1
|
Randeni N, Xu B. New insights into signaling pathways of cancer prevention effects of polysaccharides from edible and medicinal mushrooms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155875. [PMID: 39029136 DOI: 10.1016/j.phymed.2024.155875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Despite extensive efforts, empirical techniques have yielded limited progress in finding effective anticancer medications, with chemotherapy drugs often associated with drug resistance and serious side effects. Thus, there is a pressing need for novel agents with minimal adverse effects. Natural substances, widely used in treating various illnesses, including cancer, offer promising alternatives. Among these, mushrooms, rich in low molecular weight secondary metabolites, polysaccharides, and polysaccharide-protein complexes, have gained attention for their potential anticancer properties. RESULTS Mushroom polysaccharides have been found to impede oncogenesis and tumor metastasis by directly inhibiting tumor cell growth and indirectly enhancing immune system functions. These polysaccharides engage with numerous cell signaling pathways that influence cancer development and progression. They affect pathways that control cell survival, growth, and differentiation, and they also play a role in adjusting the tumor immune microenvironment. CONCLUSION This review highlights the potential of mushroom polysaccharides as promising anticancer agents due to their ability to modulate cell signaling pathways crucial for cancer development. Understanding the mechanisms underlying their effects on these pathways is essential for harnessing their therapeutic potential and developing novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
2
|
Li L, Su Z, He Y, Zhong X, Fu C, Zou L, Li J, Zhang J. Physicochemical characterization and anti-angiogenesis activity of polysaccharides from Amauroderma rugosum, a medicinal and edible mushroom. Int J Biol Macromol 2024; 274:133478. [PMID: 38942412 DOI: 10.1016/j.ijbiomac.2024.133478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Amauroderma rugosum (AR) is commonly recognized as a medicinal fungus, often used as an alternative to Ganoderma lucidum. There is a scarcity of comprehensive and in-depth research on its bioactive polysaccharides and their associated biological activities. Herein, we isolated the polysaccharide fractions extracted from AR (ARPs) and investigated their primary structure and anti-angiogenic activities, given that various diseases are associated with excessive angiogenesis. Four polysaccharide fractions including ARP-0, ARP-1, ARP-2, and ARP-5 were heteropolysaccharides with different molecular weights, monosaccharide compositions, and micromorphologies, highlighting their varying bioactive profiles. Treatment of human umbilical vein endothelial cells with these polysaccharide fractions showed that only ARP-5 inhibited cell proliferation after vascular endothelial growth factor (VEGF) stimulation. Similarly, ARP-5 inhibited human umbilical vein endothelial cells migration, invasion, and tube formation upon VEGF (50 ng/mL) treatment. Moreover, compared with the insignificant effects of ARP-0, ARP-1, and ARP-2, ARP-5 impeded angiogenesis in zebrafish embryos. Additionally, ARP-5 downregulated the VEGF/VEGFR2 signaling pathway in a dose-dependent manner, suggesting that ARP-5 exerts its anti-angiogenic activities by blocking the VEGF/VEGFR2-mediated angiogenesis signaling pathway. Taken together, the study findings shed light on the primary structure and bioactivity of ARPs.
Collapse
Affiliation(s)
- Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Xuemei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Liang Zou
- School of Food and Biological Engineering Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, China..
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
3
|
De Luca F, Roda E, Rossi P, Bottone MG. Medicinal Mushrooms in Metastatic Breast Cancer: What Is Their Therapeutic Potential as Adjuvant in Clinical Settings? Curr Issues Mol Biol 2024; 46:7577-7591. [PMID: 39057091 PMCID: PMC11276109 DOI: 10.3390/cimb46070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed tumor, remaining one of the leading causes of morbidity and mortality in females worldwide, with the highest rates in Western countries. Among metastatic BC (MBC), triple-negative breast cancer (TNBC) is characterized by the lack of expression of specific receptors, and differs from other subgroups of BC for its increased growth and fast spreading, with reduced treatment possibilities and a worse outcome. Actually, MBC patients are extremely prone to metastasis and consequent relapses, which affect distant target organs (e.g., brain, lung, bone and liver). Hence, the comprehension of biological mechanisms underlying the BC metastatization process is a key requirement to conceive/set up innovative medicinal strategies, with the goal to achieve long-lasting therapeutic efficacy, reducing adverse effects, and also ameliorating Quality of Life (QoL). Bioactive metabolites isolated from medicinal mushrooms (MMs) used as a supportive treatment, combined with conventional oncology, have recently gained wide interest. In fact, mounting evidence has revealed their peculiar promising immunomodulatory, anti-inflammatory and anticancer activities, even though these effects have to be further clarified. Among the group of most promising MMs are Lentinula edodes, Grifola frondosa, Ganoderma lucidum, Ophiocordyceps sinensis and Agaricus blazei, which are already employed in conventional cancer protocols in Asia and China. Recently, a growing number of studies have focused on the pharmacology and feasibility of MM-derived bioactive compounds as a novel valuable approach to propose an effective adjuvant therapy for MBC patients' management. In this review, we summarized the current state of knowledge on the abovementioned MM-derived bioactive compounds and their therapeutic potential in clinical settings.
Collapse
Affiliation(s)
- Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, 27100 Pavia, Italy;
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| |
Collapse
|
4
|
Rahman MA, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Gupta RD, Jalouli M, Parvez MAK, Shaikh MH, Hoque Apu E, Harrath AH, Moon S, Kim B. Advancements in Utilizing Natural Compounds for Modulating Autophagy in Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Cells 2024; 13:1186. [PMID: 39056768 PMCID: PMC11274515 DOI: 10.3390/cells13141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy, an intrinsic catabolic mechanism that eliminates misfolded proteins, dysfunctional organelles, and lipid droplets, plays a vital function in energy balance and cytoplasmic quality control, in addition to maintaining cellular homeostasis. Liver cancer such as hepatocellular carcinoma (HCC) is one of the most common causes of cancer deaths globally and shows resistance to several anticancer drugs. Despite the rising incidence and poor prognosis of malignant HCC, the underlying molecular mechanisms driving this aggressive cancer remain unclear. Several natural compounds, such as phytochemicals of dietary and non-dietary origin, affect hepatocarcinogenesis signaling pathways in vitro and in vivo, which may help prevent and treat HCC cells. Current HCC cells treatments include chemotherapy, radiation, and surgery. However, these standard therapies have substantial side effects, and combination therapy enhances side effects for an acceptable therapeutic benefit. Therefore, there is a need to develop treatment strategies for HCC cells that are more efficacious and have fewer adverse effects. Multiple genetic and epigenetic factors are responsible for the HCC cells to become resistant to standard treatment. Autophagy contributes to maintain cellular homeostasis, which activates autophagy for biosynthesis and mitochondrial regulation and recycling. Therefore, modifying autophagic signaling would present a promising opportunity to identify novel therapies to treat HCC cells resistant to current standard treatments. This comprehensive review illustrates how natural compounds demonstrate their anti-hepatocellular carcinoma function through autophagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - S M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology & Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | - Mushfiq H. Shaikh
- Department of Otolaryngology-Head & Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Drzewiecka B, Wessely-Szponder J, Świeca M, Espinal P, Fusté E, Fernández-De La Cruz E. Bioactive Peptides and Other Immunomodulators of Mushroom Origin. Biomedicines 2024; 12:1483. [PMID: 39062056 PMCID: PMC11274834 DOI: 10.3390/biomedicines12071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
For centuries, humans have used mushrooms as both food and pro-health supplements. Mushrooms, especially those related to the functions of the human immune system, are rich in dietary fiber, minerals, essential amino acids, and various bioactive compounds and have significant health-promoting properties. Immunoregulatory compounds in mushrooms include lectins, terpenes, terpenoids, polysaccharides, and fungal immunomodulatory proteins (FIPs). The distribution of these compounds varies from one species of mushroom to another, and their immunomodulatory activities depend on the core structures and chemical modifications in the composition of the fractions. In this review, we describe active compounds from medical mushrooms. We summarize potential mechanisms for their in vitro and in vivo activities and detail approaches used in developing and applying bioactive compounds from mushrooms. Finally, we discuss applications of fungal peptides and highlight areas that require improvement before the widespread use of those compounds as therapeutic agents and explore the status of clinical studies on the immunomodulatory activities of mushrooms and their products, as well as the prospect of clinical application of AMPs as 'drug-like' compounds with great potential for treatment of non-healing chronic wounds and multiresistant infections.
Collapse
Affiliation(s)
- Beata Drzewiecka
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland;
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Paula Espinal
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
| | - Ester Fusté
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
- Department Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, 08907 Barcelona, Spain
| | - Eric Fernández-De La Cruz
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain; (P.E.); (E.F.); (E.F.-D.L.C.)
| |
Collapse
|
6
|
Tan RY, Ilham Z, Wan-Mohtar WAAQI, Abdul Halim-Lim S, Ahmad Usuldin SR, Ahmad R, Adlim M. Mushroom oils: A review of their production, composition, and potential applications. Heliyon 2024; 10:e31594. [PMID: 38845934 PMCID: PMC11153096 DOI: 10.1016/j.heliyon.2024.e31594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
This review delves into the world of mushroom oils, highlighting their production, composition, and versatile applications. Despite mushrooms' overall low lipid content, their fatty acid composition, rich in essential fatty acids like linoleic acid and oleic acid, proves nutritionally significant. Variations in fatty acid profiles across mushroom species and the prevalence of unsaturated fats contribute to their cardiovascular health benefits. The exploration extends to mushroom essential oils, revealing diverse volatile compounds through extraction methods like hydrodistillation and solvent-assisted flavor evaporation (SAFE). The identification of 1-octen-3-ol as a key contributor to the distinct "mushroom flavor" adds a nuanced perspective. The focus broadens to applications, encompassing culinary and industrial uses with techniques like cold pressing and supercritical fluid extraction (SFE). Mushroom oils, with their unique nutritional and flavor profiles, enhance gastronomic experiences. Non-food applications in cosmetics and biofuels underscore the oils' versatility. The nutritional composition, enriched with essential fatty acids, bioactive compositions, and trace elements, is explored for potential health benefits. Bioactive compounds such as phenolic compounds and terpenes contribute to antioxidant and anti-inflammatory properties, positioning mushroom oils as nutritional powerhouses. In short, this concise review synthesizes the intricate world of mushroom oils, emphasizing their nutritional significance, extraction methodologies, and potential health benefits. The comprehensive overview underscores mushroom oils as a promising area for further exploration and utilization. The characteristics of mushroom biomass oil for the use in various industries are influenced by the mushroom species, chemical composition, biochemical synthesis of mushroom, and downstream processes including extraction, purification and characterization. Therefore, further research and exploration need to be done to achieve a circular bioeconomy with the integration of SDGs, waste reduction, and economic stimulation, to fully utilize the benefits of mushroom, a valuable gift of nature.
Collapse
Affiliation(s)
- Rui Yeong Tan
- Biomass Energy Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Functional Omics and Bioprocess Development Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zul Ilham
- Biomass Energy Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarina Abdul Halim-Lim
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Seri Kembangan, Selangor Darul Ehsan, Malaysia
| | - Siti Rokhiyah Ahmad Usuldin
- Agro-Biotechnology Institute, Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIMB), HQ MARDI, 43400, Serdang, Selangor, Malaysia
| | - Rahayu Ahmad
- Halal Action Laboratory, Kolej GENIUS Insan, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Muhammad Adlim
- Chemistry Department, FKIP, Universitas Syiah Kuala, Darussalam Banda Aceh, 23111, Indonesia
| |
Collapse
|
7
|
Jen CI, Lu MK, Lai MN, Ng LT. Sulfated polysaccharides of Laetiporus sulphureus fruiting bodies exhibit anti-breast cancer activity through cell cycle arrest, apoptosis induction, and inhibiting cell migration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117546. [PMID: 38061441 DOI: 10.1016/j.jep.2023.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laetiporus sulphureus has long been used as an edible and medicinal mushroom in Asia, America, and Europe. Its fruiting bodies are widely used in folk medicine for treating cancer, gastric diseases, cough, and rheumatism. Polysaccharides are an important bioactive component of mushrooms. In nature, sulfated polysaccharides have never been reported in mushrooms. Furthermore, there is no information on differences in physicochemical properties and anti-breast cancer activities between polysaccharides (PS) and sulfated polysaccharides (SPS) of L. sulphureus. AIM OF THE STUDY This study aimed to investigate the physicochemical properties of PS and SPS isolated from fruiting bodies of L. sulphureus and examine their anti-proliferative effects and mechanism(s) of action on MDA-MB-231 breast cancer cells. METHODS Polysaccharides (PS) were isolated using hot water and ethanol precipitation methods. Sulfated polysaccharides (SPS) were isolated by the papain-assisted hydrolysis method. Physicochemical properties comprising sugar, protein, uronic acid, and sulfate contents, and molecular weight, monosaccharide composition, and structural conformation were analyzed on PS and SPS. In the anti-cancer study, a triple-negative breast cancer cell line (MDA-MB-231) and a normal human mammary epithelial cell line (H184B5F5/M10) were used to evaluate the anti-proliferative activity of PS and SPS, and their mechanism(s) of action. RESULTS The results showed that SPS, which had higher sulfate and protein contents and diversified monosaccharide composition, exhibited more potent anti-proliferative activity against MDA-MB-231 cells than PS. Furthermore, it had a selective cytotoxic effect on breast cancer cells but not the normal cells. SPS induced cell cycle arrest at G0/G1 phase via down-regulating CDK4 and cyclin D1 and up-regulating p21 protein expression. Breast cancer cell apoptosis was not observed until 72 h after SPS treatment. In addition, SPS also markedly inhibited breast cancer cell migration. CONCLUSION This study demonstrates that SPS exhibited selective cytotoxicity and was more potent than PS in inhibiting MDA-MB-231 cell proliferation. The contents of sulfate and protein, and monosaccharide composition could be the main factors affecting the anti-breast cancer activity of L. sulphureus SPS.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Ming-Nan Lai
- Kang Jian Biotech Co., Ltd., Nantou 54245, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
8
|
Gao X, Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: a multifaceted approach to combat cancer. Cancer Cell Int 2023; 23:324. [PMID: 38104078 PMCID: PMC10724890 DOI: 10.1186/s12935-023-03146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a growing global interest in the potential health benefits of edible natural bioactive products in recent years. Ganoderma lucidum, a medicinal mushroom, has gained attention for its decadent array of therapeutic and pharmaceutical compounds. Notably, G. lucidum exhibits significant anti-cancer effects against various cancer types. Polysaccharides, a prominent component in G. lucidum, are pivotal in conferring its diverse biological and medicinal properties. The primary focus of this study was to investigate the anti-cancer activities of G. lucidum polysaccharides (GLPs), with particular attention to their potential to mitigate chemotherapy-associated toxicity and enhance targeted drug delivery. Our findings reveal that GLPs exhibit anti-cancer effects through diverse mechanisms, including cytotoxicity, antioxidative properties, apoptosis induction, reactive oxygen species (ROS) generation, and anti-proliferative effects. Furthermore, the potential of GLPs-based nanoparticles (NPs) as delivery vehicles for bioactive constituents was explored. These GLPs-based NPs are designed to target various cancer tissues, enhancing the biological activity of encapsulated compounds. As such, GLPs derived from G. lucidum represent a promising avenue for inhibiting cancer progression, minimizing chemotherapy-related side effects, and supporting their utilization in combination therapies as natural adjuncts.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Life Science, Lyuliang University, Lyuliang, 033001, Shanxi, China.
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
9
|
Xu D, Huang M, Lei J, Song H, Hu L, Mo H. Auricularia auricular Adsorbs Aflatoxin B1 and Ameliorates Aflatoxin B1-Induced Liver Damage in Sprague Dawley Rats. Foods 2023; 12:2644. [PMID: 37509736 PMCID: PMC10378415 DOI: 10.3390/foods12142644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin B1 (AFB1), as a class I carcinogen, poses a substantial health risk to individuals. Contamination of food sources, particularly grains and nuts, with Aspergillus flavus (A. flavus) contributes to the prevalence of AFB1. The impact of global warming has spurred research into the development of AFB1 prevention technologies. While edible fungi have shown potential in detoxifying AFB1, there is a scarcity of literature on the application of Auricularia auricular (A. auricular) in this context. This study aimed to investigate the ability and underlying mechanism of A. auricular mycelia to adsorb aflatoxin B1, as well as evaluate its protective effects on the AFB1-induced liver damage in SD rats. Additionally, the effects of temperature, time, pH, and reaction ratio on the adsorption rate were examined. Combining thermodynamic and kinetic data, the adsorption process was characterized as a complex mechanism primarily driven by chemical adsorption. In SD rats, the A. auricular mycelia exhibited alleviation of AFB1-induced liver damage. The protective effects on the liver attributed to A. auricular mycelia may involve a reduction in AFB1 adsorption in the intestine, mitigation of oxidative stress, and augmentation of second-phase detoxification enzyme activity. The adsorption method for AFB1 not only ensures safety and non-toxicity, but also represents a dietary regulation strategy for achieving effective defense against AFB1.
Collapse
Affiliation(s)
- Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Minmin Huang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiao Lei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongxin Song
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
10
|
Gariboldi MB, Marras E, Ferrario N, Vivona V, Prini P, Vignati F, Perletti G. Anti-Cancer Potential of Edible/Medicinal Mushrooms in Breast Cancer. Int J Mol Sci 2023; 24:10120. [PMID: 37373268 DOI: 10.3390/ijms241210120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Edible/medicinal mushrooms have been traditionally used in Asian countries either in the cuisine or as dietary supplements and nutraceuticals. In recent decades, they have aroused increasing attention in Europe as well, due to their health and nutritional benefits. In particular, among the different pharmacological activities reported (antibacterial, anti-inflammatory, antioxidative, antiviral, immunomodulating, antidiabetic, etc.), edible/medicinal mushrooms have been shown to exert in vitro and in vivo anticancer effects on several kinds of tumors, including breast cancer. In this article, we reviewed mushrooms showing antineoplastic activity again breast cancer cells, especially focusing on the possible bioactive compounds involved and their mechanisms of action. In particular, the following mushrooms have been considered: Agaricus bisporus, Antrodia cinnamomea, Cordyceps sinensis, Cordyceps militaris, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Lentinula edodes, and Pleurotus ostreatus. We also report insights into the relationship between dietary consumption of edible mushrooms and breast cancer risk, and the results of clinical studies and meta-analyses focusing on the effects of fungal extracts on breast cancer patients.
Collapse
Affiliation(s)
- Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Francesca Vignati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
11
|
Zhu F, Zhang Q, Feng J, Zhang X, Li T, Liu S, Chen Y, Li X, Wu Q, Xue Y, Alitongbieke G, Pan Y. β-Glucan produced by Lentinus edodes suppresses breast cancer progression via the inhibition of macrophage M2 polarization by integrating autophagy and inflammatory signals. Immun Inflamm Dis 2023; 11:e876. [PMID: 37249285 PMCID: PMC10214582 DOI: 10.1002/iid3.876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND β-Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated. METHODS Mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) transgenic mice were used as a breast cancer mouse model. Hematoxylin and eosin, immunohistochemical, and immunofluorescence staining were performed for histopathological analysis. Moreover, we developed an inflammatory cell model using tumor necrosis factor-α (TNF-α). Macrophage polarization was assessed using western blot analysis and immunofluorescence. RESULTS Orphan nuclear receptor 77 (Nur77) and sequestosome-1 (p62) were highly expressed and positively correlated with each other in breast cancer tissues. LNT significantly inhibited tumor growth, ameliorated inflammatory cell infiltration, and induced tumor cell apoptosis in PyMT transgenic mice. Moreover, LNT attenuated the ability of tumors to metastasize to lung tissue. Mechanistically, LNT treatment restrained macrophage polarization from M1 to M2 phenotype and promoted autophagic cell death by inhibiting Nur77 expression, AKT/mTOR signaling, and inflammatory signals in breast tumor cells. However, LNT did not exhibit a direct pro-autophagic effect on tumor cell death, except for its inhibitory effect on Nur77 expression. LNT-mediated autophagic tumor cell death depends on M1 macrophage polarization. In in vitro experiments, LNT inhibited the upregulation of p62, autophagy activation, and inflammatory signaling pathways in Nur77 cells. CONCLUSION LNT inhibited macrophage M2 polarization and subsequently blocked the AKT/mTOR and inflammatory signaling axes in breast cancer cells, thereby promoting autophagic tumor cell death. Thus, LNT may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Fukai Zhu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qianru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Jiexin Feng
- Breast Surgery DepartmentZhangzhou Hospital of Fujian Medical UniversityZhangzhouFujianPeople's Republic of China
| | - Xiuru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Tingting Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Shuwen Liu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yanling Chen
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Xiumin Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qici Wu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yu Xue
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Gulimiran Alitongbieke
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yutian Pan
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| |
Collapse
|
12
|
Shahar O, Pereman I, Khamisie H, Ezov N, Danay O, Khattib A, Schweitzer R, Khatib S, Mahajna J. Compounds originating from the edible mushroom Auricularia auricula-judae inhibit tropomyosin receptor kinase B activity. Heliyon 2023; 9:e13756. [PMID: 36895384 PMCID: PMC9988514 DOI: 10.1016/j.heliyon.2023.e13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) serves as a pivotal factor in various cancers. To identify novel natural compounds with TrkB-inhibiting properties, a screening approach was applied using extracts from a collection of wild and cultivated mushroom fruiting bodies, and Ba/F3 cells that ectopically express TrkB (TPR-TrkB). We selected mushroom extracts that selectively inhibited proliferation of the TPR-TrkB cells. We then evaluated the ability of exogenous interleukin 3 to rescue growth inhibition by the selected TrkB-positive extracts. An ethyl acetate extract of Auricularia auricula-judae actively inhibited auto-phosphorylation of TrkB. LC-MS/MS analysis of this extract revealed substances that might be responsible for the observed activity. This screening approach demonstrates, for the first time, that extracts originating from the mushroom A. auricula-judae exhibit TrkB-inhibition properties that might hold therapeutic potential for TrkB-positive cancers.
Collapse
Affiliation(s)
- Orr Shahar
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| | - Idan Pereman
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| | - Hazem Khamisie
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Nirit Ezov
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Ofer Danay
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| | - Ali Khattib
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Ron Schweitzer
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Analytical Laboratory, Tel Hai College, Kiryat Shmona, Israel
| | - Soliman Khatib
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Analytical Laboratory, Tel Hai College, Kiryat Shmona, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| |
Collapse
|
13
|
Ahmad I, Arif M, Mimi X, Zhang J, Ding Y, Lyu F. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
14
|
Sadowska A, Sawicka D, Godlewska K, Guzińska-Ustymowicz K, Zapora E, Sokołowska E, Car H. Beneficial Proapoptotic Effect of Heterobasidion Annosum Extract in Colorectal Cancer Xenograft Mouse Model. Molecules 2023; 28:molecules28031352. [PMID: 36771018 PMCID: PMC9919637 DOI: 10.3390/molecules28031352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Fungal extracts possess potential anticancer activity against many malignant neoplastic diseases. In this research, we focused on the evaluation of Heterobasidion annosum (HA) extract in colorectal cancer in an in vivo model. The mice with implanted DLD-1 human cancer cells were given HA extract, the referential drug-5-fluorouracil (5FU), or were treated with its combination. Thereafter, tumor volume was measured and apoptotic proteins such as caspase-8, caspase-3, p53, Bcl-2, and survivin were analyzed in mice serum with an ELISA assay. The Ki-67 protein was assessed in tumor cells by immunohistochemical examination. The biggest volumes of tumors were confirmed in the DLD-1 group, while the lowest were observed in the population treated with 5FU and/or HA extract. The assessment of apoptosis showed increased concentrations of caspase 8 and p53 protein after the combined administration of 5FU and HA extract. The levels of survivin and Bcl-2 were decreased in all tested groups compared to the DLD-1 group. Moreover, we observed a positive reaction for Ki-67 protein in all tested groups. Our findings confirm the apoptotic effect of extract given alone or with 5FU. The obtained results are innovative and provide a basis for further research concerning the antitumor activity of the HA extract, especially in the range of its interaction with an anticancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-748-5554
| | - Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Katarzyna Godlewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
- Department of Haematology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | | | - Ewa Zapora
- Department of Silviculture and Forest Use, Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
| | - Emilia Sokołowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| |
Collapse
|
15
|
Combining UV Irradiation and Alkaline Deacetylation to Obtain Vitamin D- and Chitosan-Enriched Fractions from Shiitake Mushrooms (Lentinula edodes). FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-02998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Rokos T, Pribulova T, Kozubik E, Biringer K, Holubekova V, Kudela E. Exploring the Bioactive Mycocompounds (Fungal Compounds) of Selected Medicinal Mushrooms and Their Potentials against HPV Infection and Associated Cancer in Humans. Life (Basel) 2023; 13:244. [PMID: 36676192 PMCID: PMC9861011 DOI: 10.3390/life13010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Medicinal mushrooms have been used as a medicinal tool for many centuries and, nowadays, are used in the prevention and therapy of various diseases, including as an adjunct to cancer treatment. It is estimated that 14-16% of global cancer cases are caused by infectious events; one well-known infectious agent that leads to cancer is the human papillomavirus (HPV). HPV is responsible for more than 99.7% of cervical cancer cases and also may play a role in vaginal, vulvar, penile, anal, rectal, and oropharyngeal carcinogenesis. Coriolus versicolor, a basidiomycetes class mushroom, consists of glycoproteins called polysaccharide-K (PSK) and polysaccharopeptide (PSP), which are mainly responsible for its effectiveness in the fight against a variety of cancers. Its beneficial effect lies in its ability to arrest different phases of the cell cycle, immunomodulation or induction of apoptosis. Coriolus versicolor extractcan reduces BCL-2 expression or increases the expression of p53 tumour suppressor genes in breast tumour cell lines. Inhibition of proliferation was also demonstrated with HeLa cells, while cervical cytology abnormalities improved in patients who locally applied Coriolus versicolor-based vaginal gel. Coriolus versicolor extract itself, and also its combination with another medicinal mushroom, Ganoderma lucidum, leads to improved HPV clearance in HPV cervical or oral-positive patients. Medicinal mushrooms can also increase the effectiveness of vaccination. This review considers the use of medicinal mushrooms as a suitable adjunct to the treatment of many cancers or precanceroses, including those caused by the HPV virus.
Collapse
Affiliation(s)
- Tomas Rokos
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| | - Terezia Pribulova
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| | - Erik Kozubik
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| | - Kamil Biringer
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| | - Veronika Holubekova
- Department of Molecular Oncology and Diagnostics, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4C, 036 01 Martin, Slovakia
| | - Erik Kudela
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4A, 036 01 Martin, Slovakia
| |
Collapse
|
17
|
Dimitrijević M, Stanković M, Nikolić J, Mitić V, Stankov Jovanović V, Stojanović G, Miladinović D. The effect of arsenic, cadmium, mercury, and lead on the genotoxic activity of Boletaceae family mushrooms present in Serbia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:23-35. [PMID: 36445018 DOI: 10.1080/15287394.2022.2150992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The aim of this study was to determine accumulation of heavy metals and metalloids which are widely distributed in the environment and in food chain using wild edible mushrooms belonging to the Boletaceae family mushrooms. In addition, methanol extracts of mushrooms were tested for in vitro protective effect by the cytochalasin-B blocked micronucleus (CBMN) assay using chromosome aberrations in human peripheral lymphocytes as a model. The genotoxic activity of methanol extracts prepared at 4 different concentrations (1, 2, 3 or 6 µg/ml) was examined using amifostine and mitomycin C as positive controls. Extracts of species B. regius and B. edulis exhibited the greatest reduction in the frequency of micronuclei (MN). Extract of B. regius at concentrations of 2 µg/ml showed the highest decrease in number of MN. In comparison, extract of mushroom B. edulis at a concentration of 3 µg/ml displayed less reduction. However, as heavy metals and metalloids are found in mushrooms, another aim was to examine whether these agents affected genotoxicity. Principal component analysis (PCA) identified clustering differences between control and heavy metals and metalloids groups and might explain the influence of heavy element content and genotoxic activity in mushrooms.
Collapse
Affiliation(s)
| | - M Stanković
- Nuclear Facilities of Serbia, Vinča, Belgrade, Serbia
| | - J Nikolić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - V Mitić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - V Stankov Jovanović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - G Stojanović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - D Miladinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
18
|
Gao Y, Abuduaini G, Yang C, Zhang S, Zhang Y, Fan H, Teng X, Bao C, Liu H, Wang D, Liu T. Isolation, purification, and structural elucidation of Stropharia rugosoannulata polysaccharides with hypolipidemic effect. Front Nutr 2022; 9:1092582. [PMID: 36590213 PMCID: PMC9800831 DOI: 10.3389/fnut.2022.1092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Stropharia rugosoannulata is a widely grown edible mushroom with a high nutritional value. S. rugosoannulata polysaccharides is one of the most important bioactive components of S. rugosoannulata and has a wide range of activities. A S. rugosoannulata polysaccharides, named SRF-3, was derived from the S. rugosoannulata extraction by freeze-thaw combine with hot water extraction method, then prepareed with DEAE-cellulose column and Sephacryl S-200 HR gel column, and its hypolipidemic activity was determined. The structural characteristics of SRF-3 were analyzed by infrared spectral scanning (FT-IR), ultra-high performance liquid chromatography (UHPLC), acid hydrolysis, methylation analysis, nuclear magnetic resonance (NMR), and Gas Chromatography-Mass Spectrometer (GC-MS). SRF-3 is composed of mannose, galactose, methyl galactose and fructose with ratios of 16, 12, 58 and 12, respectively. In addition, the average relative molecular mass of SRF-3 is approximately 24 kDa. The main chain of SRF-3 is mainly composed of repeating α-D-1,6-Galp and α-D-1,6-Me-Galp units, with branches in the O-2 position of Gal. The structure is presumed to be a mannogalactan, with a small amount of t-β-D-Manp present as a side chain. Hypolipidemic activity assay showed that SRF-3 had good antioxidant and hypolipidemic effects in vitro, suggesting that SRF-3 have potential application in reducing liver fat accumulation.
Collapse
Affiliation(s)
- Yinlu Gao
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Gulijiannaiti Abuduaini
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Chenhe Yang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xu Teng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Chenligen Bao
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China,*Correspondence: Dawei Wang,
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China,Tingting Liu,
| |
Collapse
|
19
|
Liu X, Luo D, Guan J, Chen J, Xu X. Mushroom polysaccharides with potential in anti-diabetes: Biological mechanisms, extraction, and future perspectives: A review. Front Nutr 2022; 9:1087826. [PMID: 36590224 PMCID: PMC9794872 DOI: 10.3389/fnut.2022.1087826] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a global health threat. Searching for anti-diabetic components from natural resources is of intense interest to scientists. Mushroom polysaccharides have received growing attention in anti-diabetes fields due to their advantages in broad resources, structure diversity, and multiple bioactivities, which are considered an unlimited source of healthy active components potentially applied in functional foods and nutraceuticals. In this review, the current knowledge about the roles of oxidative stress in the pathogenesis of DM, the extraction method of mushroom polysaccharides, and their potential biological mechanisms associated with anti-diabetes, including antioxidant, hypolipidemic, anti-inflammatory, and gut microbiota modulatory actions, were summarized based on a variety of in vitro and in vivo studies, with aiming at better understanding the roles of mushroom polysaccharides in the prevention and management of DM and its complications. Finally, future perspectives including bridging the gap between the intervention of mushroom polysaccharides and the modulation of insulin signaling pathway, revealing structure-bioactivity of mushroom polysaccharides, developing synergistic foods, conducting well-controlled clinical trials that may be very helpful in discovering valuable mushroom polysaccharides and better applications of mushroom polysaccharides in diabetic control were proposed.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| |
Collapse
|
20
|
Sun TK, Huang WC, Sun YW, Deng JS, Chien LH, Chou YN, Jiang WP, Lin JG, Huang GJ. Schizophyllum commune Reduces Expression of the SARS-CoV-2 Receptors ACE2 and TMPRSS2. Int J Mol Sci 2022; 23:ijms232314766. [PMID: 36499094 PMCID: PMC9740160 DOI: 10.3390/ijms232314766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The current global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of COVID-19 has infected hundreds of millions of people, killed millions, and continues to pose a threat. It has become one of the largest epidemics in human history, causing enormous damage to people's lives and economies in the whole world. However, there are still many uncertainties and continued attention to the impact of SARS-CoV-2 on human health. The entry of SARS-CoV-2 into host cells is facilitated by the binding of the spike protein on the virus surface to the cell surface receptor angiotensin-converting enzyme 2 (ACE2). Furthermore, transmembrane protease serine 2 (TMPRSS2) is a host surface protease that cleaves and proteolytically activates its S protein, which is necessary for viral infection. Thus, SARS-CoV-2 uses the ACE2 receptor for cell entry and initiates the S protein using the protease TMPRSS2. Schizophyllum commune (SC) is one of the most widely distributed fungi, often found on the rotten wood of trees that has been found to have various health benefits, including anticancer, antimicrobial activity, antiparasitic, and immunomodulatory function. In this article, SC significantly diminished the expression ACE2 and TMPRSS2 protein in vitro and in vivo without cell damage. In addition, adenosine from SC was also proven in this experiment to reduce the ACE2 and TMPRSS2 expression. Thus, our findings suggest that SC and adenosine exhibit potential for the repression of SARS-CoV-2 infection via the ACE2 and TMPRSS2 axis.
Collapse
Affiliation(s)
- Te-Kai Sun
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yu-Wen Sun
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (J.-G.L.); (G.-J.H.); Tel.: +886-4-2205-3366 (ext. 3311) (J.-G.L.); +886-4-2205-3366 (ext. 5508) (G.-J.H.)
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
- Correspondence: (J.-G.L.); (G.-J.H.); Tel.: +886-4-2205-3366 (ext. 3311) (J.-G.L.); +886-4-2205-3366 (ext. 5508) (G.-J.H.)
| |
Collapse
|
21
|
Wang J, Tang S, Guo S, Gu D, Wang Y, Tian J, Yang Y. Fermentation of Agaricus bisporus for antioxidant activity: response surface optimization, chemical components, and mechanism. Prep Biochem Biotechnol 2022:1-11. [PMID: 36345997 DOI: 10.1080/10826068.2022.2142941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Agaricus bisporus is one of the most widely cultivated edible mushrooms in the world. The chemical components of A. bisporus have a wide range of biological activities. In order to deeply understand the antioxidant properties of A. bisporus, this study conducted an investigation on the components of A. bisporus fermentation. Through the single factor experiment and response surface optimization, it was found that when the C/N ratio was 45:1, the inoculum concentration was 10%, and the fermentation time was 7 d, the n-butanol extract of the fermentation product had the strongest scavenging capacity for free radical generated through 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS·+). The concentration for 50% of the maximal effect (EC50) was 0.33 ± 0.01 mg/mL. Moreover, in order to identify the two main components, the elution-extrusion counter-current chromatography (EECCC) was employed for separation, where 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) and 5-(butoxymethyl) furfural were obtained. The antioxidant activity of 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) (EC50 = 0.26 ± 0.01 mg/mL) was superior to that of 5-butylmethyl furfural (EC50 = 1.52 ± 0.02 mg/mL), indicating that 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) was the main antioxidant in the fermentation products. The thermodynamic parameters and frontier molecular orbitals of 5,5'-oxy-dimethyl-bis (2-furanaldehyde) was evaluated by density functional theory (DFT). The result indicated 5,5'-oxy-dimethyl-bis(2-furanaldehyde) scavenged free radicals in polar media through single electron transfer followed by proton transfer (SET-PT).
Collapse
Affiliation(s)
- Jifeng Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Shanshan Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
22
|
Tabibzadeh F, Alvandi H, Hatamian-Zarmi A, Kalitukha L, Aghajani H, Ebrahimi-Hosseinzadeh B. Antioxidant activity and cytotoxicity of exopolysaccharide from mushroom Hericium coralloides in submerged fermentation. BIOMASS CONVERSION AND BIOREFINERY 2022:1-11. [PMID: 36277811 PMCID: PMC9579569 DOI: 10.1007/s13399-022-03386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Mushrooms of the genus Hericium spp. represent a series of delicious edible mushrooms with medicinal value. Here, for the first time, the species native to Iran, the mushroom Hericium coralloides, was collected in Mazandaran province, identified, and registered with the NCBI under accession number MW136052. The production of exopolysaccharides (EPS) in submerged culture was optimized using the response surface method. Among the physicochemical and culture medium conditions tested, rotation speed and concentration of maltose and peptone of soybean significantly affected the production of EPS. The proposed model predicts maximum EPS production (0.13 g/L) at 50 g/L maltose, 3 g/L soy peptone, and 1 g/L yeast extract, pH = 6.5, 200 rpm, inoculum at 5% v/v, and 22 °C. The molecular weight of the EPS chains was 413 and 1578 Da. EPS has antioxidant action (EC50 = 6.59 mg/mL) and cytotoxic activity against cancer cells. The viability of AGS and MKN-45 cancer cell lines declined to 20 and 30% after 48 h of the EPS treatment. H. coralloides EPS could be considered a natural dietary anti-cancer supplement. Further studies are necessary to understand the mechanism of the H. coralloides EPS activity on the cell cycle of cancer cells and to prove its action in vivo. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-03386-0.
Collapse
Affiliation(s)
- Firouzeh Tabibzadeh
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Hale Alvandi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Hamed Aghajani
- Department of Forestry, Sari Agriculture Science and Natural Resources University, Sari, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Recent Advances in the Allergic Cross-Reactivity between Fungi and Foods. J Immunol Res 2022; 2022:7583400. [PMID: 36249419 PMCID: PMC9568318 DOI: 10.1155/2022/7583400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Airborne fungi are one of the most ubiquitous kinds of inhalant allergens which can result in allergic diseases. Fungi tend to grow in warm and humid environments with regional and seasonal variations. Their nomenclature and taxonomy are related to the sensitization of immunoglobulin E (IgE). Allergic cross-reactivity among different fungal species appears to be widely existing. Fungus-related foods, such as edible mushrooms, mycoprotein, and fermented foods by fungi, can often induce to fungus food allergy syndrome (FFAS) by allergic cross-reactivity with airborne fungi. FFAS may involve one or more target organs, including the oral mucosa, the skin, the gastrointestinal and respiratory tracts, and the cardiovascular system, with various allergic symptoms ranging from oral allergy syndrome (OAS) to severe anaphylaxis. This article reviews the current knowledge on the field of allergic cross-reactivity between fungal allergens and related foods, as well as the diagnosis and treatment on FFAS.
Collapse
|
24
|
Zeng Q, Singh R, Ye Y, Cheng S, Kong F, Zeng Q. Anti‐breast‐cancer activity of self‐fermented
Bovistella sinensis Lloyd
extracts through the mitochondrial
ROS
‐induced apoptosis in vitro. J Food Biochem 2022; 46:e14218. [DOI: 10.1111/jfbc.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Qinghua Zeng
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei China
- Department of Food Science and Engineering, College of Agronomy Liaocheng University Liaocheng China
| | - Ragini Singh
- Department of Food Science and Engineering, College of Agronomy Liaocheng University Liaocheng China
| | - Yong Ye
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei China
| | - Shuang Cheng
- Department of Food Science and Engineering, College of Agronomy Liaocheng University Liaocheng China
| | - Feng Kong
- Department of Food Science and Engineering, College of Agronomy Liaocheng University Liaocheng China
| | - Qingmei Zeng
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei China
| |
Collapse
|
25
|
Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. SUSTAINABILITY 2022. [DOI: 10.3390/su14094941] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global food production faces many challenges, including climate change, a water crisis, land degradation, and desertification. These challenges require research into non-traditional sources of human foods. Edible mushrooms are considered an important next-generation healthy food source. Edible mushrooms are rich in proteins, dietary fiber, vitamins, minerals, and other bioactive components (alkaloids, lactones, polysaccharides, polyphenolic compounds, sesquiterpenes, sterols, and terpenoids). Several bioactive ingredients can be extracted from edible mushrooms and incorporated into health-promoting supplements. It has been suggested that several human diseases can be treated with extracts from edible mushrooms, as these extracts have biological effects including anticancer, antidiabetic, antiviral, antioxidant, hepatoprotective, immune-potentiating, and hypo-cholesterolemic influences. The current study focuses on sustainable approaches for handling edible mushrooms and their secondary metabolites, including biofortification. Comparisons between edible and poisonous mushrooms, as well as the common species of edible mushrooms and their different bioactive ingredients, are crucial. Nutritional values and the health benefits of edible mushrooms, as well as different biomedical applications, have been also emphasized. Further research is needed to explore the economic sustainability of different medicinal mushroom bioactive compound extracts and their potential applications against emerging diseases such as COVID-19. New approaches such as nano-biofortification are also needed to supply edible mushrooms with essential nutrients and/or to increase their bioactive ingredients.
Collapse
|
26
|
Zheng Y, Zhang W, Xu L, Zhou H, Yuan M, Xu H. Recent Progress in Understanding the Action of Natural Compounds at Novel Therapeutic Drug Targets for the Treatment of Liver Cancer. Front Oncol 2022; 11:795548. [PMID: 35155196 PMCID: PMC8825370 DOI: 10.3389/fonc.2021.795548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related death following lung and stomach cancers. As a highly lethal disease, liver cancer is diagnosed frequently in less developed countries. Natural compounds extracted from herbs, animals and natural materials have been adopted by traditional Chinese medicine (TCM) practices and reported to be effective in the development of new medications for the treatment of diseases. It is important to focus on the mechanisms of action of natural compounds against hepatocellular carcinoma (HCC), particularly in terms of cell cycle regulation, apoptosis induction, autophagy mediation and cell migration and invasion. In this review, we characterize novel representative natural compounds according to their pharmacologic effects based on recently published studies. The aim of this review is to summarize and explore novel therapeutic drug targets of natural compounds, which could accelerate the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Yannan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Lin Xu
- Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Dulay RM, Valdez B, Chakrabarti S, Dhillon B, Cabrera E, Kalaw S, Reyes R. Cytotoxicity of edible mushrooms Oudemansiella canarii (Jungh.) Höhn. and Ganoderma lucidum (W. Curt.: Fr.) P. Karst. against hematologic malignant cells via activation of apoptosis-related markers. Int J Med Mushrooms 2022; 24:83-95. [DOI: 10.1615/intjmedmushrooms.2022045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
The β-1,3-glucan synthase gene GFGLS2 plays major roles in mycelial growth and polysaccharide synthesis in Grifola frondosa. Appl Microbiol Biotechnol 2021; 106:563-578. [PMID: 34939133 DOI: 10.1007/s00253-021-11734-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
β-1,3-Glucans are well-known biological and health-promoting compounds in edible fungi. Our previous results characterized a glucan synthase gene (GFGLS) of Grifola frondosa for the first time to understand its role in mycelial growth and glucan biosynthesis. In the present study, we identified and functionally reannotated another glucan synthase gene, GFGLS2, based on our previous results. GFGLS2 had a full sequence of 5944 bp including 11 introns and 12 exons and a coding information for 1713 amino acids of a lower molecular weight (195.2 kDa) protein with different conserved domain sites than GFGLS (5927 bp with also 11 introns and a coding information for 1781 aa). Three dual-promoter RNA-silencing vectors, pAN7-iGFGLS-dual, pAN7-iGFGLS2-dual, and pAN7-CiGFGLS-dual, were constructed to downregulate GFGLS, GFGLS2, and GFGLS/GFGLS2 expression by targeting their unique exon sequence or conserved functional sequences. Silencing GFGLS2 resulted in higher downregulation efficiency than silencing GFGLS. Cosilencing GFGLS and GFGLS2 had a synergistic downregulation effect, with slower mycelial growth and glucan production by G. frondosa. These findings indicated that GFGLS2 plays major roles in mycelial growth and polysaccharide synthesis and provides a reference to understand the biosynthesis pathway of mushroom polysaccharides. KEY POINTS: • The 5944-bp glucan synthase gene GFGLS2 of G. frondosa was cloned and reannotated • GFGLS2 showed identity and significant differences with the previously identified GFGLS • GFGLS2 played a major role in fermentation and glucan biosynthesis.
Collapse
|
29
|
Insights into health-promoting effects of Jew's ear (Auricularia auricula-judae). Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Zhang Y, Liu F, Ng TB. Interrelationship among paraptosis, apoptosis and autophagy in lung cancer A549 cells induced by BEAP, an antitumor protein isolated from the edible porcini mushroom Boletus edulis. Int J Biol Macromol 2021; 188:313-322. [PMID: 34339788 DOI: 10.1016/j.ijbiomac.2021.07.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022]
Abstract
In today's world, cancer is still the leading cause of human death. Among them, the incidence and mortality of lung cancer remain high, and have become the focus of research in the world. BEAP, a protein with anti-lung cancer activity, was isolated and purified from the edible mushroom Boletus edulis. Previous studies have shown that BEAP can inhibit the proliferation of non-small cell lung cancer A549 cells by inducing apoptosis and cell cycle arrest in vitro and in vivo. However, there are many ways in which antitumor proteins from edible and medicinal mushroom play their roles. It is worth exploring whether there are other antitumor mechanisms of BEAP, which can provide reference value for the development of new drugs targeting non-small cell lung cancer and the repurposing of existing drugs.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
31
|
Balakrishnan B, Liang Q, Fenix K, Tamang B, Hauben E, Ma L, Zhang W. Combining the Anticancer and Immunomodulatory Effects of Astragalus and Shiitake as an Integrated Therapeutic Approach. Nutrients 2021; 13:nu13082564. [PMID: 34444724 PMCID: PMC8401741 DOI: 10.3390/nu13082564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Astragalus root (Huang Qi) and Shiitake mushrooms (Lentinus edodes) are both considered medicinal foods and are frequently used in traditional Chinese medicine due to their anticancer and immunomodulating properties. Here, the scientific literatures describing evidence for the anticancer and immunogenic properties of Shiitake and Astragalus were reviewed. Based on our experimental data, the potential to develop medicinal food with combined bioactivities was assessed using Shiitake mushrooms grown over Astragalus beds in a proprietary manufacturing process, as a novel cancer prevention approach. Notably, our data suggest that this new manufacturing process can result in transfer and increased bioavailability of Astragalus polysaccharides with therapeutic potential into edible Shiitake. Further research efforts are required to validate the therapeutic potential of this new Hengshan Astragalus Shiitake medicinal food.
Collapse
Affiliation(s)
- Biju Balakrishnan
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
| | - Qi Liang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030600, China
| | - Kevin Fenix
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Bunu Tamang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
| | - Ehud Hauben
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- AusHealth Corporate Pty Ltd., Adelaide, SA 5032, Australia
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| |
Collapse
|
32
|
HPLC-DAD characterization of phenolic profile and in vitro antioxidant, anticholinesterase, and antidiabetic activities of five mushroom species from Turkey. 3 Biotech 2021; 11:273. [PMID: 34055565 DOI: 10.1007/s13205-021-02819-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, Daedalea quercina (L.) Pers., Hydnum repandum L., Inonotus radiatus (Sowerby) P. Karst., Omphalotus olearius (DC.) Singer, and Schizophyllum commune Fr. hexane and methanol extracts were subjected to the spectrophotometric assays for antioxidant and enzyme inhibitory activities, which are linked with human diseases that are very prevalent in recent years. Additionally, phenolic compounds of the mushrooms were quantified by HPLC-DAD. The best antioxidant activity was found in H. repandum methanol extract (IC50: 12.04 ± 0.24 µg/mL) in the β-carotene-linoleic assay; I. radiatus methanol extract in DPPH• (81.22 ± 0.50%), ABTS•+ (IC50: 73.47 ± 0.18 µg/mL), and CUPRAC (A0.50: 88.21 ± 0.02 µg/mL) assays; S. commune hexane extract (53.36 ± 0.89%) in the metal chelating assay. O. olearius hexane extract was found as the best inhibitor against AChE (71.58 ± 0.28%) and BChE (67.30 ± 0.15%). When I. radiatus methanol (95.88 ± 0.74%) and H. repandum hexane (95.75 ± 0.16%) extracts showed close α-amylase inhibitory activity to acarbose (96.68 ± 0.08%), D. quercina methanol extract (70.79 ± 0.34%) had higher α-glucosidase inhibitory activity than acarbose (67.01 ± 2.28%). Among 16 phenolic compounds analyzed, gallic acid (0.02 ± 0.01-0.23 ± 0.01 µg/g) was detected in all studied mushrooms. This study provides that investigated mushrooms can be used for further research, which can lead to the development of new natural remedies to alleviate complications related to oxidative stress, diabetes, and neurological diseases.
Collapse
|
33
|
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12:637553. [PMID: 34054806 PMCID: PMC8155592 DOI: 10.3389/fimmu.2021.637553] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants have been extensively studied since ancient times and numerous important chemical constituents with tremendous therapeutic potential are identified. Attacks of microorganisms including viruses and bacteria can be counteracted with an efficient immune system and therefore, stimulation of body's defense mechanism against infections has been proven to be an effective approach. Polysaccharides, terpenoids, flavonoids, alkaloids, glycosides, and lactones are the important phytochemicals, reported to be primarily responsible for immunomodulation activity of the plants. These phytochemicals may act as lead molecules for the development of safe and effective immunomodulators as potential remedies for the prevention and cure of viral diseases. Natural products are known to primarily modulate the immune system in nonspecific ways. A number of plant-based principles have been identified and isolated with potential immunomodulation activity which justify their use in traditional folklore medicine and can form the basis of further specified research. The aim of the current review is to describe and highlight the immunomodulation potential of certain plants along with their bioactive chemical constituents. Relevant literatures of recent years were searched from commonly employed scientific databases on the basis of their ethnopharmacological use. Most of the plants displaying considerable immunomodulation activity are summarized along with their possible mechanisms. These discussions shall hopefully elicit the attention of researchers and encourage further studies on these plant-based immunomodulation products as potential therapy for the management of infectious diseases, including viral ones such as COVID-19.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
34
|
Mushroom Nutrition as Preventative Healthcare in Sub-Saharan Africa. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The defining characteristics of the traditional Sub-Saharan Africa (SSA) cuisine have been the richness in indigenous foods and ingredients, herbs and spices, fermented foods and beverages, and healthy and whole ingredients used. It is crucial to safeguard the recognized benefits of mainstream traditional foods and ingredients, which gradually eroded in the last decades. Notwithstanding poverty, chronic hunger, malnutrition, and undernourishment in the region, traditional eating habits have been related to positive health outcomes and sustainability. The research prevailed dealing with food availability and access rather than the health, nutrition, and diet quality dimensions of food security based on what people consume per country and on the missing data related to nutrient composition of indigenous foods. As countries become more economically developed, they shift to “modern” occidental foods rich in saturated fats, salt, sugar, fizzy beverages, and sweeteners. As a result, there are increased incidences of previously unreported ailments due to an unbalanced diet. Protein-rich foods in dietary guidelines enhance only those of animal or plant sources, while rich protein sources such as mushrooms have been absent in these charts, even in developed countries. This article considers the valorization of traditional African foodstuffs and ingredients, enhancing the importance of establishing food-based dietary guidelines per country. The crux of this review highlights the potential of mushrooms, namely some underutilized in the SSA, which is the continent’s little exploited gold mine as one of the greatest untapped resources for feeding and providing income for Africa’s growing population, which could play a role in shielding Sub-Saharan Africans against the side effects of an unhealthy stylish diet.
Collapse
|
35
|
Yasin HK, Taylor AH, Ayakannu T. A Narrative Review of the Role of Diet and Lifestyle Factors in the Development and Prevention of Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13092149. [PMID: 33946913 PMCID: PMC8125712 DOI: 10.3390/cancers13092149] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The incidence and prevalence of endometrial cancer is increasing globally. The main factors involved in this increase have been the way women live today and what they eat and drink. In fact, the obesity pandemic that is sweeping across the planet is considered to be the main contributory feature. This review aims to introduce to a new audience, those that are not experts in the field, what is known about the different types of endometrial cancer and the mechanisms for their induction and protection. We also seek to summarise the existing knowledge on dietary and lifestyle factors that prevent endometrial development in susceptible populations and identify the main problem in this arena; the paucity of research studies and clinical trials that investigate the interaction(s) between diet, lifestyle and endometrial cancer risk whilst highlighting those areas of promise that should be further investigated. Abstract Endometrial cancer is the most common cancer affecting the reproductive organs of women living in higher-income countries. Apart from hormonal influences and genetic predisposition, obesity and metabolic syndrome are increasingly recognised as major factors in endometrial cancer risk, due to changes in lifestyle and diet, whereby high glycaemic index and lipid deposition are prevalent. This is especially true in countries where micronutrients, such as vitamins and minerals are exchanged for high calorific diets and a sedentary lifestyle. In this review, we will survey the currently known lifestyle factors, dietary requirements and hormonal changes that increase an individual’s risk for endometrial cancer and discuss their relevance for clinical management. We also examine the evidence that everyday factors and clinical interventions have on reducing that risk, such that informed healthy choices can be made. In this narrative review, we thus summarise the dietary and lifestyle factors that promote and prevent the incidence of endometrial cancer.
Collapse
Affiliation(s)
- Hajar Ku Yasin
- Department of Obstetrics & Gynaecology, Cumberland Infirmary, Carlisle CA2 7HY, UK;
| | - Anthony H. Taylor
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK;
| | - Thangesweran Ayakannu
- Gynaecology Oncology Cancer Centre, Liverpool Women’s NHS Foundation Trust, Liverpool Women’s Hospital, Liverpool L8 7SS, UK
- Correspondence: ; Tel.: +44-(0)-151-708-9988 (ext. 4531)
| |
Collapse
|
36
|
β-glucan from Lentinus edodes inhibits breast cancer progression via the Nur77/HIF-1α axis. Biosci Rep 2021; 40:227063. [PMID: 33245358 PMCID: PMC7736624 DOI: 10.1042/bsr20201006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background: β-glucan from Lentinus edodes (LNT) is a plant-derived medicinal fungus possessing significant bioactivities on anti-tumor. Both hypoxia-induced factor-1α (HIF)-1α and Nur77 have been shown to be involved in the development of breast cancer. However, there is yet no proof of Nur77/HIF-1α involvement in the process of LNT-mediated tumor-inhibition effect. Methods: Immunohistochemistry, immunofluorescence and Hematoxylin–Eosin staining were used to investigate tumor growth and metastasis in MMTV-PyMT transgenic mice. Proliferation and metastasis-associated molecules were determined by Western blotting and reverse transcription-quantitative PCR. Hypoxic cellular model was established under the exposure of CoCl2. Small interference RNA was transfected using Lipofectamine reagent. The ubiquitin proteasome pathway was blunted by adding the proteasome inhibitor MG132. Results: LNT inhibited the growth of breast tumors and the development of lung metastases from breast cancer, accompanied by a decreased expression of HIF-1α in the tumor tissues. In in vitro experiments, hypoxia induced the expression of HIF-1α and Nur77 in breast cancer cells, while LNT addition down-regulated HIF-1α expression in an oxygen-free environment, and this process was in a manner of Nur77 dependent. Mechanistically, LNT evoked the down-regulation of HIF-1α involved the Nur77-mediated ubiquitin proteasome pathway. A strong positive correlation between Nur77 and HIF-1α expression in human breast cancer specimens was also confirmed. Conclusion: Therefore, LNT appears to inhibit the progression of breast cancer partly through the Nur77/HIF-1α signaling axis. The findings of the present study may provide a theoretical basis for targeting HIFs in the treatment of breast cancer.
Collapse
|
37
|
Kała K, Krakowska A, Szewczyk A, Ostachowicz B, Szczurek K, Fijałkowska A, Muszyńska B. Determining the amount of potentially bioavailable phenolic compounds and bioelements in edible mushroom mycelia of Agaricus bisporus, Cantharellus cibarius, and Lentinula edodes. Food Chem 2021; 352:129456. [PMID: 33711727 DOI: 10.1016/j.foodchem.2021.129456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Release of bioelements and phenolic compounds from edible mushrooms (Agaricus bisporus, Cantharellus cibarius, and Lentinula edodes) enriched with zinc, selenium, l-phenylalanine, alone and as a mixture was examined using a simulated human gastrointestinal digestion method. Due to the extensive amount of data obtained, in order to interpret them more precisely in the work, the methods of chemometric analysis (Cluster Analysis-CA and Principal Compenent Analysis-PCA) were additionally applied. The results showed mycelium of L. edodes has the best health-promoting properties and addition of mixture to the media increased significantly the synthesis of p-hydroxybenzoic and protocatechuic acid (267 and 16.3 mg/100 g d.w.). After extraction into artificial digestive juices, 97.4 mg/100 g d.w. p-hydroxybenzoic acid and 15.6 mg/100 g d.w. of protocatechuic acid were released. The greatest amounts of Se and Zn were extracted from enriched A. bisporus mycelium (32.3 and 342 mg/100 g d.w., respectively). This study confirmed that mycelium might prevent nutritional deficiencies in the diet through use of functional foods.
Collapse
Affiliation(s)
- Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Agata Krakowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Kornelia Szczurek
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Agata Fijałkowska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
38
|
Dai R, Liu M, Nik Nabil WN, Xi Z, Xu H. Mycomedicine: A Unique Class of Natural Products with Potent Anti-tumour Bioactivities. Molecules 2021; 26:1113. [PMID: 33669877 PMCID: PMC7923288 DOI: 10.3390/molecules26041113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/17/2023] Open
Abstract
Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccharides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medicinal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mushrooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti-cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mechanisms underlying the potent bioactivities of several representative mushrooms in the Kingdom Fungi against various types of tumour.
Collapse
Affiliation(s)
- Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (R.D.); (M.L.); (W.N.N.N.)
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (R.D.); (M.L.); (W.N.N.N.)
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (R.D.); (M.L.); (W.N.N.N.)
- Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (R.D.); (M.L.); (W.N.N.N.)
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
39
|
Zhao S, Gao Q, Rong C, Wang S, Zhao Z, Liu Y, Xu J. Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products. J Fungi (Basel) 2020; 6:E269. [PMID: 33171663 PMCID: PMC7712035 DOI: 10.3390/jof6040269] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Qi Gao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Shouxian Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Zhekun Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
40
|
Kim S. Antioxidant Compounds for the Inhibition of Enzymatic Browning by Polyphenol Oxidases in the Fruiting Body Extract of the Edible Mushroom Hericium erinaceus. Foods 2020; 9:foods9070951. [PMID: 32709087 PMCID: PMC7404559 DOI: 10.3390/foods9070951] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Mushrooms are attractive resources for novel enzymes and bioactive compounds. Nevertheless, mushrooms spontaneously form brown pigments during food processing as well as extraction procedures for functional compounds. In this study, the dark browning pigment in the extract derived from the edible mushroom Hericium erinaceus was determined to be caused by the oxidation of endogenous polyphenol compounds by the polyphenol oxidase (PPO) enzyme family. These oxidized pigment compounds were measured quantitatively using a fluorospectrophotometer and, through chelation deactivation and heat inactivation, were confirmed to be enzymatic browning products of reactions by a metalloprotein tyrosinase in the PPO family. Furthermore, a transcript analysis of the identified putative PPO-coding genes in the different growth phases showed that tyrosinase and laccase isoenzymes were highly expressed in the mushroom fruiting body, and these could be potential PPOs involved in the enzymatic browning reaction. A metabolite profiling analysis of two different growth phases also revealed a number of potential enzymatic browning substances that were grouped into amino acids and their derivatives, phenolic compounds, and purine and pyrimidine nucleobases. In addition, these analyses also demonstrated that the mushroom contained a relatively high amount of natural antioxidant compounds that can effectively decrease the browning reaction via PPO-inhibitory mechanisms that inhibit tyrosinase and scavenge free radicals in the fruiting body. Altogether, these results contribute to an understanding of the metabolites and PPO enzymes responsible for the enzymatic browning reaction of H. erinaceus.
Collapse
Affiliation(s)
- Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Korea; ; Tel.: +82-63-570-5113; Fax: +82-63-570-5109
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| |
Collapse
|