delivery: Overcoming gastrointestinal challenges for bioactive ingredients. Food Chem 2025; 466:142210. [PMID: 39615354 DOI: 10.1016/j.foodchem.2024.142210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Natural bioactive ingredients face challenges in extensive application owing to low oral bioavailability. This can be improved by overcoming gastrointestinal barriers and facilitating targeted release through delivery strategies. This study provides a comprehensive review of targeted delivery systems using prebiotic carbohydrate matrices, focusing on structures, release mechanisms and applications. The bioactive ingredients can be encapsulated into nanohydrogels, nanoparticles, nanoemulsions, micro/nanocapsules and nanofibres to achieve controlled/targeted delivery to predetermined locations via interactions with pH, mucus, microbiome, enzymes and other factors in the colon. In particular, the prebiotic function of carbohydrates is generated by colonic microbiota degradation and fermentation, producing beneficial postbiotics through multiple metabolic pathways. This study provides certain insights into the in-depth development and application of prebiotic carbohydrate-based targeted delivery systems in the fields of food and health.
Collapse
Affiliation(s)
- Yunzhen Zhang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, 8 West Guochuang Road, Hohhot 010110, Inner Mongolia, PR China
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Duoxia Xu
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China
| | - Wenlu Li
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Haidian, 100048, Beijing, PR China.
| |
Collapse
|
2
|
Zhang S, Zhou R, Xie X, Xiong S, Li L, Li Y. Polysaccharides from Lycium barbarum, yam, and sunflower ameliorate colitis in a structure and intrinsic flora-dependent manner. Carbohydr Polym 2025; 349:122905. [PMID: 39643421 DOI: 10.1016/j.carbpol.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Polysaccharides have been suggested to ameliorate metabolic diseases. However, their differential colitis-mitigating effects in mouse models with different colony structures remain poorly understood. Therefore, this study investigated the effects of polysaccharides from Lycium barbarum (LBP), sunflower (SP), and yam (YP) on colitis in C57BL/6 J (B6) mice born via vaginal delivery (VD) and in both caesarean section (CS)- and VD-born Institute of Cancer Research (ICR) mice. LBP was mainly composed of glucose (30.2 %), galactose (27.5 %), and arabinose (26.9 %). The main components of SP and YP were galacturonic acid (75.8 %) and glucose (98.1 %), respectively. Interestingly, LBP effectively alleviated body weight loss, reduced inflammatory cytokine levels, and restored intestinal barrier function in all three mouse models. Moreover, LBP decreased the abundance of norank_f__norank_o__Clostridia_UCG-014, Coriobacteriaceae_UCG-002, and norank_f_Eubacterium_coprostanoligenes_group in B6 mice, and the abundance of these genera positively correlated with pro-inflammatory cytokine levels. LBP increased the abundance of Lactobacillus, which was positively correlated with the levels of the protective factor, IL-10, in CS-born ICR mice. Collectively, our study suggests the potential application of LBP in the treatment of ulcerative colitis. We also provide an alternative method for restoring intestinal homeostasis in CS-born offspring.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoran Xie
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Asadi Z, Abbasi A, Ghaemi A, Montazeri EA, Akrami S. Investigating the properties and antibacterial, antioxidant, and cytotoxicity activity of postbiotics derived from Lacticaseibacillus casei on various gastrointestinal pathogens in vitro and in food models. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc60. [PMID: 39677014 PMCID: PMC11638717 DOI: 10.3205/dgkh000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background Postbiotics comprise soluble compounds freed from the structure of destroyed bacteria or created by living bacteria. Such byproducts provide the host with enhanced biological function as well as specific physiological consequences. This research aims to examine the characteristics and possible health advantages of Lacticaseibacillus (L.) casei-derived postbiotics. Methods The antibacterial effects of postbiotics derived from L. casei were examined in vitro against various infectious gastrointestinal agents, as well as pasteurized milk and minced beef. Postbiotic activity potential was evaluated using disc-diffusion agar, minimum inhibitory concentration, minimum bactericidal concentration, and well-diffusion agar methods. Postbiotics were tested for antioxidant activity against 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals. Additionally, the total phenolic and flavonoid content of the postbiotics was determined. The colorimetric MTT was used to investigate the potential cytotoxicity of postbiotics. The chemical makeup of the postbiotics was also determined using gas chromatography/mass spectrometry. Results The antibacterial capacity was mostly related to pyrrolo[1,2-a] pyrazine-1,4-dione, benzoic acid, and laurostearic acid. Gram-positive microbes were more influenced by microbial byproducts in vitro than Gram-negative bacteria (P<0.05). The minimum effective concentrations of postbiotics were found to be much greater in ground beef and milk in the Listeria monocytogenes-inoculated model than with other bacteria (P<0.05). Postbiotics also show high antioxidant activity. Postbiotics generated from L. casei had the greatest concentrations of phenolic (99.46 mg GAE/g) and flavonoid (17.46 mg QE/g) constituents. Postbiotics had no influence on the viability of human foreskin fibroblasts at any dose. Conclusion Lactobacillus spp. postbiotics, particularly L. casei, were recommended for use as antioxidants, antimicrobials, and preservatives in both the food and pharmaceuticals sector for their beneficial effects and biological properties.
Collapse
Affiliation(s)
- Zahra Asadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghaemi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sousan Akrami
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Basu A, Adams AND, Degnan PH, Vanderpool CK. Determinants of raffinose family oligosaccharide use in Bacteroides species. J Bacteriol 2024; 206:e0023524. [PMID: 39330254 PMCID: PMC11501099 DOI: 10.1128/jb.00235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Bacteroides species are successful colonizers of the human colon and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in polysaccharide utilization loci (PULs). While recent work has uncovered the PULs required for the use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-β-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under the control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in a subset and showed that representative strains of species with a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide. IMPORTANCE The gut microbiome is important in health and disease. The diverse and densely populated environment of the gut makes competition for resources fierce. Hence, it is important to study the strategies employed by microbes for resource usage. Raffinose family oligosaccharides are abundant in plants and are a major source of nutrition for the microbiota in the colon since they remain undigested by the host. Here, we study how the model commensal organism, Bacteroides thetaiotaomicron utilizes raffinose family oligosaccharides. This work highlights how an important member of the microbiota uses an abundant dietary resource.
Collapse
Affiliation(s)
- Anubhav Basu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Amanda N. D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Katimbwa DA, Kim Y, Kim MJ, Jeong M, Lim J. Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling. Foods 2024; 13:3102. [PMID: 39410136 PMCID: PMC11476385 DOI: 10.3390/foods13193102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring's acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function.
Collapse
Affiliation(s)
- Dorsilla A. Katimbwa
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
6
|
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother 2024; 178:117277. [PMID: 39126772 DOI: 10.1016/j.biopha.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological condition characterized by cognitive decline, primarily affecting memory and logical thinking, attributed to amyloid-β plaques and tau protein tangles in the brain, leading to neuronal loss and brain atrophy. Neuroinflammation, a hallmark of AD, involves the activation of microglia and astrocytes in response to pathological changes, potentially exacerbating neuronal damage. The gut-brain axis is a bidirectional communication pathway between the gastrointestinal and central nervous systems, crucial for maintaining brain health. Phytochemicals, natural compounds found in plants with antioxidant and anti-inflammatory properties, such as flavonoids, curcumin, resveratrol, and quercetin, have emerged as potential modulators of this axis, suggesting implications for AD prevention. Intake of phytochemicals influences the gut microbial composition and its metabolites, thereby impacting neuroinflammation and oxidative stress in the brain. Consumption of phytochemical-rich foods may promote a healthy gut microbiota, fostering the production of anti-inflammatory and neuroprotective substances. Early dietary incorporation of phytochemicals offers a non-invasive strategy for modulating the gut-brain axis and potentially reducing AD risk or delaying its onset. The exploration of interventions targeting the gut-brain axis through phytochemical intake represents a promising avenue for the development of preventive or therapeutic strategies against AD initiation and progression.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
7
|
Zhang XT, Yang Y, Ji C, Fu Y, Pu X, Xu G. Ganoderma lucidum polysaccharides reduce the severity of acute liver injury by improving the diversity and function of the gut microbiota. Heliyon 2024; 10:e35559. [PMID: 39170507 PMCID: PMC11336721 DOI: 10.1016/j.heliyon.2024.e35559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Acute liver injury (ALI) is an abnormal liver function caused by oxidative stress, inflammation and other mechanisms.The interaction between intestine and liver plays an important role in ALI, and natural polysaccharides can participate in the regulation of ALI by regulating the composition of intestinal flora. In this study, Ganoderma lucidum polysaccharide was used as the research object, and ICR mice were used to construct an acute liver injury model induced by carbon tetrachloride (CCl4). 16S rRNA sequencing technology was used to analyze the flora structure abundance and detect the changes of intestinal flora. The effective reading of 8 samples was obtained by 16S rRNA sequencing technology, and a total of 1233 samples were obtained. The results of alpha diversity analysis showed that the sequencing depth was sufficient, the abundance of species in the samples was high and the distribution was uniform, and the sequencing data of the samples was reasonable. Nine species with significant differences were screened out by abundence analysis of intestinal flora structure at genus level. Beta diversity analysis showed that species composition was different between the model group and the treatment group. Ganoderma lucidum polysaccharide can maintain the integrity of mucosal barrier by promoting the proliferation of intestinal epithelial cells and anti-oxidative stress injury, thereby improving the intestinal mucosal inflammation of mice, regulating intestinal flora, and effectively alleviating CCl4-induced acute liver injury.
Collapse
Affiliation(s)
- Xiao-tian Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Yue Yang
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| | - Chunlei Ji
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| | - Yujuan Fu
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| | - Xinyi Pu
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| | - Guangyu Xu
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| |
Collapse
|
8
|
Zhu Y, Chen B, Zhang X, Akbar MT, Wu T, Zhang Y, Zhi L, Shen Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024; 16:2660. [PMID: 39203797 PMCID: PMC11356848 DOI: 10.3390/nu16162660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The gut microbiota are mainly composed of Bacteroidetes and Firmicutes and are crucial for metabolism and immunity. Muribaculaceae are a family of bacteria within the order Bacteroidetes. Muribaculaceae produce short-chain fatty acids via endogenous (mucin glycans) and exogenous polysaccharides (dietary fibres). The family exhibits a cross-feeding relationship with probiotics, such as Bifidobacterium and Lactobacillus. The alleviating effects of a plant-based diet on inflammatory bowel disease, obesity, and type 2 diabetes are associated with an increased abundance of Muribaculaceae, a potential probiotic bacterial family. This study reviews the current findings related to Muribaculaceae and systematically introduces their diversity, metabolism, and function. Additionally, the mechanisms of Muribaculaceae in the alleviation of chronic diseases and the limitations in this field of research are introduced.
Collapse
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Borui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Muhammad Toheed Akbar
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Yiyun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Li Zhi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| |
Collapse
|
9
|
Sejbuk M, Siebieszuk A, Witkowska AM. The Role of Gut Microbiome in Sleep Quality and Health: Dietary Strategies for Microbiota Support. Nutrients 2024; 16:2259. [PMID: 39064702 PMCID: PMC11279861 DOI: 10.3390/nu16142259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary components, including dietary fiber, unsaturated fatty acids, and polyphenols, along with meal timing and spacing, significantly affect the microbiota's capacity to produce various metabolites essential for quality sleep and overall health. This review explores the role of gut microbiota in regulating sleep through various metabolites such as short-chain fatty acids, tryptophan, serotonin, melatonin, and gamma-aminobutyric acid. A balanced diet rich in plant-based foods enhances the production of these sleep-regulating metabolites, potentially benefiting overall health. This review aims to investigate how dietary habits affect gut microbiota composition, the metabolites it produces, and the subsequent impact on sleep quality and related health conditions.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| |
Collapse
|
10
|
Xiao M, Zhang C, Duan H, Narbad A, Zhao J, Chen W, Zhai Q, Yu L, Tian F. Cross-feeding of bifidobacteria promotes intestinal homeostasis: a lifelong perspective on the host health. NPJ Biofilms Microbiomes 2024; 10:47. [PMID: 38898089 PMCID: PMC11186840 DOI: 10.1038/s41522-024-00524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Throughout the life span of a host, bifidobacteria have shown superior colonization and glycan abilities. Complex glycans, such as human milk oligosaccharides and plant glycans, that reach the colon are directly internalized by the transport system of bifidobacteria, cleaved into simple structures by extracellular glycosyl hydrolase, and transported to cells for fermentation. The glycan utilization of bifidobacteria introduces cross-feeding activities between bifidobacterial strains and other microbiota, which are influenced by host nutrition and regulate gut homeostasis. This review discusses bifidobacterial glycan utilization strategies, focusing on the cross-feeding involved in bifidobacteria and its potential health benefits. Furthermore, the impact of cross-feeding on the gut trophic niche of bifidobacteria and host health is also highlighted. This review provides novel insights into the interactions between microbe-microbe and host-microbe.
Collapse
Affiliation(s)
- Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk, NR4 7UA, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
11
|
Basu A, Adams AN, Degnan PH, Vanderpool CK. Determinants of raffinose family oligosaccharide use in Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597959. [PMID: 38895307 PMCID: PMC11185731 DOI: 10.1101/2024.06.07.597959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacteroides species are successful colonizers of the human gut and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in Polysaccharide Utilization Loci (PULs). While recent work has uncovered the PULs required for use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-β-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in subset and show that representative strains of species containing a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide.
Collapse
Affiliation(s)
- Anubhav Basu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Amanda N.D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Liang L, Su X, Guan Y, Wu B, Zhang X, Nian X. Correlation between intestinal flora and GLP-1 receptor agonist dulaglutide in type 2 diabetes mellitus treatment-A preliminary longitudinal study. iScience 2024; 27:109784. [PMID: 38711446 PMCID: PMC11070333 DOI: 10.1016/j.isci.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
GLP-1 receptor agonists (GLP-1 RA) are presently used as the first-line drugs for the clinical treatment of type 2 diabetes mellitus (T2DM). It can regulate blood glucose by stimulating insulin secretion and lowering glucagon levels. We used 16S rRNA amplicon sequencing to detect structural changes in the composition of the intestinal flora of newly diagnosed T2DM after 1 and 48 weeks of dulaglutide administration. Our research found no significant changes in the intestinal flora after the administration of dulaglutide for 1 week to subjects with newly diagnosed T2DM. Nevertheless, after 48 weeks of dulaglutide administration, the composition of the intestinal flora changed significantly, with a significant reduction in the abundance of intestinal flora. Furthermore, we found that fasting glucose levels, fasting c-peptide levels, HbA1c levels, and BMI are also closely associated with intestinal flora. This reveals that intestinal flora may be one of the mechanisms by which dulaglutide treats T2DM.
Collapse
Affiliation(s)
- Lei Liang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Endocrinology, Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - XiaoYun Su
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaxin Guan
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Wu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Zhao S, Lau R, Chen MH. Influence of chain length on the colonic fermentation of xylooligosaccharides. Carbohydr Polym 2024; 331:121869. [PMID: 38388037 DOI: 10.1016/j.carbpol.2024.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Xylooligosaccharides (XOS) have been employed as prebiotics containing oligomers of varying sizes or molecular ratios. XOS with a low degree of polymerization (DP) has been demonstrated to have high prebiotic potential. However, there is limited information regarding the specific chain length of XOS required to elicit distinct responses in the gut microbiota. In this study, we aimed to explore whether variations in XOS DP could alter the fate of colonic fermentation. Five XOS fractions (BWXFs) with DP ranges of >40, 20-40, 10-20, 5-10, and 2-4 were prepared by beechwood xylan autohydrolysis and tested on human gut microbiota. Extracellular XOS degradation was observed for molecules with a DP exceeding 5. BWXF treatments altered the microbial community structures, and substrate size-dependent effects on the microbial composition and metabolic outputs were observed. Bacteroidaceae were specifically enriched by xylan. Lachnospiraceae were particularly stimulated by XOS with a DP of 20-40 and 2-4. Bifidobacteriaceae were notably enriched by XOS with a DP of 5-20. High butyrate yields were obtained from cultures containing long-chain BWXFs. Microbiota responses differed with XOS DP composition changes, and microbial competition with XOS with a DP of 2-4 requires further exploration.
Collapse
Affiliation(s)
- Sainan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore.
| | - Raymond Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore.
| | - Ming-Hsu Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore; Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
15
|
Guo H, He X, Yu L, Tian F, Chen W, Zhai Q. Bifidobacterium adolescentis CCFM1285 combined with yeast β-glucan alleviates the gut microbiota and metabolic disturbances in mice with antibiotic-associated diarrhea. Food Funct 2024; 15:3709-3721. [PMID: 38488198 DOI: 10.1039/d3fo05421g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a self-limiting condition that can occur during antibiotic therapy. Our previous studies have found that a combination of Bacteroides uniformis and Bifidobacterium adolescentis can effectively alleviate AAD. However, the use of B. uniformis is still strictly limited. Therefore, this study attempted to use yeast β-glucan to enrich the abundance of B. uniformis in the intestine and supplement Bifidobacterium adolescentis to exert a synergistic effect. The lincomycin hydrochloride-induced AAD model was administered yeast β-glucan or a mixture of B. adolescentis CCFM1285 by gavage for one week. Subsequently, changes in the colonic histopathological structure, inflammatory factors, intestinal epithelial permeability and integrity, metabolites, and gut microbiota diversity were assessed. We found that yeast β-glucan, alone or in combination with B. adolescentis CCFM1285, can help attenuate systemic inflammation, increase the rate of tissue structural recovery, regulate metabolism, and restore the gut microbiota. Specifically, the combination of yeast β-glucan and B. adolescentis CCFM1285 was more effective in decreasing interleukin-6 levels, improving pathological changes in the colon, and upregulating occludin expression. Therefore, our study showed that the combination of yeast β-glucan and B. adolescentis CCFM1285 is an efficacious treatment for AAD.
Collapse
Affiliation(s)
- Hang Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingfei He
- Rehabilitation Hospital of Huishan District, Wuxi, Jiangsu 214181, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Liang J, Wang Y, Liu B, Dong X, Cai W, Zhang N, Zhang H. Deciphering the intricate linkage between the gut microbiota and Alzheimer's disease: Elucidating mechanistic pathways promising therapeutic strategies. CNS Neurosci Ther 2024; 30:e14704. [PMID: 38584341 PMCID: PMC10999574 DOI: 10.1111/cns.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The gut microbiome is composed of various microorganisms such as bacteria, fungi, and protozoa, and constitutes an important part of the human gut. Its composition is closely related to human health and disease. Alzheimer's disease (AD) is a neurodegenerative disease whose underlying mechanism has not been fully elucidated. Recent research has shown that there are significant differences in the gut microbiota between AD patients and healthy individuals. Changes in the composition of gut microbiota may lead to the development of harmful factors associated with AD. In addition, the gut microbiota may play a role in the development and progression of AD through the gut-brain axis. However, the exact nature of this relationship has not been fully understood. AIMS This review will elucidate the types and functions of gut microbiota and their relationship with AD and explore in depth the potential mechanisms of gut microbiota in the occurrence of AD and the prospects for treatment strategies. METHODS Reviewed literature from PubMed and Web of Science using key terminologies related to AD and the gut microbiome. RESULTS Research indicates that the gut microbiota can directly or indirectly influence the occurrence and progression of AD through metabolites, endotoxins, and the vagus nerve. DISCUSSION This review discusses the future challenges and research directions regarding the gut microbiota in AD. CONCLUSION While many unresolved issues remain regarding the gut microbiota and AD, the feasibility and immense potential of treating AD by modulating the gut microbiota are evident.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Bin Liu
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Xiaohong Dong
- Jiamusi CollegeHeilongjiang University of Traditional Chinese MedicineJiamusiHeilongjiang ProvinceChina
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Hong Zhang
- Heilongjiang Jiamusi Central HospitalJiamusiHeilongjiang ProvinceChina
| |
Collapse
|
17
|
Huuki H, Vilkki J, Vanhatalo A, Tapio I. Fecal microbiota colonization dynamics in dairy heifers associated with early-life rumen microbiota modulation and gut health. Front Microbiol 2024; 15:1353874. [PMID: 38505558 PMCID: PMC10949896 DOI: 10.3389/fmicb.2024.1353874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
Early-life modulation of rumen microbiota holds promise for enhancing calf growth, health, and long-term production in ruminants. However, limited attention has been given to the impact of rumen microbiota modulation on the establishment of hindgut microbiota. In this study, fecal microbiota development was examined in identical twin calves for 12 months. The treatment group (T-group) received adult cow fresh rumen liquid inoculum during the pre-weaning period, while the control group did not (C-group). The effects of inoculum were assessed on calf gut health and as microbial seeding route into the hindgut. The early rumen modulation had no effect on age-related fecal microbiota development. The fecal bacterial community evolved gradually following dietary changes and categorized into pre-weaning and post-weaning communities. Bacterial richness increased with age and stabilized at month 9, while between-sample variation reduced in post-weaning samples. Archaeal load in fecal samples increased after month 4, while archaeal richness increased and stabilized in both groups by month 9. Between-sample similarity was higher during the pre-weaning period, with increased dissimilarity from month 4 onward. Anaerobic fungi were detected in feces at month 4, with richness peaking at month 7. Before month 6, fungal community composition distinctly differed from mature communities. When colostrum, calf rumen, and donor inoculum were evaluated as seeding sources for hindgut colonization, the calf's own rumen was identified as the primary seeding source for fecal bacteria and fungi. Colostrum was a source for several bacteria detected in feces, but these were of temporary importance until weaning. The donor inoculum had limited impact on gut health as diarrhea rates were similar between the T-group and C-group. In conclusion, early-life microbiota modulation shows potential in ruminant development. However, a more targeted approach with bacteria adapted to the hindgut environment may be necessary to modulate hindgut effectively. This research contributes to our understanding of the complex relationship between gut microbiota and calf health and growth.
Collapse
Affiliation(s)
- Hanna Huuki
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Johanna Vilkki
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Aila Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Ilma Tapio
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
18
|
Li W, Zhang Y, Chen M, Guo X, Ding Z. The antioxidant strain Lactiplantibacillus plantarum AS21 and Clostridium butyricum ameliorate DSS-induced colitis in mice by remodeling the assembly of intestinal microbiota and improving gut functions. Food Funct 2024; 15:2022-2037. [PMID: 38289370 DOI: 10.1039/d3fo05337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Probiotics are known for their beneficial effects on improving intestinal function by alleviating the gut microbial diversity. However, the influences of antioxidant lactic acid bacteria (LAB) and anti-inflammatory Clostridium butyricum (CB) on ameliorating enteritis remain unclear. In this study, we investigated the effects of the antioxidant strain Lactiplantibacillus plantarum AS21 and CB alone, or in combination on intestinal microbiota, barrier function, oxidative stress and inflammation in mice with DSS-induced colitis. All probiotic treatments relieved the pathological development of colitis by improving the integrity of the intestinal mucosal barrier and the length of the colon. The probiotics also suppressed inflammation and oxidative stress by improving gut short-chain fatty acids and inhibiting the p38-MAPK/NF-κB pathway in colon tissues. According to the meta-network analysis, three distinct modules containing sensitive OTUs of the gut bacterial community specific to the control, DSS and DSS + probiotics groups were observed, and unlike the other two modules, Lachnospiraceae and Clostridia dominated the sensitive OTUs in the DSS + probiotics group. In addition, administration of the present probiotics particularly increased antioxidant and anti-inflammatory microbes Muribaculaceae, Bifidobacterium, Prevotellaceae and Alloprevotella. Furthermore, combined probiotic strain treatment showed a more stable anti-colitis effect than a single probiotic strain. Collectively, the present probiotics exhibited protective effects against colitis by suppressing the inflammation and oxidative damage in the colon, improving the gut microbiota and their functions, and consequently preventing the gut leak. The results indicate that the combination of the antioxidant properties of LAB and the anti-inflammatory properties of CB as nutritional intervention and adjuvant therapy could be an effective strategy to prevent and alleviate colitis.
Collapse
Affiliation(s)
- Wenyuan Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Mengyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
19
|
Mercer EM, Ramay HR, Moossavi S, Laforest-Lapointe I, Reyna ME, Becker AB, Simons E, Mandhane PJ, Turvey SE, Moraes TJ, Sears MR, Subbarao P, Azad MB, Arrieta MC. Divergent maturational patterns of the infant bacterial and fungal gut microbiome in the first year of life are associated with inter-kingdom community dynamics and infant nutrition. MICROBIOME 2024; 12:22. [PMID: 38326891 PMCID: PMC10848358 DOI: 10.1186/s40168-023-01735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND The gut microbiome undergoes primary ecological succession over the course of early life before achieving ecosystem stability around 3 years of age. These maturational patterns have been well-characterized for bacteria, but limited descriptions exist for other microbiota members, such as fungi. Further, our current understanding of the prevalence of different patterns of bacterial and fungal microbiome maturation and how inter-kingdom dynamics influence early-life microbiome establishment is limited. RESULTS We examined individual shifts in bacterial and fungal alpha diversity from 3 to 12 months of age in 100 infants from the CHILD Cohort Study. We identified divergent patterns of gut bacterial or fungal microbiome maturation in over 40% of infants, which were characterized by differences in community composition, inter-kingdom dynamics, and microbe-derived metabolites in urine, suggestive of alterations in the timing of ecosystem transitions. Known microbiome-modifying factors, such as formula feeding and delivery by C-section, were associated with atypical bacterial, but not fungal, microbiome maturation patterns. Instead, fungal microbiome maturation was influenced by prenatal exposure to artificially sweetened beverages and the bacterial microbiome, emphasizing the importance of inter-kingdom dynamics in early-life colonization patterns. CONCLUSIONS These findings highlight the ecological and environmental factors underlying atypical patterns of microbiome maturation in infants, and the need to incorporate multi-kingdom and individual-level perspectives in microbiome research to improve our understandings of gut microbiome maturation patterns in early life and how they relate to host health. Video Abstract.
Collapse
Affiliation(s)
- Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- International Microbiome Center, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
| | - Hena R Ramay
- International Microbiome Center, University of Calgary, Calgary, AB, Canada
| | - Shirin Moossavi
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Louvain, Belgium
- VIB Center for Microbiology, VIB, Louvain, Belgium
| | | | - Myrtha E Reyna
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Theo J Moraes
- Department of Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Padmaja Subbarao
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, MB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.
- International Microbiome Center, University of Calgary, Calgary, AB, Canada.
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada.
| |
Collapse
|
20
|
Bhaiyya R, Sharma SC, Singh RP. Biochemical characterization of bifunctional enzymatic activity of a recombinant protein (Bp0469) from Blautia producta ATCC 27340 and its role in the utilization of arabinogalactan oligosaccharides. Int J Biol Macromol 2023; 253:126736. [PMID: 37678698 DOI: 10.1016/j.ijbiomac.2023.126736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Human consumption of larch arabinogalactan has a significant effect on enhancing probiotic microflora in the gut, and it also promotes the production of short-chain fatty acids. Bacterial members of Lachnospiraceae family are important and play significant roles in maintaining our gut health. However, it is less known about biochemistry of members of this family by which they utilize non-cellulosic fiber in the gut. For enhancing this understanding, we studied that B. producta ATCC 27340 grew on arabinogalactan oligosaccharides (AGOs) as compared to polysaccharide form of arabinogalactan. Recombinant protein (Bp0469) was heterologously expressed in Escherichia coli BL21 (DE3) and revealed the optimum pH and temperature at 7.4 in phosphate buffer and 45 °C, respectively. Catalytic efficiency of recombinant Bp0469 for p-nitrophenyl (pNP)-α-L-arabinofuranoside was about half of pNP-β-D-galactopyranoside. It also cleaved natural substrates (lactose, arabinobiose and 3-O-(β-d-galactopyranosyl)-d-galactopyranose) and characterized AGOs in this study. Based on genomic, structural models, and biochemical characteristics, identified Bp0469 is a peculiar enzyme with two distinct domains that cleave α1-5 linked arabinobiose and β-D-Galp-1-3/4 linkages. Overall, the study enhances the knowledge on nutritional perspective of B. producta ATCC 27340 for thriving on non-cellulosic biomass, and identified enzyme can also be used for producing industrial important AGOs.
Collapse
Affiliation(s)
- Raja Bhaiyya
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North-Gate Gujarat International Finance Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India
| | - Sukesh Chander Sharma
- Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India
| | - Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North-Gate Gujarat International Finance Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India.
| |
Collapse
|
21
|
Wang YW, Wang XH, Zhang J, Du ZJ, Mu DS. Cerina litoralis gen. nov., sp. nov., a novel potential polysaccharide degrading bacterium of the family Flavobacteriaceae, isolated from marine sediment. Antonie Van Leeuwenhoek 2023; 116:1447-1455. [PMID: 37899393 DOI: 10.1007/s10482-023-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023]
Abstract
The Gram-strain-negative, facultative anaerobic, chemoheterotrophic, short-rod-shaped, non-motile, forming yellow colonies strain, designated F89T, was isolated from marine sediment of Xiaoshi Island, Weihai. Strain F89T grew at 15-37 °C (optimally at 28 °C), at pH 6.0-8.5 (optimally at pH 7.0) and in the presence of 1-5% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain F89T was related to the family Flavobacteriaceae. F89T had highest 16S rRNA gene sequence similarity to Maribacter cobaltidurans MCCC 1K03318T (93.3%). The predominant cellular fatty acids of F89T were iso-C15:0, iso-C15:0 G and Summed Feature 3. The main respiratory quinone of F89T was menaquinone 6 (MK-6), consistent with that observed for all related strains. The polar lipid profile of strain F89T contained phosphatidylethanolamine, two aminolipids and three unidentified polar lipids. The genomic DNA G + C content of strain F89T was 42.7%. Strain F89T encoded 121 glycoside hydrolases and was a potential polysaccharide degrading bacterium. Differential phenotypic and genotypic characteristics of the strain showed that F89T should be classified as a novel genus in Flavobacteriaceae, for which the name Cerina litoralis is proposed. The type strain is F89T (= MCCC 1H00510T = KCTC 92203T).
Collapse
Affiliation(s)
- Ya-Wei Wang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Xin-Hui Wang
- ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, China
| | - Jing Zhang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, 264209, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, China
| | - Da-Shuai Mu
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, China.
| |
Collapse
|
22
|
Sun Y, Hu Y, Hu D, Xiao Z, Wang H, Huang J, Mao J. Microbiota regulation by different Akebia trifoliata fruit juices upon human fecal fermentation in vitro. Food Sci Biotechnol 2023; 32:2093-2104. [PMID: 37860745 PMCID: PMC10581979 DOI: 10.1007/s10068-023-01308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 10/21/2023] Open
Abstract
Three different Akebia trifoliata fruit juices were prepared, and their effects on modulation of human fecal microbiota were elucidated through an anaerobic fermentation in vitro. Results indicated that the introduction of inoculatedly-fermented Akebia trifoliata fruit juice promoted short-chain fatty acids productivity. Fecal microbiota analysis demonstrated up-regulations for abundances of Limosilactobacillus, Megamonas, Bifidobacterium, and Escherichia_Shigella, and down-regulations for numbers of Bacteroides, Prevotella_9, Parasutterella, and Sutterella. Correlation analysis confirmed relationships among sample components, short-chain fatty acids productivity, and microbial abundances, suggesting that sugars and organic acids stimulated growth of Actinobacteriota and suppressed proliferation of Proteobacteria, thus uncovering the underlying mechanism for the better ability of inoculatedly-fermented Akebia trifoliata fruit juice to regulate microbiota structure. Besides, clusters of orthologous groups of proteins analysis indicated that metabolite biosynthesis, energy metabolism, homeostasis maintenance and other physiological functions were ameliorated. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01308-y.
Collapse
Affiliation(s)
- Yuhao Sun
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Yaru Hu
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Danqi Hu
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Zhuqian Xiao
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Hongpeng Wang
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| | - Jianwei Mao
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China
| |
Collapse
|
23
|
Xu F, Wu H, Xie J, Zeng T, Hao L, Xu W, Lu L. The Effects of Fermented Feed on the Growth Performance, Antioxidant Activity, Immune Function, Intestinal Digestive Enzyme Activity, Morphology, and Microflora of Yellow-Feather Chickens. Animals (Basel) 2023; 13:3545. [PMID: 38003161 PMCID: PMC10668758 DOI: 10.3390/ani13223545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
This experiment was conducted to investigate the effects of fermented feed on growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens. A total of 240 one-day-old female yellow-feathered (Hexi dwarf) chickens were randomly divided into two treatment groups, with six replicates per group and 20 chickens per replicate. The control group (CK) received a basal diet, whereas the experimental group was fed a basal diet of +2.00% fermented feed (FJ). The trial lasted for 22 days. Compared with the CK, (1) the growth performance was not affected (p > 0.05); (2) immunoglobin a, immunoglobin g, immunoglobin m, interleukin-1β, and interleukin-6 were affected (p < 0.05); (3) liver superoxide dismutase, glutathione peroxidase, and catalase were higher (p < 0.05); (4) trypsin activity in the duodenum and cecal Shannon index were increased (p < 0.05); (5) the relative abundance of Actinobacteriota in cecum was increased (p < 0.05); (6) the abundance of dominant microflora of Bacteroides as well as Clostridia UCG-014_norank were increased (p < 0.05). In summary, the fermented feed improved the growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Junan Agriculture and Rural Bureau, Linyi 276600, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiajun Xie
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| | - Lijian Hao
- Junan Agriculture and Rural Bureau, Linyi 276600, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
- Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310002, China
| |
Collapse
|
24
|
Zhang Z, Sun J, Li Y, Yang K, Wei G, Zhang S. Ameliorative effects of pine nut peptide-zinc chelate (Korean pine) on a mouse model of Alzheimer's disease. Exp Gerontol 2023; 183:112308. [PMID: 37821052 DOI: 10.1016/j.exger.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/17/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
In this study, 50 SD adult male mice were used to create an Alzheimer's disease model. The mice's learning and memory abilities were evaluated using an eight-arm radial maze experiment, and changes in body weight and food intake were noted. This helped to better validate the improvement of Alzheimer's disease caused by pine nut peptide-zinc chelate (Korean pine). For a more thorough investigation, mice's brains were dissected, Endogenous mercaptan antioxidants (enzymes), which are markers of brain tissue, were assessed, and mouse gut flora was analyzed. The findings demonstrated that pine nut peptide-zinc chelate (Korean pine) can improve learning and memory, stop brain aging and damage, and control gut flora in mice. It may exert its effects by ameliorating decreased AChE levels and increased ChAT levels in the central cholinergic system, endogenous thiol antioxidants (enzymes) in the cerebral cortex, and by controlling the bacterial flora in the gut.
Collapse
Affiliation(s)
- Zhi Zhang
- College of Life Sciences, Northeast Forestry University
| | - Jiajia Sun
- College of Forestry, Northeast Forestry University.
| | - Yanxia Li
- Forestry Research Institute of Heilongjiang Province.
| | - Kexin Yang
- College of Forestry, Northeast Forestry University
| | - Gang Wei
- College of Forestry, Northeast Forestry University
| | - Shenglong Zhang
- Heilongjiang Guohong Energy Saving and Environmental Protection Co
| |
Collapse
|
25
|
Lee H, Yoon S, Park YH, Lee JS, Rhyu DY, Kim KT. Microbiota dysbiosis associated with type 2 diabetes-like effects caused by chronic exposure to a mixture of chlorinated persistent organic pollutants in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122108. [PMID: 37422083 DOI: 10.1016/j.envpol.2023.122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
Mixtures of chlorinated persistent organic pollutants (C-POPs-Mix) are chemically related risk factors for type 2 diabetes mellitus (T2DM); however, the effects of chronic exposure to C-POPs-Mix on microbial dysbiosis remain poorly understood. Herein, male and female zebrafish were exposed to C-POPs-Mix at a 1:1 ratio of five organochlorine pesticides and Aroclor 1254 at concentrations of 0.02, 0.1, and 0.5 μg/L for 12 weeks. We measured T2DM indicators in blood and profiled microbial abundance and richness in the gut as well as transcriptomic and metabolomic alterations in the liver. Exposure to C-POPs-Mix significantly increased blood glucose levels while decreasing the abundance and alpha diversity of microbial communities only in females at concentrations of 0.02 and 0.1 μg/L. The majorly identified microbial contributors to microbial dysbiosis were Bosea minatitlanensis, Rhizobium tibeticum, Bifidobacterium catenulatum, Bifidobacterium adolescentis, and Collinsella aerofaciens. PICRUSt results suggested that altered pathways were associated with glucose and lipid production and inflammation, which are linked to changes in the transcriptome and metabolome of the zebrafish liver. Metagenomics outcomes revealed close relationships between intestinal and liver disruptions to T2DM-related molecular pathways. Thus, microbial dysbiosis in T2DM-triggered zebrafish occurred as a result of chronic exposure to C-POPs-Mix, indicating strong host-microbiome interactions.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada; Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sojeong Yoon
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong City 30019, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Dong Young Rhyu
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
26
|
Gurunathan S, Kim JH. Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications. Microb Pathog 2023; 183:106308. [PMID: 37595812 DOI: 10.1016/j.micpath.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Bacterial extracellular vesicles (BEVs) are nanosized lipid bilayers generated from membranes that are filled with components derived from bacteria. BEVs are important for the physiology, pathogenicity, and interactions between bacteria and their hosts as well. BEVs represent an important mechanism of transport and interaction between cells. Recent advances in biomolecular nanotechnology have enabled the desired properties to be engineered on the surface of BEVs and decoration with desired and diverse biomolecules and nanoparticles, which have potential biomedical applications. BEVs have been the focus of various fields, including nanovaccines, therapeutic agents, and drug delivery vehicles. In this review, we delineate the fundamental aspects of BEVs, including their biogenesis, cargo composition, function, and interactions with host cells. We comprehensively summarize the factors influencing the biogenesis of BEVs. We further highlight the importance of the isolation, purification, and characterization of BEVs because they are essential processes for potential benefits related to host-microbe interactions. In addition, we address recent advancements in BEVs in biomedical applications. Finally, we provide conclusions and future perspectives as well as highlight the remaining challenges of BEVs for different biomedical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
27
|
Guo R, Zhang W, Shen W, Zhang G, Xie T, Li L, Jinmei J, Liu Y, Kong F, Guo B, Li B, Sun Y, Liu S. Analysis of gut microbiota in chinese donkey in different regions using metagenomic sequencing. BMC Genomics 2023; 24:524. [PMID: 37670231 PMCID: PMC10478257 DOI: 10.1186/s12864-023-09575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Gut microbiota plays a significant role in host survival, health, and diseases; however, compared to other livestock, research on the gut microbiome of donkeys is limited. RESULTS In this study, a total of 30 donkey samples of rectal contents from six regions, including Shigatse, Changdu, Yunnan, Xinjiang, Qinghai, and Dezhou, were collected for metagenomic sequencing. The results of the species annotation revealed that the dominant phyla were Firmicutes and Bacteroidetes, and the dominant genera were Bacteroides, unclassified_o_Clostridiales (short for Clostridiales) and unclassified_f_Lachnospiraceae (short for Lachnospiraceae). The dominant phyla, genera and key discriminators were Bacteroidetes, Clostridiales and Bacteroidetes in Tibet donkeys (Shigatse); Firmicutes, Clostridiales and Clostridiales in Tibet donkeys (Changdu); Firmicutes, Fibrobacter and Tenericutes in Qinghai donkeys; Firmicutes, Clostridiales and Negativicutes in Yunnan donkeys; Firmicutes, Fibrobacter and Fibrobacteres in Xinjiang donkeys; Firmicutes, Clostridiales and Firmicutes in Dezhou donkeys. In the functional annotation, it was mainly enriched in the glycolysis and gluconeogenesis of carbohydrate metabolism, and the abundance was the highest in Dezhou donkeys. These results combined with altitude correlation analysis demonstrated that donkeys in the Dezhou region exhibited strong glucose-conversion ability, those in the Shigatse region exhibited strong glucose metabolism and utilization ability, those in the Changdu region exhibited a strong microbial metabolic function, and those in the Xinjiang region exhibited the strongest ability to decompose cellulose and hemicellulose. CONCLUSION According to published literature, this is the first study to construct a dataset with multi-regional donkey breeds. Our study revealed the differences in the composition and function of gut microbes in donkeys from different geographic regions and environmental settings and is valuable for donkey gut microbiome research.
Collapse
Affiliation(s)
- Rong Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Shen
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guoliang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
| | - Taifeng Xie
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiacuo Jinmei
- Tibet Autonomous Region Animal husbandry Station, Tibet, China
| | - Yiduan Liu
- Yunnan Provincial Animal Husbandry Station, Yunnan, China
| | - Fanyong Kong
- Honghe state animal husbandry technology extension station, Honghe, Yunnan, China
| | - Baozhu Guo
- Zhangjiakou City animal husbandry technology extension station, Zhangjiakou, Hebei, China
| | - Benke Li
- Binzhou City Agricultural Technology Extension Center, Binzhou, Shandong, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China.
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China.
- Vocational College of Dongying, Dongying, Shandong, China.
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China.
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China.
| |
Collapse
|
28
|
Han X, Ma Y, Ding S, Fang J, Liu G. Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:356-369. [PMID: 37635930 PMCID: PMC10448034 DOI: 10.1016/j.aninu.2023.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
The animal gut harbors diverse microbes that play an essential role in the well-being of their host. Specific diets, such as those rich in dietary fiber, are vital in disease prevention and treatment because they affect intestinal flora and have a positive impact on the metabolism, immunity, and intestinal function of the host. Dietary fiber can provide energy to colonic epithelial cells, regulate the structure and metabolism of intestinal flora, promote the production of intestinal mucosa, stimulate intestinal motility, improve glycemic and lipid responses, and regulate the digestion and absorption of nutrients, which is mainly attributed to short-chain fatty acids (SCFA), which is the metabolite of dietary fiber. By binding with G protein-coupled receptors (including GPR41, GPR43 and GPR109A) and inhibiting the activity of histone deacetylases, SCFA regulate appetite and glucolipid metabolism, promote the function of the intestinal barrier, alleviate oxidative stress, suppress inflammation, and maintain immune system homeostasis. This paper reviews the physicochemical properties of dietary fiber, the interaction between dietary fiber and intestinal microorganisms, the role of dietary fiber in maintaining intestinal health, and the function of SCFA, the metabolite of dietary fiber, in inhibiting inflammation. Furthermore, we consider the effects of dietary fiber on the intestinal health of pigs, the reproduction and lactation performance of sows, and the growth performance and meat quality of pigs.
Collapse
Affiliation(s)
- Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
29
|
Li Y, Liu S, Ding Y, Li S, Sang X, Li T, Zhao Q, Yu S. Structure, in vitro digestive characteristics and effect on gut microbiota of sea cucumber polysaccharide fermented by Bacillus subtilis Natto. Food Res Int 2023; 169:112872. [PMID: 37254322 DOI: 10.1016/j.foodres.2023.112872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
This study aimed to understand the structural, digestion and fecal fermentation behaviors of sea cucumber polysaccharide fermented by Bacillus subtilis Natto. Results showed that both sea cucumber polysaccharide (SP) and fermented sea cucumber polysaccharide (FSP) were sulfated polysaccharides mainly containing fucose. The physicochemical property, molecular weight, thermal property, and functional groups were no significant difference between SP and FSP, but the microscopic morphology and monosaccharide composition of FSP changed. Both SP and FSP showed similar digestion and fecal fermentation characteristics, that is, they could not be digested by saliva and gastric juice, but could be partially degraded by small intestine. Due to the decomposition of glycosidic bonds after intestinal digestion and fecal fermentation, the relative molecular mass of SP and FSP decreased. In terms of impacts on gut microbiota, Lachnospira, Bacteroides finegoldii, and Bifidobacteriaceae were significantly increased in SP, while Acinetobacter was significantly increased in FSP. This study provides a good understanding of the changes in the structure and digestive characteristics of sea cucumber polysaccharides caused by fermentation. That information will be beneficial for the development and application of new fermented sea cucumber products.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, PR China
| | - Yujie Ding
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, PR China
| | - Shuangshuang Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Dalian Xinyulong Marine Organisms Seed Industry Technology CO., LtD, Dalian 116023, PR China
| | - Xue Sang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, PR China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, PR China
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China; Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China.
| | - Shuang Yu
- Dalian Xinyulong Marine Organisms Seed Industry Technology CO., LtD, Dalian 116023, PR China
| |
Collapse
|
30
|
Bester A, O'Brien M, Cotter PD, Dam S, Civai C. Shotgun Metagenomic Sequencing Revealed the Prebiotic Potential of a Fruit Juice Drink with Fermentable Fibres in Healthy Humans. Foods 2023; 12:2480. [PMID: 37444219 DOI: 10.3390/foods12132480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Fibre-based dietary interventions are at the forefront of gut microbiome modulation research, with a wealth of 16S rRNA information to demonstrate the prebiotic effects of isolated fibres. However, there is a distinct lack of data relating to the effect of a combination of soluble and insoluble fibres in a convenient-to-consume fruit juice food matrix on gut microbiota structure, diversity, and function. Here, we aimed to determine the impact of the MOJU Prebiotic Shot, an apple, lemon, ginger, and raspberry fruit juice drink blend containing chicory inulin, baobab, golden kiwi, and green banana powders, on gut microbiota structure and function. Healthy adults (n = 20) were included in a randomised, double-blind, placebo-controlled, cross-over study, receiving 60 mL MOJU Prebiotic Shot or placebo (without the fibre mix) for 3 weeks with a 3-week washout period between interventions. Shotgun metagenomics revealed significant between-group differences in alpha and beta diversity. In addition, the relative abundance of the phyla Actinobacteria and Desulfobacteria was significantly increased as a result of the prebiotic intervention. Nine species were observed to be differentially abundant (uncorrected p-value of <0.05) as a result of the prebiotic treatment. Of these, Bifidobacterium adolescentis and CAG-81 sp900066785 (Lachnospiraceae) were present at increased abundance relative to baseline. Additionally, KEGG analysis showed an increased abundance in pathways associated with arginine biosynthesis and phenylacetate degradation during the prebiotic treatment. Our results show the effects of the daily consumption of 60 mL MOJU Prebiotic Shot for 3 weeks and provide insight into the functional potential of B. adolescentis.
Collapse
Affiliation(s)
- Adri Bester
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | | | | | | | - Claudia Civai
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
31
|
Liu T, Zhao M, Zhang Y, Wang Z, Yuan B, Zhao C, Wang M. Integrated microbiota and metabolite profiling analysis of prebiotic characteristics of Phellinus linteus polysaccharide in vitro fermentation. Int J Biol Macromol 2023; 242:124854. [PMID: 37182617 DOI: 10.1016/j.ijbiomac.2023.124854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Phellinus linteus polysaccharide (PLP) had received increasing attention due to its multiple biological activities. Herein, the extraction, characterization and in vitro fermentation of PLP were studied to explore its physiochemical properties and the interaction mechanism between the gut microbiota and PLP. The results obtained demonstrated that PLP was mainly composed of 9 monosaccharides, with three gel chromatographic peaks and molecular weights (Mw) of 308.45 kDa, 13.58 kD and 3.33 kDa, respectively. After 48 h fermentation, the Mw, total sugar, reducing sugar, pH and monosaccharides composition were decreased. Furthermore, PLP regulated the composition of gut microbiota, such as promoting the proliferation of beneficial bacteria such as Bacteroides, Prevotella and Butyricimonas, while preventing the growth of pathogenic bacteria such as Escherichia-Shigella, Morganella and Intestinimonas. Gut microbiota metabolites regulated by PLP such as short-chain fatty acids were the main regulators that impact the host health. Bioinformatics analysis indicated that butyrate, bile acid and purine metabolism were the main metabolic pathways of PLP regulating host health, and the Bacteroides was the key genus to regulate these metabolic pathways. In conclusion, our finding suggested that PLP may be used as a prebiotic agent for human health because of its ability to regulate gut microbiota.
Collapse
Affiliation(s)
- Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Zheyong Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Bo Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
32
|
Novak JK, Gardner JG. Galactomannan utilization by Cellvibrio japonicus relies on a single essential α-galactosidase encoded by the aga27A gene. Mol Microbiol 2023; 119:312-325. [PMID: 36604822 DOI: 10.1111/mmi.15024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Plant mannans are a component of lignocellulose that can have diverse compositions in terms of its backbone and side-chain substitutions. Consequently, the degradation of mannan substrates requires a cadre of enzymes for complete reduction to substituent monosaccharides that can include mannose, galactose, and/or glucose. One bacterium that possesses this suite of enzymes is the Gram-negative saprophyte Cellvibrio japonicus, which has 10 predicted mannanases from the Glycoside Hydrolase (GH) families 5, 26, and 27. Here we describe a systems biology approach to identify and characterize the essential mannan-degrading components in this bacterium. The transcriptomic analysis uncovered significant changes in gene expression for most mannanases, as well as many genes that encode carbohydrate active enzymes (CAZymes) when mannan was actively being degraded. A comprehensive mutational analysis characterized 54 CAZyme-encoding genes in the context of mannan utilization. Growth analysis of the mutant strains found that the man26C, aga27A, and man5D genes, which encode a mannobiohydrolase, α-galactosidase, and mannosidase, respectively, were important for the deconstruction of galactomannan, with Aga27A being essential. Our updated model of mannan degradation in C. japonicus proposes that the removal of galactose sidechains from substituted mannans constitutes a crucial step for the complete degradation of this hemicellulose.
Collapse
Affiliation(s)
- Jessica K Novak
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Advances and challenges in interaction between heteroglycans and Bifidobacterium: Utilization strategies, intestinal health and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
34
|
Wang Q, Chen H, Yin M, Cheng X, Xia H, Hu H, Zheng J, Zhang Z, Liu H. In vitro digestion and human gut microbiota fermentation of Bletilla striata polysaccharides and oligosaccharides. Front Cell Infect Microbiol 2023; 13:1105335. [PMID: 36816591 PMCID: PMC9929950 DOI: 10.3389/fcimb.2023.1105335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Background Bletilla striata is one of the commonly used traditional Chinese medicine. B. striata polysaccharides (BP) and oligosaccharides (BO) are one of the main components of B. striata, which have been proved to have a variety of biological activities. However, the digestion and fermentation characteristics of BP and BO are still unclear. Methods The study evaluated different prebiotic effects of BP and BO by in vitro simulating digestion and gut microbiota fermentation. Results The results show that the simulating saliva partly degraded BP, but had no effect on BO. The molecular weights of BP and BO remained basically unchanged in gastric and intestinal digestion. In addition, BP and BO could be rapidly degraded and utilized by gut microbiota. During in vitro fermentation, the growth rates of the BP and BO groups were higher than that of the Control group and the pH value and total carbohydrate content in BP group and BO group decreased significantly. Although the reducing sugar level in the BO group decreased rapidly, it remained at a low level in the BP group. Both BP and BO improved the composition and structure of gut microbiota, indicative of the upregulated abundances of Streptococcus and Veillonella, and the downregulated populations of Escherichia and Bacteroides. There were differences in the SCFA production by gut microbiota and antioxidant activities between the BP and BO groups. The fermentation broth of the BP group displayed a stronger suppression of O2-, but a higher scavenging effect on DPPH for the BO group. Conclusions BP and BO displayed different digestion and fermentation characteristics in vitro due to their distinct polymerization degrees. The study point towards the potential of BP and BO as prebiotics in the application to human diseases by selectively regulating gut microbiota in the future.
Collapse
Affiliation(s)
| | | | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Hongtao Liu
- *Correspondence: Zhigang Zhang, ; Hongtao Liu,
| |
Collapse
|
35
|
Thorman AW, Adkins G, Conrey SC, Burrell AR, Yu Y, White B, Burke R, Haslam D, Payne DC, Staat MA, Morrow AL, Newburg DS. Gut Microbiome Composition and Metabolic Capacity Differ by FUT2 Secretor Status in Exclusively Breastfed Infants. Nutrients 2023; 15:471. [PMID: 36678342 PMCID: PMC9866411 DOI: 10.3390/nu15020471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
A major polymorphism in the fucosyltransferase2 (FUT2) gene influences risk of multiple gut diseases, but its impact on the microbiome of breastfed infants was unknown. In individuals with an active FUT2 enzyme (“secretors”), the intestinal mucosa is abundantly fucosylated, providing mutualist bacteria with a rich endogenous source of fucose. Non-secretors comprise approximately one-fifth of the population, and they lack the ability to create this enzyme. Similarly, maternal secretor status influences the abundance of a breastfeeding mother’s fucosylated milk oligosaccharides. We compared the impact of maternal secretor status, measured by FUT2 genotype, and infant secretor status, measured by FUT2 genotype and phenotype, on early infant fecal microbiome samples collected from 2-month-old exclusively breastfed infants (n = 59). Infant secretor status (19% non-secretor, 25% low-secretor, and 56% full-secretor) was more strongly associated with the infant microbiome than it was with the maternal FUT2 genotype. Alpha diversity was greater in the full-secretors than in the low- or non-secretor infants (p = 0.049). Three distinct microbial enterotypes corresponded to infant secretor phenotype (p = 0.022) and to the dominance of Bifidobacterium breve, B. longum, or neither (p < 0.001). Infant secretor status was also associated with microbial metabolic capacity, specifically, bioenergetics pathways. We concluded that in exclusively breastfed infants, infant—but not maternal—secretor status is associated with infant microbial colonization and metabolic capacity.
Collapse
Affiliation(s)
- Alexander W. Thorman
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Grace Adkins
- St. Jude’s Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - Shannon C. Conrey
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Allison R. Burrell
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Brendon White
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Rachel Burke
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - David Haslam
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Daniel C. Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Mary A. Staat
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Ardythe L. Morrow
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220, USA
| | - David S. Newburg
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| |
Collapse
|
36
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
37
|
Mary PR, Kapoor M. Co-culture fermentations suggest cross-feeding among Bacteroides ovatus DSMZ 1896, Lactiplantibacillus plantarum WCFS1 and Bifidobacterium adolescentis DSMZ 20083 for utilizing dietary galactomannans. Food Res Int 2022; 162:111942. [DOI: 10.1016/j.foodres.2022.111942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023]
|
38
|
Guo R, Zhang S, Chen J, Shen W, Zhang G, Wang J, Zhang F, Pan Q, Xie T, Ai D, Dong J, Suo J, Sun Y, Liu S. Comparison of gut microflora of donkeys in high and low altitude areas. Front Microbiol 2022; 13:964799. [PMID: 36225357 PMCID: PMC9549287 DOI: 10.3389/fmicb.2022.964799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Donkeys’ gut microbe is critical for their health and adaptation to the environment. Little research has been conducted on the donkey gut microbiome compared with other domestic animals. The Tibetan Plateau is an extreme environment. In this study, 6 Qinghai donkeys (QH) from the Tibetan Plateau and 6 Dezhou donkeys (DZ) were investigated, and the contents of 4 parts—stomach, small intestine, cecum, and rectum—were collected. 16S rRNA sequencing and metagenomic sequencing were used to analyze the composition and diversity of gut microbial communities in donkeys. The results showed that the flora diversity and richness of the hindgut were significantly higher than those of the foregut (p < 0.01), with no sex differences, and the community structure and composition of the same or adjacent regions (stomach, small intestine, cecum, and rectum) were similar. Besides, the flora diversity and richness of QH on the Tibetan Plateau were significantly higher than those of DZ (p < 0.05). The major pathways associated with QH were signal transduction mechanisms and carbohydrate transport and metabolism, and Bacteroidales were the major contributors to these functions. Our study provides novel insights into the contribution of microbiomes to the adaptive evolution of donkeys.
Collapse
Affiliation(s)
- Rong Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, Jinan, Shandong, China
| | - Jianxing Chen
- College of Chemistry and Life Science, Chifeng University, Chifeng, Inner Mongolia, China
| | - Wei Shen
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guoliang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
| | - Junjie Wang
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Fali Zhang
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qingjie Pan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Taifeng Xie
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Deqiang Ai
- Qinghai Sheep Breeding and Extension Service Center, Gangcha County, Haibei Prefecture, Qinghai, China
| | - Jianbao Dong
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Jiajia Suo
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
- Vocational College of Dongying, Dongying, Shandong, China
- *Correspondence: Yujiang Sun,
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
- Shuqin Liu,
| |
Collapse
|
39
|
Yue B, Zong G, Tao R, Wei Z, Lu Y. Crosstalk between traditional Chinese medicine-derived polysaccharides and the gut microbiota: A new perspective to understand traditional Chinese medicine. Phytother Res 2022; 36:4125-4138. [PMID: 36100366 DOI: 10.1002/ptr.7607] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/09/2022]
Abstract
Polysaccharide is a kind of macromolecule polymer composed of monosaccharides connected by glycosidic bonds. Traditional Chinese medicine (TCM), composed of various bioactive ingredients, is usually rich in polysaccharides. In recent years, extensive research on TCM polysaccharides has demonstrated their pharmacological effects. Polysaccharides can hardly be catabolized by enzymes encoded by the human genome but can be degraded to absorbable metabolites by bacteria inhabiting the colon. Hence, the gut microbiota plays a vital role in degrading TCM polysaccharides into short-chain fatty acids (SCFAs) which exert physiological functions locally and systemically. Besides, TCM polysaccharides can also modulate the composition and activities of the gut microbiota by promoting the growth of beneficial bacteria and inhibiting the colonization of pathogenic bacteria, ultimately restoring gut homeostasis and improving human health. In this review, we discuss the extraction and pharmacological effects of TCM polysaccharides, various functions of the gut microbiota, and the interactions between TCM polysaccharides and the gut microbiota, illuminating the mechanisms of TCM polysaccharides modulating host physiology via the gut microbiota. To firmly establish the clinical efficacy of TCM polysaccharides, further high-quality studies especially clinical trials are needed. Generally, discussion on the interplay between TCM polysaccharides and the gut microbiota is expected to elucidate their application prospects and inspire new thoughts in the development of TCM.
Collapse
Affiliation(s)
- Bingjie Yue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Bacterial Atlas of Mouse Gut Microbiota. Cell Microbiol 2022. [DOI: 10.1155/2022/5968814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Mouse model is one of the most widely used animal models for exploring the roles of human gut microbiota, a complex system involving in human immunity and metabolism. However, the structure of mouse gut bacterial community has not been explored at a large scale. To address this concern, the diversity and composition of the gut bacteria of 600 mice were characterized in this study. Results. The results showed that the bacteria belonging to 8 genera were found in the gut microbiota of all mouse individuals, indicating that the 8 bacteria were the core bacteria of mouse gut microbiota. The dominant genera of the mouse gut bacteria contained 15 bacterial genera. It was found that the bacteria in the gut microbiota were mainly involved in host’s metabolisms via the collaborations between the gut bacteria. The further analysis demonstrated that the composition of mouse gut microbiota was similar to that of human gut microbiota. Conclusion. Our study presented a bacterial atlas of mouse gut microbiota, providing a solid basis for investing the bacterial communities of mouse gut microbiota.
Collapse
|
41
|
Djemai K, Drancourt M, Tidjani Alou M. Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions. MICROBIAL ECOLOGY 2022; 83:536-554. [PMID: 34169332 DOI: 10.1007/s00248-021-01796-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Methanogens are microorganisms belonging to the Archaea domain and represent the primary source of biotic methane. Methanogens encode a series of enzymes which can convert secondary substrates into methane following three major methanogenesis pathways. Initially recognized as environmental microorganisms, methanogens have more recently been acknowledged as host-associated microorganisms after their detection and initial isolation in ruminants in the 1950s. Methanogens have also been co-detected with bacteria in various pathological situations, bringing their role as pathogens into question. Here, we review reported associations between methanogens and bacteria in physiological and pathological situations in order to understand the metabolic interactions explaining these associations. To do so, we describe the origin of the metabolites used for methanogenesis and highlight the central role of methanogens in the syntrophic process during carbon cycling. We then focus on the metabolic abilities of co-detected bacterial species described in the literature and infer from their genomes the probable mechanisms of their association with methanogens. The syntrophic interactions between bacteria and methanogens are paramount to gut homeostasis. Therefore, any dysbiosis affecting methanogens might impact human health. Thus, the monitoring of methanogens may be used as a bio-indicator of dysbiosis. Moreover, new therapeutic approaches can be developed based on their administration as probiotics. We thus insist on the importance of investigating methanogens in clinical microbiology.
Collapse
Affiliation(s)
- Kenza Djemai
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
| | - Maryam Tidjani Alou
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
42
|
Fernandez-Julia P, Commane DM, van Sinderen D, Munoz-Munoz J. Cross-feeding interactions between human gut commensals belonging to the Bacteroides and Bifidobacterium genera when grown on dietary glycans. MICROBIOME RESEARCH REPORTS 2022; 1:12. [PMID: 38045648 PMCID: PMC10688802 DOI: 10.20517/mrr.2021.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 02/25/2022] [Indexed: 12/05/2023]
Abstract
Elements of the human gut microbiota metabolise many host- and diet-derived, non-digestible carbohydrates (NDCs). Intestinal fermentation of NDCs salvages energy and resources for the host and generates beneficial metabolites, such as short chain fatty acids, which contribute to host health. The development of functional NDCs that support the growth and/or metabolic activity of specific beneficial gut bacteria, is desirable, but dependent on an in-depth understanding of the pathways of carbohydrate fermentation. The purpose of this review is to provide an appraisal of what is known about the roles of, and interactions between, Bacteroides and Bifidobacterium as key members involved in NDC utilisation. Bacteroides is considered an important primary degrader of complex NDCs, thereby generating oligosaccharides, which in turn can be fermented by secondary degraders. In this review, we will therefore focus on Bacteroides as an NDC-degrading specialist and Bifidobacterium as an important and purported probiotic representative of secondary degraders. We will describe cross-feeding interactions between members of these two genera. We note that there are limited studies exploring the interactions between Bacteroides and Bifidobacterium, specifically concerning β-glucan and arabinoxylan metabolism. This review therefore summarises the roles of these organisms in the breakdown of dietary fibre and the molecular mechanisms and interactions involved. Finally, it also highlights the need for further research into the phenomenon of cross-feeding between these organisms for an improved understanding of these cross-feeding mechanisms to guide the rational development of prebiotics to support host health or to prevent or combat disease associated with microbial dysbiosis.
Collapse
Affiliation(s)
- Pedro Fernandez-Julia
- Microbial Enzymology Group, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - Daniel M. Commane
- Microbial Enzymology Group, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Group, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
43
|
Feng Y, Yu Y, Chen Z, Wang L, Ma J, Bai X, Sun Y, Wang D. Effects of β-Carotin and Green Tea Powder Diets on Alleviating the Symptoms of Gouty Arthritis and Improving Gut Microbiota in C57BL/6 Mice. Front Microbiol 2022; 13:837182. [PMID: 35145506 PMCID: PMC8821968 DOI: 10.3389/fmicb.2022.837182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
As a chronic metabolic disease caused by disorders of purine metabolism, gout has shown increasing incidence rate worldwide. Considering that gout is not easily treated and cured, further studies are explored to prevent gout development through diet modification. Both β-carotin and green tea powder are rich in dietary fiber, which helps maintain the balance of gut microbiota in humans. The aim of this study was to investigate the effects of β-carotin and green tea powder diet on the prevention of gouty arthritis in relation to the bacterial structure of gut microbiota in mice. We successfully induced gouty arthritis in C57BL/6 mice by injecting monosodium urate (MSU) crystals and feeding high-fat diet (HFD), and further investigated the effects of additional β-carotin and green tea powder in the diets of mice on the prevention of gouty arthritis in mice. Our results showed that diet of β-carotin and green tea powder reduced the joint swelling and pain in mice with gout, reduced the levels of serum uric acid (UA) and three types of pro-inflammatory cytokines, i.e., interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), improved the gut microbiota profile, and reduced the metabolic levels of purines and pyrimidines. In conclusion, our study provided evidence to support the application of β-carotin and green tea powder diet as a dietary adjustment method to prevent and treat gouty arthritis.
Collapse
Affiliation(s)
- Yu Feng
- Department of Orthopedic, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Zheng Chen
- Department of Orthopedic, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lili Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyu Ma
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Dawei Wang
- Department of Orthopedic, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
44
|
Qiu SM, Aweya JJ, Liu X, Liu Y, Tang S, Zhang W, Cheong KL. Bioactive polysaccharides from red seaweed as potent food supplements: a systematic review of their extraction, purification, and biological activities. Carbohydr Polym 2022; 275:118696. [PMID: 34742423 DOI: 10.1016/j.carbpol.2021.118696] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 02/05/2023]
Abstract
Most marine macroalgae such as red seaweeds are potential alternative sources of useful bioactive compounds. Beside serving as food source, recent studies have shown that red seaweeds are rich sources of bioactive polysaccharides. Red seaweed polysaccharides (RSPs) have various physiological and biological activities, which allow them to be used as immunomodulators, anti-obesity agents, and prebiotic ingredients. Lack of summary information and human clinical trials on the various polysaccharides from red seaweeds, however limits industrial-scale utilization of RSPs in functional foods. This review summarizes recent information on the approaches used for RSPs extraction and purification, mechanistic investigations of their biological activities, and related molecular principles behind their purported ability to prevent diseases. The information here also provides a theoretical foundation for further research into the structure and mechanism of action of RSPs and their potential applications in functional foods.
Collapse
Affiliation(s)
- Si-Min Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China..
| |
Collapse
|
45
|
Guan ZW, Yu EZ, Feng Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021; 26:molecules26226802. [PMID: 34833893 PMCID: PMC8624670 DOI: 10.3390/molecules26226802] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary fiber is a widely recognized nutrient for human health. Previous studies proved that dietary fiber has significant implications for gastrointestinal health by regulating the gut microbiota. Moreover, mechanistic research showed that the physiological functions of different dietary fibers depend to a great extent on their physicochemical characteristics, one of which is solubility. Compared with insoluble dietary fiber, soluble dietary fiber can be easily accessed and metabolized by fiber-degrading microorganisms in the intestine and produce a series of beneficial and functional metabolites. In this review, we outlined the structures, characteristics, and physiological functions of soluble dietary fibers as important nutrients. We particularly focused on the effects of soluble dietary fiber on human health via regulating the gut microbiota and reviewed their effects on dietary and clinical interventions.
Collapse
Affiliation(s)
- Zhi-Wei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- School of Life Science, Qi Lu Normal University, Jinan 250200, China
| | - En-Ze Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
46
|
Zhang S, Qian Y, Li Q, Xu X, Li X, Wang C, Cai H, Zhu J, Yu Y. Metabolic and Neural Mechanisms Underlying the Associations Between Gut Bacteroides and Cognition: A Large-Scale Functional Network Connectivity Study. Front Neurosci 2021; 15:750704. [PMID: 34733135 PMCID: PMC8558260 DOI: 10.3389/fnins.2021.750704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
There is a proof-of-concept that microbial metabolites provide a molecular connection between the gut and the brain. Extensive research has established a link between gut Bacteroides and human cognition, yet the metabolic and neural mechanisms underlying this association remain largely unknown. Here, we collected fecal samples, resting-state functional MRI, and cognitive data from a large and homogeneous sample of 157 healthy young adults. 16S rRNA gene sequencing was conducted with abundances of Bacteroides and metabolic pathways quantified by species annotation and functional prediction analyses, respectively. Large-scale intra- and internetwork functional connectivity was measured using independent component analysis. Results showed that gut Bacteroides were related to multiple metabolic pathways, which in turn were associated with widespread functional network connectivity. Furthermore, functional network connectivity mediated the associations between some Bacteroides-related metabolic pathways and cognition. Remarkably, arginine and proline metabolism, phenylalanine metabolism, and biosynthesis of unsaturated fatty acids act as the key metabolic pathways that are most contributive, and the executive control and sensorimotor systems contribute most strongly at the neural level. Our findings suggest complex poly-pathway and poly-network processes linking Bacteroides to cognition, more generally yielding a novel conceptualization of targeting gut Bacteroides as an intervention strategy for individuals with cognitive impairment.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qian Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xueying Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
47
|
Díaz‐Garrido N, Badia J, Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J Extracell Vesicles 2021; 10:e12161. [PMID: 34738337 PMCID: PMC8568775 DOI: 10.1002/jev2.12161] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The intestine is fundamental in controlling human health. Intestinal epithelial and immune cells are continuously exposed to millions of microbes that greatly impact on intestinal epithelial barrier and immune function. This microbial community, known as gut microbiota, is now recognized as an important partner of the human being that actively contribute to essential functions of the intestine but also of distal organs. In the gut ecosystem, bidirectional microbiota-host communication does not involve direct cell contacts. Both microbiota and host-derived extracellular vesicles (EVs) are key players of such interkingdom crosstalk. There is now accumulating body of evidence that bacterial secreted vesicles mediate microbiota functions by transporting and delivering into host cells effector molecules that modulate host signalling pathways and cell processes. Consequently, vesicles released by the gut microbiota may have great influence on health and disease. Here we review current knowledge on microbiota EVs and specifically highlight their role in controlling host metabolism, intestinal barrier integrity and immune training.
Collapse
Affiliation(s)
- Natalia Díaz‐Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i FisiologiaFacultat de Farmàcia i Ciències de l'AlimentacióUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IRSJD)Institut de Biomedicina de la Universitat de Barcelona (IBUB)BarcelonaSpain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i FisiologiaFacultat de Farmàcia i Ciències de l'AlimentacióUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IRSJD)Institut de Biomedicina de la Universitat de Barcelona (IBUB)BarcelonaSpain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i FisiologiaFacultat de Farmàcia i Ciències de l'AlimentacióUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IRSJD)Institut de Biomedicina de la Universitat de Barcelona (IBUB)BarcelonaSpain
| |
Collapse
|
48
|
Gao G, Cao J, Mi L, Feng D, Deng Q, Sun X, Zhang H, Wang Q, Wang J. BdPUL12 depolymerizes β-mannan-like glycans into mannooligosaccharides and mannose, which serve as carbon sources for Bacteroides dorei and gut probiotics. Int J Biol Macromol 2021; 187:664-674. [PMID: 34339781 DOI: 10.1016/j.ijbiomac.2021.07.172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/16/2022]
Abstract
Symbiotic bacteria, including members of the Bacteroides genus, are known to digest dietary fibers in the gastrointestinal tract. The metabolism of complex carbohydrates is restricted to a specified subset of species and is likely orchestrated by polysaccharide utilization loci (PULs) in these microorganisms. β-Mannans are plant cell wall polysaccharides that are commonly found in human nutrients. Here, we report the structural basis of a PUL cluster, BdPUL12, which controls β-mannan-like glycan catabolism in Bacteroides dorei. Detailed biochemical characterization and targeted gene disruption studies demonstrated that a key glycoside hydrolase, BdP12GH26, performs the initial attack on galactomannan or glucomannan likely via an endo-acting mode, generating mannooligosaccharides and mannose. Importantly, coculture assays showed that the B. dorei promoted the proliferation of Lactobacillus helveticus and Bifidobacterium adolescentis, likely by sharing mannooligosaccharides and mannose with these gut probiotics. Our findings provide new insights into carbohydrate metabolism in gut-inhabiting bacteria and lay a foundation for novel probiotic development.
Collapse
Affiliation(s)
- Ge Gao
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiawen Cao
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan Mi
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Feng
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Deng
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobao Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huien Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Qian Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jiakun Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Zhao S, Dien BS, Lindemann SR, Chen MH. Controlling autohydrolysis conditions to produce xylan-derived fibers that modulate gut microbiota responses and metabolic outputs. Carbohydr Polym 2021; 271:118418. [PMID: 34364559 DOI: 10.1016/j.carbpol.2021.118418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022]
Abstract
Autohydrolysis is used for producing xylan-derived oligosaccharides from lignocellulosic biomass. Although numerous studies report optimized autohydrolysis conditions for various plants, few of these studies correlate process parameters with the resulting structural properties to their impact on intestinal bacterial communities. Thus, to further clarify these relationships, beechwood xylan (BWX)-derived substrates, processed under five conditions, were fermented in vitro by human gut microbiota. Autohydrolysis reduced the mean molecular size and substitutions of BWX. Distinct fermentation kinetics were observed with differing processing of BWX substrates, which correlated with impacts on community species evenness. The relative abundances of Bacteroides, Fusicatenibacter, Bifidobacterium, and Megasphaera within the fermentations varied with processing conditions. While the total short-chain fatty acid concentrations were the same among the treatments, processing conditions varied the extent of propionate and butyrate generation. Autolysis parameters may be an important tool for optimizing beneficial effects of xylan-derived fibers on human gut microbiota structure and function.
Collapse
Affiliation(s)
- Sainan Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Bruce S Dien
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States; Department of Nutrition Science, Purdue University, 700 W. State Street, West Lafayette, IN 47907, United States
| | - Ming-Hsu Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
50
|
Xu Y, Yu Y, Shen Y, Li Q, Lan J, Wu Y, Zhang R, Cao G, Yang C. Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poult Sci 2021; 100:101358. [PMID: 34358955 PMCID: PMC8350532 DOI: 10.1016/j.psj.2021.101358] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
This study investigated the effects of dietary supplementation with Bacillus subtilis (B. subtilis) or Bacillus licheniformis (B. licheniformis) on growth performance, immunity, antioxidant capacity, short chain fatty acid (SCFA) production, and the cecal microflora in broiler chickens. In total, 360 male, 1-day-old Cobb 500 birds were randomly divided into 3 groups: the control group was fed a basal diet; the B. subtilis group was fed a basal diet supplemented with 1.5 × 109 CFU/kg B. subtilis; the B. licheniformis group was fed a basal diet supplemented with 1.5 × 109 CFU/kg B. licheniformis. Results showed that chickens supplemented with either B. subtilis or B. licheniformis had comparatively higher (P < 0.05) body weight and average daily gain, whereas no difference (P > 0.05) was observed in feed efficiency. Concentrations of serum IgA, IgY, and IgM, as well as anti-inflammatory IL-10 were significantly increased (P < 0.05), and proinflammatory IL-1β and IL-6 were significantly decreased (P < 0.05) by B. subtilis or B. licheniformis supplementation. Moreover, chickens fed with diets supplemented by either B. subtilis or B. licheniformis had greater antioxidant capacity, indicated by the notable increases (P < 0.05) in glutathione peroxidase, superoxide dismutase, and catalase, along with decrease (P < 0.05) in malondialdehyde. Compared to the control group, levels of SCFA, excluding acetic and propionic acid, in cecal content had improved (P < 0.05) by adding B. licheniformis, and significant increase (P < 0.05) in acetic and butyric acid was observed with B. subtilis supplementation. Microbial analysis showed that both B. subtilis or B. licheniformis supplementation could increase butyrate-producing bacteria such as Alistipes and Butyricicoccus, and decrease pathogenic bacteria such as the Synergistetes and Gammaproteobacteria. In summary, dietary supplemented with B. subtilis or B. licheniformis improved growth performance, immune status, and antioxidant capacity, increased SCFA production, and modulated cecal microbiota in chickens. Moreover, B. licheniformis was more effective than B. subtilis with the same supplemental amount.
Collapse
Affiliation(s)
- Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yuanyuan Shen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Junhong Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guantian Cao
- College of Standardisation, China Jiliang University, Hangzhou 310018, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology College of Veterinary Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China.
| |
Collapse
|