1
|
Yao S, Lai J, Sun C, Zhao M, Duan J, Liao X, Pan Z. The microbial communities of the rust layer were influenced by seawater microbial communities. BIOFOULING 2024:1-18. [PMID: 39373126 DOI: 10.1080/08927014.2024.2411076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of Erythrobacter, norank_f__Rhodothermaceae, and Acinetobacter bacteria, as well as Aspergillus fungi, were overrepresented in the rust layer, along with the Pseudoalteromonas and Marinobacterium bacteria in seawater, and Ramlibacter, Aquimarina, and Williamsia bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.
Collapse
Affiliation(s)
- Shengxun Yao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Congtao Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Maomi Zhao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Xiufen Liao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Zihan Pan
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| |
Collapse
|
2
|
Karačić S, Suarez C, Hagelia P, Persson F, Modin O, Martins PD, Wilén BM. Microbial acidification by N, S, Fe and Mn oxidation as a key mechanism for deterioration of subsea tunnel sprayed concrete. Sci Rep 2024; 14:22742. [PMID: 39349736 PMCID: PMC11442690 DOI: 10.1038/s41598-024-73911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
The deterioration of fibre-reinforced sprayed concrete was studied in the Oslofjord subsea tunnel (Norway). At sites with intrusion of saline groundwater resulting in biofilm growth, the concrete exhibited significant concrete deterioration and steel fibre corrosion. Using amplicon sequencing and shotgun metagenomics, the microbial taxa and surveyed potential microbial mechanisms of concrete degradation at two sites over five years were identified. The concrete beneath the biofilm was investigated with polarised light microscopy, scanning electron microscopy and X-ray diffraction. The oxic environment in the tunnel favoured aerobic oxidation processes in nitrogen, sulfur and metal biogeochemical cycling as evidenced by large abundances of metagenome-assembled genomes (MAGs) with potential for oxidation of nitrogen, sulfur, manganese and iron, observed mild acidification of the concrete, and the presence of manganese- and iron oxides. These results suggest that autotrophic microbial populations involved in the cycling of several elements contributed to the corrosion of steel fibres and acidification causing concrete deterioration.
Collapse
Affiliation(s)
- Sabina Karačić
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, 221 00, Sweden
- Sweden Water Research AB, Lund, 222 35, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads Administration, Oslo, 0030, Norway
- Müller-Sars Biological Station, Ørje, NO-1871, Norway
| | - Frank Persson
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Oskar Modin
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Paula Dalcin Martins
- Department of Ecosystem and Landscape Dynamics, University of Amsterdam, Amsterdam, 1090 GE, Netherlands
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen, 9747 AG, Netherlands
| | - Britt-Marie Wilén
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden.
| |
Collapse
|
3
|
Ghezzi D, Mangiaterra G, Scardino A, Fehervari M, Magnani M, Citterio B, Frangipani E. Characterization of bacterial communities associated with seabed sediments in offshore and nearshore sites to improve Microbiologically Influenced Corrosion mitigation on marine infrastructures. PLoS One 2024; 19:e0309971. [PMID: 39231176 PMCID: PMC11373832 DOI: 10.1371/journal.pone.0309971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
Microbiologically Influenced Corrosion (MIC) is one of the main threats for marine infrastructures, leading to severe safety and environmental risks associated with structural failures and/or leakages of dangerous fluids, together with potential huge economic losses and reputational damage for the involved parts. For a safe design and a proper installation of infrastructure systems in contact with the seabed, a deep knowledge of the site-specific microbial community of the sediments should be beneficial. Therefore, in addition to the simple detection or the sole quantification of Sulphate-Reducing Bacteria (SRB), the whole characterization of the microbial members involved in MIC phenomena is desirable. In this study, 16S rRNA-based comparison between bacterial communities thriving in offshore and nearshore marine sediments was performed, with a focus on the main bacterial groups putatively responsible for MIC. The nearshore sediments were significantly enriched in bacterial members associated with human and organic compounds contamination belonging to the Bacteroidota, Desulfobacterota, and Firmicutes phyla, while the offshore sediments hosted Alphaproteobacteria, Nitrospinota, and Nitrospirota members, representative of a low anthropogenic impact. Quantitative PCR targeting the dsrA gene and detailed community analyses revealed that the nearshore sediments were significantly enriched in SRB mainly affiliated to the Desulfobulbus and Desulfosarcina genera potentially involved in biocorrosion, compared to the offshore ones. These results suggest that the bacterial community associated with the high concentration of organic compounds derived by an elevated anthropogenic impact is likely to favour MIC. Such observations highlight the importance of microbiological investigations as prevention strategy against MIC processes, aiming both at characterizing sites for the establishment of new infrastructures and at monitoring those already installed.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Gianmarco Mangiaterra
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Arianna Scardino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Mauro Fehervari
- R&D Engineering, Asset Based Services-Saipem SpA, Fano (PU), Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| |
Collapse
|
4
|
Pu Y, Hou S, Chen S, Hou Y, Feng F, Guo Z, Zhu C. The combined effect of carbon starvation and exogenous riboflavin accelerated the Pseudomonas aeruginosa-induced nickel corrosion. Bioelectrochemistry 2024; 157:108679. [PMID: 38471411 DOI: 10.1016/j.bioelechem.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as: 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 μm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.
Collapse
Affiliation(s)
- Yanan Pu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Su Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Qingdao Key Laboratory of Marine Extreme Environmental Materials, Qingdao 266100, China.
| | - Yue Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fan Feng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zihao Guo
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Congrui Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
5
|
Liu D, Liang Y, Wei H, Liu P, Jin D, Yassir L, Han B, Li J, Xu D. Enhanced corrosion of 2205 duplex stainless steel by Acetobacter aceti through synergistic electron transfer and organic acids acceleration. Bioelectrochemistry 2024; 157:108665. [PMID: 38342073 DOI: 10.1016/j.bioelechem.2024.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Acetobacter aceti is a microbe that produces corrosive organic acids, causing severe corrosion of industrial equipment. Previous studies have focused on the organic acid corrosion of A. aceti, but neglected the possibility that it has electron transfer corrosion. This study found that electron transfer and organic acids can synergistically promote the corrosion of 2205 duplex stainless steel (DSS). Electrochemical measurement results showed that corrosion of 2205 DSS was more severe in the presence of A. aceti. Surface analysis indicated a thick biofilm formed on the steel surface, with low pH and dissolved oxygen concentrations under the biofilm. Corrosion intensified when A. aceti lacked a carbon source, suggesting that A. aceti can corrode metals by using metallic substrates as electron donors, in addition to its acidic by-products.
Collapse
Affiliation(s)
- Dan Liu
- Hebei Key Laboratory of Material Near-Net Forming Technolog, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Yongmei Liang
- Hebei Key Laboratory of Material Near-Net Forming Technolog, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Huijun Wei
- Hebei Key Laboratory of Material Near-Net Forming Technolog, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Pengjun Liu
- Hebei Key Laboratory of Material Near-Net Forming Technolog, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Daiqiang Jin
- The Third Hospital of Dalian Medical University, Dalian 116044, China
| | - Lekbach Yassir
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Baochen Han
- Hebei Key Laboratory of Material Near-Net Forming Technolog, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| | - Jianhui Li
- Hebei Key Laboratory of Material Near-Net Forming Technolog, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| | - Dake Xu
- Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
6
|
Guan F, Pei Y, Duan J, Sand W, Zhang R, Zhai X, Zhang Y, Hou B. Effect of yeast extract on microbiologically influenced corrosion of X70 pipeline steel by Desulfovibrio bizertensis SY-1. Bioelectrochemistry 2024; 157:108650. [PMID: 38286079 DOI: 10.1016/j.bioelechem.2024.108650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Microbiologically influenced corrosion (MIC) is a complicated process that happens ubiquitously and quietly in many fields. As a useful nutritional ingredient in microbial culture media, yeast extract (YE) is a routinely added in the MIC field. However, how the YE participated in MIC is not fully clarified. In the present work, the effect of YE on the growth of sulfate reducing prokaryotes (SRP) Desulfovibrio bizertensis SY-1 and corrosion behavior of X70 pipeline steel were studied. It was found that the weight loss of steel coupons in sterile media was doubled when YE was removed from culture media. However, in the SRP assays without YE the number of planktonic cells decreased, but the attachment of bacteria on steel surfaces was enhanced significantly. Besides, the corrosion rate of steel in SRP assays increased fourfold after removing YE from culture media. MIC was not determined for assays with planktonic SRP but only for biofilm assays. The results confirm the effect of YE on D. bizertensis SY-1 growth and also the inhibitory role of YE on MIC.
Collapse
Affiliation(s)
- Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; Research Development Center of Marine Science and Technology, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226019, China
| | - Yingying Pei
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Wolfgang Sand
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Aquatische Biotechnologie Biofilm Centre, University Duisburg-Essen, 45141 Essen, Germany; Technical University and Mining Academy, 09599 Freiberg, Germany.
| | - Ruiyong Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
7
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
8
|
Liu P, Zhang H, Fan Y, Xu D. Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention. Microorganisms 2023; 11:2299. [PMID: 37764143 PMCID: PMC10535020 DOI: 10.3390/microorganisms11092299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Microbially influenced corrosion (MIC) is a formidable challenge in the marine industry, resulting from intricate interactions among various biochemical reactions and microbial species. Many preventions used to mitigate biocorrosion fail due to ignorance of the MIC mechanisms. This review provides a summary of the current research on microbial corrosion in marine environments, including corrosive microbes and biocorrosion mechanisms. We also summarized current strategies for inhibiting MIC and proposed future research directions for MIC mechanisms and prevention. This review aims to comprehensively understand marine microbial corrosion and contribute to novel strategy developments for biocorrosion control in marine environments.
Collapse
Affiliation(s)
- Pan Liu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Haiting Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Yongqiang Fan
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Xu L, Kijkla P, Kumseranee S, Punpruk S, Gu T. Electrochemical Assessment of Mitigation of Desulfovibrio ferrophilus IS5 Corrosion against N80 Carbon Steel and 26Cr3Mo Steel Using a Green Biocide Enhanced by a Nature-Mimicking Biofilm-Dispersing Peptide. Antibiotics (Basel) 2023; 12:1194. [PMID: 37508290 PMCID: PMC10376645 DOI: 10.3390/antibiotics12071194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
MIC (microbiologically influenced corrosion) is problematic in many industries, especially in the oil and gas industry. In this work, N80 carbon steel for pipelines was tested with 26Cr3Mo chromium pipeline steel for comparison in SRB (sulfate-reducing bacterium) MIC mitigation using a THPS (tetrakis hydroxymethyl phosphonium sulfate)-based commercial biocide (Biotreat 5475 with 75-80% THPS by mass). Peptide A, a nature-mimicking synthetic cyclic peptide (cys-ser-val-pro-tyr-asp-tyr-asn-trp-tyr-ser-asn-trp-cys) with biofilm dispersal ability was used as a biocide enhancer. Metal coupons covered with 3-d old Desulfovibrio ferrophilus IS5 biofilms were immersed in different biocide solutions. After 1-h treatment, 200 ppm Biotreat 5475, 200 ppm Biotreat 5475 + 200 nM (360 ppb) Peptide A, and 400 ppm Biotreat 5475 achieved 0.5-log, 1.7-log and 1.9-log reductions in sessile cell count on N80, and 0.7-log, 1.7-log, and 1.8-log on 26Cr3Mo, respectively. The addition of 200 nM Peptide A cut the THPS biocide dosage by nearly half. Biocide injection tests in electrochemical glass cells after 1 h exhibited 15%, 70%, and 72% corrosion inhibition efficiency (based on corrosion current density) on N80, and 27%, 79%, 75% on 26Cr3Mo, respectively. Linear polarization resistance and electrochemical impedance spectrometry results also indicated antimicrobial efficacies.
Collapse
Affiliation(s)
- Lingjun Xu
- Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA
| | - Pruch Kijkla
- PTT Exploration and Production, Bangkok 10900, Thailand
| | | | | | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
10
|
Chen X, Zhou G, Wang X, Xu H, Wang C, Yao Q, Chi J, Fu X, Wang Y, Yin X, Zhang Z. Progress in semiconductor materials for photocathodic protection: Design strategies and applications in marine corrosion protection. CHEMOSPHERE 2023; 323:138194. [PMID: 36828106 DOI: 10.1016/j.chemosphere.2023.138194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Metal protection of offshore equipment is very complicated owing to the complex marine environment. Photocathodic protection (PCP) is one of the popular research topics in marine metal protection. The protection efficiency of photoanode depends largely on the photoelectric properties of semiconductor materials, viz. the process of charge separation, charge migration, and light absorption. In this article, the enhancement strategies, photoelectrochemical properties, and electron transfer mechanisms of different composites for PCP were reviewed and highlighted. Some photoanodes with unusual and striking properties were emphasized. In addition, the outlooks and challenges of the application of PCP and the design of photoanodes materials are proposed.
Collapse
Affiliation(s)
- Xi Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Guangzhu Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiutong Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui Xu
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cuizhen Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Qiuhui Yao
- The Third Exploration Team, Shandong Bureau of Coal Geology, Tai'an, 271000, China.
| | - Jingyi Chi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiaoning Fu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Yuanhao Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xueying Yin
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Zijin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
11
|
Zhou X, Su H, Wang Q, Zhong Z, Li Z, Wu T. Effect of Pseudomonas sp. on simulated tidal corrosion of X80 pipeline steel. Bioelectrochemistry 2023; 150:108359. [PMID: 36577201 DOI: 10.1016/j.bioelechem.2022.108359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Microbiologically influenced corrosion of pipeline steel in seawater has long been concerned by scholars all over the world, but there were few reports on the microorganism effect on marine tidal corrosion of steels. In this work, the effect of Pseudomonas sp. on static tidal corrosion of X80 pipeline steel were systematically studied using weight-loss, Fourier transform infrared spectroscopy (FTIR), electrochemical measurements, scanning electron microscopy (SEM) and ultra-deep field 3D microscope. The results manifested that after 720 h exposure to the marine tidal environment, the sessile Pseudomonas sp. counts multiplied with the elevation increase. The corrosion style of the steel in the inoculated environment was mainly localized corrosion. As a consequence of the higher bacteria number, the corrosion rate, pit depth and corrosion product thickness collectively enhanced. Pseudomonas sp. significantly accelerated uniform and localized corrosion of the steel in the marine tidal zone, and the acceleration role enhanced with the steel elevation in the tidal zones.
Collapse
Affiliation(s)
- Xiaobao Zhou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Hui Su
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Qin Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zhen Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zhi Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Tangqing Wu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
12
|
Bioconversion of Glycerol to 1,3-Propanediol Using Klebsiella pneumoniae L17 with the Microbially Influenced Corrosion of Zero-Valent Iron. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The bacterial redox state is essential for controlling the titer and yield of the final metabolites in most bioconversion processes. Glycerol conversion to 1,3-propanediol (PDO) requires a large amount of reducing equivalent and the expression of reductive pathways. Zero-valent iron (ZVI) was used in the glycerol bioconversion of Klebsiella pneumoniae L17. The level of 1,3-PDO production increased with the oxidation of ZVI (31.8 ± 1.2 vs. 25.7 ± 0.5, ZVI vs. no ZVI) while the cellular NADH/NAD+ level increased (0.6 vs. 0.3, ZVI vs. no ZVI). X-ray diffraction showed that the iron oxide (Fe2O3) was formed during glycerol fermentation. L17 obtained electrons from ZVI and dissolved the iron continuously to form cracks on the surface, suggesting microbially influenced corrosion (MIC) was involved on the surface of ZVI. The ZVI-implemented fermentation shifted bioconversion to a more glycerol-reductive pathway. The qPCR-presented glycerol dehydratase (DhaB) with ZVI implementation was strongly expressed compared to the control. These results suggest that ZVI can contribute to the biotransformation of PDO by inducing intracellular metabolic shifts. This study could also suggest a novel microbial fermentation strategy with the application of MIC.
Collapse
|
13
|
Guo H, Zhong R, Liu B, Yang J, Liu Z, Du C, Li X. Characteristic and Mechanistic Investigation of Stress-Assisted Microbiologically Influenced Corrosion of X80 Steel in Near-Neutral Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 16:390. [PMID: 36614728 PMCID: PMC9822082 DOI: 10.3390/ma16010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The behavior and mechanisms of the stress-assisted microbiologically influenced corrosion (MIC) of X80 pipeline steel induced by sulfate-reducing bacteria (SRB) were investigated using focused ion beam-scanning electron microscopy (FIB). Electrochemical results show that SRB and stress have a synergistic effect on the corrosion of X80 steel. SRB accelerated the transformation of Fe3O4 into iron-sulfur compounds and may have caused the film breakage of X80 steel products. The obtained FIB results provide direct evidence that SRB promotes the corrosion of X80 steel.
Collapse
Affiliation(s)
- Huihua Guo
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Zhong
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jike Yang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiyong Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, Beijing 100083, China
| | - Cuiwei Du
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaogang Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Microbiological corrosion acceleration of N80 steel in shale gas field produced water containing Citrobacter amalonaticus at 60 °C. Bioelectrochemistry 2022; 148:108253. [DOI: 10.1016/j.bioelechem.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
|
15
|
Qi H, Wang Y, Feng J, Peng R, Shi Q, Xie X. Microbiologically Influenced Corrosion of Q235 Carbon Steel by Ectothiorhodospira sp. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15416. [PMID: 36430135 PMCID: PMC9691256 DOI: 10.3390/ijerph192215416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The biological sulfur cycle is closely related to iron corrosion in the natural environment. The effect of the sulfur-oxidising bacterium Ectothiorhodospira sp., named PHS-Q, on the metal corrosion behaviour rarely has been investigated. In this study, the corrosion mechanism of Q235 carbon steel in a PHS-Q-inoculated medium is discussed via the characterization of the morphology and the composition of the corrosion products, the measurement of local corrosion and the investigation of its electrochemical behaviour. The results suggested that, initially, PHS-Q assimilates sulfate to produce H2S directly or indirectly in the medium without sulfide. H2S reacts with Fe2+ to form an inert film on the coupon surface. Then, in localised areas, bacteria adhere to the reaction product and use the oxidation of FeS as a hydrogen donor. This process leads to a large cathode and a small anode, which incurs pitting corrosion. Consequently, the effect of PHS-Q on carbon steel corrosion behaviour is crucial in an anaerobic environment.
Collapse
Affiliation(s)
| | | | | | | | - Qingshan Shi
- Correspondence: (Q.S.); (X.X.); Tel.: +86-20-87137650 (Q.S.); +86-20-37656986 (X.X.)
| | - Xiaobao Xie
- Correspondence: (Q.S.); (X.X.); Tel.: +86-20-87137650 (Q.S.); +86-20-37656986 (X.X.)
| |
Collapse
|
16
|
Zhou E, Zhang M, Huang Y, Li H, Wang J, Jiang G, Jiang C, Xu D, Wang Q, Wang F. Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa. WATER RESEARCH 2022; 220:118634. [PMID: 35691192 DOI: 10.1016/j.watres.2022.118634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically influenced corrosion (MIC) constantly occurs in water/wastewater systems, especially in marine water. MIC contributes to billions of dollars in damage to marine industry each year, yet the physiological mechanisms behind this process remain poorly understood. Pseudomonas aeruginosa is a representative marine electro-active bacterium, which has been confirmed to cause severe MIC on carbon steel through extracellular electron transfer (EET). However, little is known about how P. aeruginosa causes corrosion on stainless steel. In this study, the corrosivity of wild-type strain, phzH knockout, phzH complemented, and phzH overexpression P. aeruginosa mutants were evaluated to explore the underlying MIC mechanism. We found the accelerated MIC on 2205 duplex stainless steel (DSS) was due to the secretion of phenazine-1-carboxamide (PCN), which was regulated by the phzH gene. Surface analysis, Mott-Schottky test and H2O2 measurement results showed that PCN damaged the passive film by forming H2O2 to oxidize chromium oxide to soluble hexavalent chromium, leading to more severe pitting corrosion. The normalized corrosion rate per cell followed the same order as the general corrosion rate obtained under each experimental condition, eliminating the influence of the total amount of sessile cells on corrosion. These findings provide new insight and are meaningful for the investigation of MIC mechanisms on stainless steel. The understanding of MIC can improve the sustainability and resilience of infrastructure, leading to huge environmental and economic benefits.
Collapse
Affiliation(s)
- Enze Zhou
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; School of Metallurgy, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Mingxing Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabing Li
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Jianjun Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.
| | - Qiang Wang
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| |
Collapse
|
17
|
Tuck B, Salgar-Chaparro SJ, Watkin E, Somers A, Forsyth M, Machuca LL. Extracellular DNA: A Critical Aspect of Marine Biofilms. Microorganisms 2022; 10:microorganisms10071285. [PMID: 35889003 PMCID: PMC9320517 DOI: 10.3390/microorganisms10071285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Multispecies biofilms represent a pervasive threat to marine-based industry, resulting in USD billions in annual losses through biofouling and microbiologically influenced corrosion (MIC). Biocides, the primary line of defence against marine biofilms, now face efficacy and toxicity challenges as chemical tolerance by microorganisms increases. A lack of fundamental understanding of species and EPS composition in marine biofilms remains a bottleneck for the development of effective, target-specific biocides with lower environmental impact. In the present study, marine biofilms are developed on steel with three bacterial isolates to evaluate the composition of the EPSs (extracellular polymeric substances) and population dynamics. Confocal laser scanning microscopy, scanning electron microscopy, and fluorimetry revealed that extracellular DNA (eDNA) was a critical structural component of the biofilms. Parallel population analysis indicated that all three strains were active members of the biofilm community. However, eDNA composition did not correlate with strain abundance or activity. The results of the EPS composition analysis and population analysis reveal that biofilms in marine conditions can be stable, well-defined communities, with enabling populations that shape the EPSs. Under marine conditions, eDNA is a critical EPS component of the biofilm and represents a promising target for the enhancement of biocide specificity against these populations.
Collapse
Affiliation(s)
- Benjamin Tuck
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
| | - Silvia J. Salgar-Chaparro
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia;
| | - Anthony Somers
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia; (A.S.); (M.F.)
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia; (A.S.); (M.F.)
| | - Laura L. Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
- Correspondence:
| |
Collapse
|
18
|
Jaroš P, Timkina E, Michailidu J, Maršík D, Kulišová M, Kolouchová I, Demnerová K. Boswellic Acids as Effective Antibacterial Antibiofilm Agents. Molecules 2022; 27:3795. [PMID: 35744925 PMCID: PMC9228269 DOI: 10.3390/molecules27123795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Boswellic acids are biologically active pentacyclic terpenoid compounds derived from Boswellia sp. plants. Extracts containing these acids have a number of positive effects on human health, especially in the treatment of inflammation, arthritis, or asthma. With increasing resistance to common antibiotics, boswellic acid-containing extracts could serve as an alternative or work in synergy with commonly available preparations. This study aims to determine the effect of boswellic acids on suspension cells and biofilms of Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli. The antimicrobial and antibiofilm effect found was compared with commonly available antibiotics to control these undesirable microorganisms. The synergistic effect of boswellic acids and common antibiotics on the growth of these microorganisms was also determined. All tested microorganisms showed a positive additive effect of antibiotics and boswellic acid extract. The most significant effect was found in Enterococcus faecalis ATCC 29212 in a combination of 0.2 × MIC80 erythromycin (0.2 mg/L) and 0.8 × MIC80 boswellic acid extract (16 mg/L).
Collapse
Affiliation(s)
- Petr Jaroš
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (P.J.); (K.D.)
| | - Elizaveta Timkina
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Dominik Maršík
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Irena Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (P.J.); (K.D.)
| |
Collapse
|
19
|
Abstract
Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.
Collapse
|
20
|
Ma S, Li Y, Guan F, Zhang L, Li J, Tai Y, Ren H, Duan J. Variations in microbial community on different materials in Sanya Marine Environment Experimental Station, China. Can J Microbiol 2022; 68:447-455. [PMID: 35412394 DOI: 10.1139/cjm-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marine biofouling occurs through the colonization of undesired microorganisms on the surfaces of structures. In this study, four immersion cycles (2, 5, 15, and 25 days) of total immersion in seawater were carried out at the Sanya Marine Environmental Test Station using three materials: industrial pure titanium (Ti), hot-dip zinc (Zn), and glass slide (GS). Three phyla, four classes, and nine bacterial genera were identified. The dominant genera were Pseudomonas, Alteromonas, and Pseudoalteromonas. The number of bacteria increased with soaking time. Sixty-one species of diatoms belonging to 30 genera, 24 families, and 16 orders were detected, among which the dominant genera were Amphora, Nitzschia, and Navicula. Four genera of ciliates belonged to two classes, three orders, and four families, among which the dominant species were Euplotes sp. and Uronema marinum. Tubular polychaetes was the dominant metazoans. Species diversity increased over time. The highest biofilm diversity was observed on the GS surface. The diversity of biofilms on the Ti surface was higher than that on the Zn surface. This study provides basic data for marine material research, marine corrosion, and national defence construction.
Collapse
Affiliation(s)
- Shide Ma
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuhang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Guan
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ju Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yu Tai
- Qingdao Tony Machinery and Equipment Co., Ltd., Qingdao, 266000, China
| | - Haitao Ren
- Luoyang Ship Material Research Institute (LSMRI), Sanya, 572032, China
| | - Jizhou Duan
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
21
|
Li Z, Huang L, Hao W, Yang J, Qian H, Zhang D. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm. Bioelectrochemistry 2022; 146:108130. [PMID: 35397438 DOI: 10.1016/j.bioelechem.2022.108130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022]
Abstract
In this study, the influence of exogenous pyocyanin (PYO) on the microbiologically influenced corrosion (MIC) of 304 stainless steel by Pseudomonas aeruginosa was investigated. Under sterile condition, the additional PYO in the culture medium had no effect on the corrosion of 304 stainless steel. In contrast, P. aeruginosa biofilm inoculated in the media with additional PYO resulted in more severe pitting corrosion. EIS and cyclic potentiodynamic polarization results indicated that exogenous PYO promoted the electron transfer efficiency between the P. aeruginosa biofilm and the stainless steel surface. X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM) results further demonstrated that the P. aeruginosa led the breakdown of passive film predominantly by accelerating the bioreductive dissolution of iron oxides.
Collapse
Affiliation(s)
- Zhong Li
- Chinese Society for Corrosion and Protection, Beijing 100083, China
| | - Luyao Huang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenkui Hao
- State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd, Beijing 100083, China
| | - Jike Yang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongchang Qian
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Dawei Zhang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
22
|
Zhai X, Cao W, Zhang Y, Ju P, Chen J, Duan J, Sun C. Study on the Bacterial Communities of the Biofilms on Titanium, Aluminum, and Copper Alloys at 5,772 m Undersea in Yap Trench. Front Microbiol 2022; 13:831984. [PMID: 35369519 PMCID: PMC8973411 DOI: 10.3389/fmicb.2022.831984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms formed on metal surfaces strongly affect metallic instruments serving in marine environments. However, due to sampling difficulty, less has been known about the bacterial communities of the biofilm on metallic surfaces in hadal environments, so the failure process of these deep-sea metallic instruments influenced by microbial communities could be hardly predicted. In this research, seven alloys, including titanium, aluminum, and copper alloys, were exposed in Yap Trench hadal environment for 1 year. Thus, the communities of the biofilms formed on metallic surfaces at 5,772 m undersea in Yap Trench were initially reported in previous studies. Then, 16S rRNA gene sequencing was performed to visualize the in situ bacterial communities of the biofilms formed on titanium, aluminum, and copper alloys at 5,772 m undersea in Yap Trench. It was found that Proteobacteria was the dominant phylum in all samples, but distinct genera were discovered on various alloys. The titanium alloy provided a suitable substrate for a mutualistic symbiotic biofilm with abundant bacterial richness. Aluminum alloys without copper components showed the least bacterial richness and formed a cold-adapted and oligotrophic-adapted biofilm containing the genera Sulfurimonas and PS1 Clade, while copper-present alloys showed relatively high bacterial richness with copper-resistant or even copper-utilizing biofilms constituting the genera Stenotrophomonas, Burkholderia-Caballeronia-Paraburkholderia, and Achromobacter on the surfaces. Furthermore, among all the element components contained in alloys investigated in this research, copper element showed the strongest influences on the composition and function of microbial communities in the biofilms formed on various metallic surfaces.
Collapse
Affiliation(s)
- Xiaofan Zhai
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wei Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yimeng Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- *Correspondence: Peng Ju,
| | - Juna Chen
- Navy Submarine Academy, Qingdao, China
- Juna Chen,
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Chengjun Sun,
| |
Collapse
|
23
|
Chugh B, Sheetal, Singh M, Thakur S, Pani B, Singh AK, Saji VS. Extracellular Electron Transfer by Pseudomonas aeruginosa in Biocorrosion: A Review. ACS Biomater Sci Eng 2022; 8:1049-1059. [PMID: 35199512 DOI: 10.1021/acsbiomaterials.1c01645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microorganisms with extracellular electron transfer (EET) capability have gained significant attention for their different biotechnological applications, like biosensors, bioremediation, and microbial fuel cells. Current research affirmed that microbial EET potentially promotes corrosion of iron structures, termed microbiologically influenced corrosion (MIC). The sulfate-reducing (SRB) and nitrate-reducing (NRB) bacteria are the most investigated among the different MIC-promoting bacteria. Unlike extensively studied SRB corrosion, NRB corrosion has received less attention from researchers. Hence, this review focuses on EET by Pseudomonas aeruginosa, a pervasive bacterium competent for developing biofilms in marine habitats and oil pipelines. A comprehensive discussion on the fundamentals of EET mechanisms in MIC is provided first. After that, the review offers state-of-the-art insights into the latest research on the EET-assisted MIC by Pseudomonas aeruginosa. The role of electron transfer mediators has also been discussed to understand the mechanisms involved in a better way. This review will be beneficial to open up new opportunities for developing strategies for combating biocorrosion.
Collapse
Affiliation(s)
- Bhawna Chugh
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Sheetal
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Manjeet Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, Mizoram-796004, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, Sector -2, Dwarka, New Delhi-110075, India
| | - Ashish Kumar Singh
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India.,Department of Applied Sciences, Bharati Vidyapeeth's College of Engineering, Paschim Vihar, New Delhi-110063, India
| | - Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
24
|
Jiang H, Wang W, Li J, Zhu L, Zhang D, Wang P, Wang G. Fabrication of Novel Self-healable Ultraslippery Surface for Preventing Marine Microbiologically Influenced Corrosion. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Sundaresan V, Do H, Shrout JD, Bohn PW. Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems. Analyst 2021; 147:22-34. [PMID: 34874024 PMCID: PMC8791413 DOI: 10.1039/d1an01954f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbes, such as bacteria, can be described, at one level, as small, self-sustaining chemical factories. Based on the species, strain, and even the environment, bacteria can be useful, neutral or pathogenic to human life, so it is increasingly important that we be able to characterize them at the molecular level with chemical specificity and spatial and temporal resolution in order to understand their behavior. Bacterial metabolism involves a large number of internal and external electron transfer processes, so it is logical that electrochemical techniques have been employed to investigate these bacterial metabolites. In this mini-review, we focus on electrochemical and spectroelectrochemical methods that have been developed and used specifically to chemically characterize bacteria and their behavior. First, we discuss the latest mechanistic insights and current understanding of microbial electron transfer, including both direct and mediated electron transfer. Second, we summarize progress on approaches to spatiotemporal characterization of secreted factors, including both metabolites and signaling molecules, which can be used to discern how natural or external factors can alter metabolic states of bacterial cells and change either their individual or collective behavior. Finally, we address in situ methods of single-cell characterization, which can uncover how heterogeneity in cell behavior is reflected in the behavior and properties of collections of bacteria, e.g. bacterial communities. Recent advances in (spectro)electrochemical characterization of bacteria have yielded important new insights both at the ensemble and the single-entity levels, which are furthering our understanding of bacterial behavior. These insights, in turn, promise to benefit applications ranging from biosensors to the use of bacteria in bacteria-based bioenergy generation and storage.
Collapse
Affiliation(s)
- Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Guan F, Liu Z, Dong X, Zhai X, Zhang B, Duan J, Wang N, Gao Y, Yang L, Hou B. Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147573. [PMID: 34034174 DOI: 10.1016/j.scitotenv.2021.147573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
In microbiologically influenced corrosion (MIC) induced by sulfate-reducing bacteria (SRB), the electrons released from iron were transferred via extracellular electron transfer (EET) to the inner cells. Electron mediators and carbon starvation have also been found to promote steel corrosion. This study aimed to investigate the synergistic effects of electron mediators and carbon starvation on MIC and their effect on biofilm catalytic activity. The results demonstrated that the weight losses of X70 steel were 0.68 and 1.03 mg/cm2 in 100% and 10% carbon source (CS) SRB solution, respectively. The addition of riboflavin and cytochrome c increased the corrosion rate by 1.76 and 1.87 times, respectively, in the 100% CS SRB medium compared to the medium without exogenous redox mediators. For the 10% CS SRB medium, the corrosion rate increased by 1.40 and 1.89 times, respectively, when riboflavin and cytochrome c were added. The addition of riboflavin and cytochrome c also enhanced the biocatalytic activity of the SRB biofilm in both the 100% and 10% CS SRB media.
Collapse
Affiliation(s)
- Fang Guan
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zheng Liu
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xucheng Dong
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - BinBin Zhang
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Nan Wang
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Gao
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Yang
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosionand Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
27
|
Evaluation of a novel, multi-functional inhibitor compound for prevention of biofilm formation on carbon steel in marine environments. Sci Rep 2021; 11:15697. [PMID: 34344924 PMCID: PMC8333064 DOI: 10.1038/s41598-021-94827-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/06/2021] [Indexed: 01/20/2023] Open
Abstract
Chemical biocides remain the most effective mitigation strategy against microbiologically influenced corrosion (MIC), one of the costliest and most pervasive forms of corrosion in industry. However, toxicity and environmental concerns associated with these compounds are encouraging the development of more environmentally friendly MIC inhibitors. In this study, we evaluated the antimicrobial effect of a novel, multi-functional organic corrosion inhibitor (OCI) compound, cetrimonium trans-4-hydroxy-cinnamate (CTA-4OHcinn). Attachment of three bacterial strains, Shewanella chilikensis, Pseudomonas balearica and Klebsiella pneumoniae was evaluated on wet-ground (120 grit finish) and pre-oxidised carbon steel surfaces (AISI 1030), in the presence and absence of the new OCI compound. Our study revealed that all strains preferentially attached to pre-oxidised surfaces as indicated by confocal laser scanning microscopy, scanning electron microscopy and standard colony forming unit (CFU) quantification assays. The inhibitor compound at 10 mM demonstrated 100% reduction in S. chilikensis attachment independent of initial surface condition, while the other two strains were reduced by at least 99.7% of the original viable cell number. Our results demonstrate that CTA-4OHcinn is biocidal active and has promise as a multifunctional, environmentally sound MIC inhibitor for industrial applications.
Collapse
|
28
|
Rufino BN, Procópio L. Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel. Curr Microbiol 2021; 78:3394-3402. [PMID: 34232364 DOI: 10.1007/s00284-021-02596-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Salt water, in addition to being a naturally corrosive environment, also includes factors such as temperature, pressure, and the presence of the microbial community in the environment that influence degradation processes on metal surfaces. The presence or absence of water flow over the metal surfaces is also an important aspect that influences the corrosion of metals. The objective of this study was to evaluate the presence or absence of salt water flow in the formation of biofilms grown in 316L stainless steel coupons. For this, the 316L stainless steel coupons were exposed in two different microcosms, the first being a system with continuous salt water flow, and the second without salt water flow system. The results of the sequencing of the 16S rDNA genes showed a clear difference in structures and diversity between the evaluated biofilms. There was greater abundance and diversity in the "In Flux" system when compared to the "No Flux" biofilm. The analysis of bacterial diversity showed a predominance of the Gammaproteobacteria class in both systems. However, at lower taxonomic levels, there were considerable differences in representativeness. Representatives of Vibrionales, Alteromonadales, Oceanospirillales, and Flavobacteriales were predominant in "No Flux", whereas in "In Flux" there was a greater representation of Alteromonadales, Rhodobacterales, and Saprospirales. These findings help to understand how the flow of water influences the dynamics of the formation of microbial biofilms on metal surfaces, which will contribute to the choice of strategies used to mitigate microbial biofouling.
Collapse
Affiliation(s)
- Bárbara Nascimento Rufino
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil
| | - Luciano Procópio
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil. .,Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Brooks CN, Field EK. Orange leads to black: evaluating the efficacy of co-culturing iron-oxidizing and sulfate-reducing bacteria to discern ecological relationships. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:317-324. [PMID: 33554452 DOI: 10.1111/1758-2229.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Two global cycles, iron and sulfur, are critically interconnected in estuarine environments by microbiological actors. To this point, the methods of laboratory study of this interaction have been limited. Here we propose a methodology for co-culturing from numerous coastal environments, from the same source inocula, iron-oxidizing and sulfate-reducing bacteria. The use of same source inocula is largely beneficial to understand real-world interactions that are likely occurring in situ. Through the use of this methodology, the ecological interactions between these groups can be studied in a more controlled environment. Here, we characterize the oxygen and hydrogen sulfide concentrations using microelectrode depth profiling in the co-cultures of iron-oxidizing bacteria and sulfate-reducing bacteria. These results suggest that while oxygen drives the relationship between these organisms and sulfate-reducers are reliant on iron-oxidizers in this culture to create an anoxic environment, there is likely another environmental driver that also influences the interaction as the two remain spatially distinct, as trends in FeS precipitation changed within the anoxic zone relative to the presence of Fe(III) oxyhydroxides. Understanding the relationship between iron-oxidizing and sulfate-reducing bacteria will ultimately have implications for understanding microbial cycling in estuarine environments as well as in processes such as controlling microbially influenced corrosion.
Collapse
Affiliation(s)
- Chequita N Brooks
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
30
|
Zhang R, Duan J, Xu D, Xia J, Muñoz JA, Sand W. Editorial: Bioleaching and Biocorrosion: Advances in Interfacial Processes. Front Microbiol 2021; 12:653029. [PMID: 33815345 PMCID: PMC8010133 DOI: 10.3389/fmicb.2021.653029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Ruiyong Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Jinlan Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jesús A Muñoz
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Madrid, Spain
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, China.,Aquatic Biotechnology, University of Duisburg-Essen, Essen, Germany.,Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, Germany
| |
Collapse
|
31
|
Caniglia G, Kranz C. Scanning electrochemical microscopy and its potential for studying biofilms and antimicrobial coatings. Anal Bioanal Chem 2020; 412:6133-6148. [PMID: 32691088 PMCID: PMC7442582 DOI: 10.1007/s00216-020-02782-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Biofilms are known to be well-organized microbial communities embedded in an extracellular polymeric matrix, which supplies bacterial protection against external stressors. Biofilms are widespread and diverse, and despite the considerable large number of publications and efforts reported regarding composition, structure and cell-to-cell communication within biofilms in the last decades, the mechanisms of biofilm formation, the interaction and communication between bacteria are still not fully understood. This knowledge is required to understand why biofilms form and how we can combat them or how we can take advantage of these sessile communities, e.g. in biofuel cells. Therefore, in situ and real-time monitoring of nutrients, metabolites and quorum sensing molecules is of high importance, which may help to fill that knowledge gap. This review focuses on the potential of scanning electrochemical microscopy (SECM) as a versatile method for in situ studies providing temporal and lateral resolution in order to elucidate cell-to-cell communication, microbial metabolism and antimicrobial impact, e.g. of antimicrobial coatings through the study of electrochemical active molecules. Given the complexity and diversity of biofilms, challenges and limitations will be also discussed.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11, 89081, Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11, 89081, Ulm, Germany.
| |
Collapse
|
32
|
Progressive Applications of Hyperbranched Polymer Based on Diarylamine: Antimicrobial, Anti-Biofilm and Anti-Aerobic Corrosion. MATERIALS 2020; 13:ma13092076. [PMID: 32366054 PMCID: PMC7254357 DOI: 10.3390/ma13092076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
New generations of hyperbranched aramids were synthesized from diarylamine and methyl acrylate using an AB2 monomer approach in a straightforward one-pot preparation. The chemical structure of hyperbranched Phenylenediamine/Methyl Acrylate HB(PDMA was confirmed by Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (1HNMR) spectroscopy. In addition, the particle’s size and distribution were recorded using Dynamic Light Scattering (DLS). Moreover, the synthesized HB(PDMA)s displayed broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria as well as yeast strains and anti-biofilm activity where the highest activity was attributed to HB(PDMA)G4 at the lowest Minimum Inhibitory, Minimum Bactericidal, and Fungicidal Concentrations (MIC, MBC, and MFC, respectively). Furthermore, the HB(PDMA)s expressed anti-bacterial activity against isolated Pseudomonas sp. (R301) at a salinity of 35,000 ppm (NaCl). In addition, they revealed different corrosion inhibition efficiencies at the cultivated medium salinity at the estimated minimum bactericidal concentrations. The highest metal corrosion inhibition efficiencies were 59.5 and 94.3% for HB(PDMA)G4 at the Minimum Bactericidal Concentrations (MBCs) and two times Minimum Bactericidal Concentrations (2XMBCs), respectively, in comparison to both negative and positive controls.
Collapse
|