1
|
Keating C, Fiege K, Diender M, Sousa DZ, Villanueva L. Microbial single-cell applications under anoxic conditions. Appl Environ Microbiol 2024:e0132124. [PMID: 39345115 DOI: 10.1128/aem.01321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The field of microbiology traditionally focuses on studying microorganisms at the population level. Nevertheless, the application of single-cell level methods, including microfluidics and imaging techniques, has revealed heterogeneity within populations, making these methods essential to understand cellular activities and interactions at a higher resolution. Moreover, single-cell sorting has opened new avenues for isolating cells of interest from microbial populations or complex microbial communities. These isolated cells can be further interrogated in downstream single-cell "omics" analyses, providing physiological and functional information. However, applying these methods to study anaerobic microorganisms under in situ conditions remains challenging due to their sensitivity to oxygen. Here, we review the existing methodologies for the analysis of viable anaerobic microorganisms at the single-cell level, including live-imaging, cell sorting, and microfluidics (lab-on-chip) applications, and we address the challenges involved in their anoxic operation. Additionally, we discuss the development of non-destructive imaging techniques tailored for anaerobes, such as oxygen-independent fluorescent probes and alternative approaches.
Collapse
Affiliation(s)
- Ciara Keating
- Department of Engineering, Durham University, Durham, United Kingdom
| | - Kerstin Fiege
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, the Netherlands
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, the Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, the Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, the Netherlands
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
DeFord L, Yoon JY. Soil microbiome characterization and its future directions with biosensing. J Biol Eng 2024; 18:50. [PMID: 39256848 PMCID: PMC11389470 DOI: 10.1186/s13036-024-00444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Soil microbiome characterization is typically achieved with next-generation sequencing (NGS) techniques. Metabarcoding is very common, and meta-omics is growing in popularity. These techniques have been instrumental in microbiology, but they have limitations. They require extensive time, funding, expertise, and computing power to be effective. Moreover, these techniques are restricted to controlled laboratory conditions; they are not applicable in field settings, nor can they rapidly generate data. This hinders using NGS as an environmental monitoring tool or an in-situ checking device. Biosensing technology can be applied to soil microbiome characterization to overcome these limitations and to complement NGS techniques. Biosensing has been used in biomedical applications for decades, and many successful commercial products are on the market. Given its previous success, biosensing has much to offer soil microbiome characterization. There is a great variety of biosensors and biosensing techniques, and a few in particular are better suited for soil field studies. Aptamers are more stable than enzymes or antibodies and are more ready for field-use biosensors. Given that any microbiome is complex, a multiplex sensor will be needed, and with large, complicated datasets, machine learning might benefit these analyses. If the signals from the biosensors are optical, a smartphone can be used as a portable optical reader and potential data-analyzing device. Biosensing is a rich field that couples engineering and biology, and applying its toolset to help advance soil microbiome characterization would be a boon to microbiology more broadly.
Collapse
Affiliation(s)
- Lexi DeFord
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Hosseiniyan Khatibi SM, Dimaano NG, Veliz E, Sundaresan V, Ali J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. PLANT COMMUNICATIONS 2024:101078. [PMID: 39233440 DOI: 10.1016/j.xplc.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world's food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome; however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.
Collapse
Affiliation(s)
| | - Niña Gracel Dimaano
- International Rice Research Institute, Los Baños, Laguna, Philippines; College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Esteban Veliz
- College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Venkatesan Sundaresan
- College of Biological Sciences, University of California, Davis, Davis, CA, USA; College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Jauhar Ali
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
4
|
Glockow T, Kaster AK, Rabe KS, Niemeyer CM. Sustainable agriculture: leveraging microorganisms for a circular economy. Appl Microbiol Biotechnol 2024; 108:452. [PMID: 39212740 PMCID: PMC11364797 DOI: 10.1007/s00253-024-13294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Microorganisms serve as linchpins in agricultural systems. Classic examples include microbial composting for nutrient recovery, using microorganisms in biogas technology for agricultural waste utilization, and employing biofilters to reduce emissions from stables or improve water quality in aquaculture. This mini-review highlights the importance of microbiome analysis in understanding microbial diversity, dynamics, and functions, fostering innovations for a more sustainable agriculture. In this regard, customized microorganisms for soil improvement, replacements for harmful agrochemicals or antibiotics in animal husbandry, and (probiotic) additives in animal nutrition are already in or even beyond the testing phase for a large-scale conventional agriculture. Additionally, as climate change reduces arable land, new strategies based on closed-loop systems and controlled environment agriculture, emphasizing microbial techniques, are being developed for regional food production. These strategies aim to secure the future food supply and pave the way for a sustainable, resilient, and circular agricultural economy. KEY POINTS: • Microbial strategies facilitate the integration of multiple trophic levels, essential for cycling carbon, nitrogen, phosphorus, and micronutrients. • Exploring microorganisms in integrated biological systems is essential for developing practical agricultural solutions. • Technological progress makes sustainable closed-entity re-circulation systems possible, securing resilient future food production.
Collapse
Affiliation(s)
- Till Glockow
- Acheron GmbH, Auf Der Muggenburg 30, 28217, Bremen, Germany
| | - Anne-Kristin Kaster
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 5 (IBG-5), Biotechnology and Microbial Genetics, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
5
|
Wu R, Ji P, Hua Y, Li H, Zhang W, Wei Y. Research progress in isolation and identification of rumen probiotics. Front Cell Infect Microbiol 2024; 14:1411482. [PMID: 38836057 PMCID: PMC11148321 DOI: 10.3389/fcimb.2024.1411482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
With the increasing research on the exploitation of rumen microbial resources, rumen probiotics have attracted much attention for their positive contributions in promoting nutrient digestion, inhibiting pathogenic bacteria, and improving production performance. In the past two decades, macrogenomics has provided a rich source of new-generation probiotic candidates, but most of these "dark substances" have not been successfully cultured due to the restrictive growth conditions. However, fueled by high-throughput culture and sorting technologies, it is expected that the potential probiotics in the rumen can be exploited on a large scale, and their potential applications in medicine and agriculture can be explored. In this paper, we review and summarize the classical techniques for isolation and identification of rumen probiotics, introduce the development of droplet-based high-throughput cell culture and single-cell sequencing for microbial culture and identification, and finally introduce promising cultureomics techniques. The aim is to provide technical references for the development of related technologies and microbiological research to promote the further development of the field of rumen microbiology research.
Collapse
Affiliation(s)
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | | | | | | | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Bautista-Cruz A, Aquino-Bolaños T, Hernández-Canseco J, Quiñones-Aguilar EE. Cellulolytic Aerobic Bacteria Isolated from Agricultural and Forest Soils: An Overview. BIOLOGY 2024; 13:102. [PMID: 38392320 PMCID: PMC10886624 DOI: 10.3390/biology13020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
This review provides insights into cellulolytic bacteria present in global forest and agricultural soils over a period of 11 years. It delves into the study of soil-dwelling cellulolytic bacteria and the enzymes they produce, cellulases, which are crucial in both soil formation and the carbon cycle. Forests and agricultural activities are significant contributors to the production of lignocellulosic biomass. Forest ecosystems, which are key carbon sinks, contain 20-30% cellulose in their leaf litter. Concurrently, the agricultural sector generates approximately 998 million tons of lignocellulosic waste annually. Predominant genera include Bacillus, Pseudomonas, Stenotrophomonas, and Streptomyces in forests and Bacillus, Streptomyces, Pseudomonas, and Arthrobacter in agricultural soils. Selection of cellulolytic bacteria is based on their hydrolysis ability, using artificial cellulose media and dyes like Congo red or iodine for detection. Some studies also measure cellulolytic activity in vitro. Notably, bacterial cellulose hydrolysis capability may not align with their cellulolytic enzyme production. Enzymes such as GH1, GH3, GH5, GH6, GH8, GH9, GH10, GH12, GH26, GH44, GH45, GH48, GH51, GH74, GH124, and GH148 are crucial, particularly GH48 for crystalline cellulose degradation. Conversely, bacteria with GH5 and GH9 often fail to degrade crystalline cellulose. Accurate identification of cellulolytic bacteria necessitates comprehensive genomic analysis, supplemented by additional proteomic and transcriptomic techniques. Cellulases, known for degrading cellulose, are also significant in healthcare, food, textiles, bio-washing, bleaching, paper production, ink removal, and biotechnology, emphasizing the importance of discovering novel cellulolytic strains in soil.
Collapse
Affiliation(s)
- Angélica Bautista-Cruz
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Teodulfo Aquino-Bolaños
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Jessie Hernández-Canseco
- Doctoral Programme in Conservation and Use of Natural Resources, Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Evangelina Esmeralda Quiñones-Aguilar
- Laboratorio de Fitopatología de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| |
Collapse
|
7
|
Lo HY, Wink K, Nitz H, Kästner M, Belder D, Müller JA, Kaster AK. scMAR-Seq: a novel workflow for targeted single-cell genomics of microorganisms using radioactive labeling. mSystems 2023; 8:e0099823. [PMID: 37982643 PMCID: PMC10734494 DOI: 10.1128/msystems.00998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE A central question in microbial ecology is which member of a community performs a particular metabolism. Several sophisticated isotope labeling techniques are available for analyzing the metabolic function of populations and individual cells in a community. However, these methods are generally either insufficiently sensitive or throughput-limited and thus have limited applicability for the study of complex environmental samples. Here, we present a novel approach that combines highly sensitive radioisotope tracking, microfluidics, high-throughput sorting, and single-cell genomics to simultaneously detect and identify individual microbial cells based solely on their in situ metabolic activity, without prior information on community structure.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Konstantin Wink
- Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Henrike Nitz
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Detlev Belder
- Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Jochen A. Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Moon JH, Roh DH, Kwack KH, Lee JH. Bacterial single-cell transcriptomics: Recent technical advances and future applications in dentistry. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:253-262. [PMID: 37674900 PMCID: PMC10477369 DOI: 10.1016/j.jdsr.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/17/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Metagenomics and metatranscriptomics have enhanced our understanding of the oral microbiome and its impact on oral health. However, these approaches have inherent limitations in exploring individual cells and the heterogeneity within mixed microbial communities, which restricts our current understanding to bulk cells and species-level information. Fortunately, recent technical advances have enabled the application of single-cell RNA sequencing (scRNA-seq) for studying bacteria, shedding light on cell-to-cell diversity and interactions between host-bacterial cells at the single-cell level. Here, we address the technical barriers in capturing RNA from single bacterial cells and highlight pioneering studies from the past decade. We also discuss recent achievements in host-bacterial dual transcriptional profiling at the single-cell level. Bacterial scRNA-seq provides advantages in various research fields, including the investigation of phenotypic heterogeneity within genetically identical bacteria, identification of rare cell types, detection of antibiotic-resistant or persistent cells, analysis of individual gene expression patterns and metabolic activities, and characterization of specific microbe-host interactions. Integrating single-cell techniques with bulk approaches is essential to gain a comprehensive understanding of oral diseases and develop targeted and personalized treatment in dentistry. The reviewed pioneering studies are expected to inspire future research on the oral microbiome at the single-cell level.
Collapse
Affiliation(s)
- Ji-Hoi Moon
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Kyu Hwan Kwack
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Metze F, Vollmers J, Lenk F, Kaster AK. First shotgun metagenomics study of Juan de Fuca deep-sea sediments reveals distinct microbial communities above, within, between, and below sulfate methane transition zones. Front Microbiol 2023; 14:1241810. [PMID: 38053553 PMCID: PMC10694467 DOI: 10.3389/fmicb.2023.1241810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/03/2023] [Indexed: 12/07/2023] Open
Abstract
The marine deep subsurface is home to a vast microbial ecosystem, affecting biogeochemical cycles on a global scale. One of the better-studied deep biospheres is the Juan de Fuca (JdF) Ridge, where hydrothermal fluid introduces oxidants into the sediment from below, resulting in two sulfate methane transition zones (SMTZs). In this study, we present the first shotgun metagenomics study of unamplified DNA from sediment samples from different depths in this stratified environment. Bioinformatic analyses showed a shift from a heterotrophic, Chloroflexota-dominated community above the upper SMTZ to a chemolithoautotrophic Proteobacteria-dominated community below the secondary SMTZ. The reintroduction of sulfate likely enables respiration and boosts active cells that oxidize acetate, iron, and complex carbohydrates to degrade dead biomass in this low-abundance, low-diversity environment. In addition, analyses showed many proteins of unknown function as well as novel metagenome-assembled genomes (MAGs). The study provides new insights into microbial communities in this habitat, enabled by an improved DNA extraction protocol that allows a less biased view of taxonomic composition and metabolic activities, as well as uncovering novel taxa. Our approach presents the first successful attempt at unamplified shotgun sequencing samples from beyond 50 meters below the seafloor and opens new ways for capturing the true diversity and functional potential of deep-sea sediments.
Collapse
Affiliation(s)
| | | | | | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz, Karlsruhe, Germany
| |
Collapse
|
10
|
Münch JM, Sobol MS, Brors B, Kaster AK. Single-cell transcriptomics and data analyses for prokaryotes-Past, present and future concepts. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:1-39. [PMID: 37400172 DOI: 10.1016/bs.aambs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Transcriptomics, or more specifically mRNA sequencing, is a powerful tool to study gene expression at the single-cell level (scRNA-seq) which enables new insights into a plethora of biological processes. While methods for single-cell RNA-seq in eukaryotes are well established, application to prokaryotes is still challenging. Reasons for that are rigid and diverse cell wall structures hampering lysis, the lack of polyadenylated transcripts impeding mRNA enrichment, and minute amounts of RNA requiring amplification steps before sequencing. Despite those obstacles, several promising scRNA-seq approaches for bacteria have been published recently, albeit difficulties in the experimental workflow and data processing and analysis remain. In particular, bias is often introduced by amplification which makes it difficult to distinguish between technical noise and biological variation. Future optimization of experimental procedures and data analysis algorithms are needed for the improvement of scRNA-seq but also to aid in the emergence of prokaryotic single-cell multi-omics. to help address 21st century challenges in the biotechnology and health sector.
Collapse
Affiliation(s)
- Julia M Münch
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| | - Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany.
| |
Collapse
|
11
|
Back to Basics: A Simplified Improvement to Multiple Displacement Amplification for Microbial Single-Cell Genomics. Int J Mol Sci 2023; 24:ijms24054270. [PMID: 36901710 PMCID: PMC10002425 DOI: 10.3390/ijms24054270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial single-cell genomics (SCG) provides access to the genomes of rare and uncultured microorganisms and is a complementary method to metagenomics. Due to the femtogram-levels of DNA in a single microbial cell, sequencing the genome requires whole genome amplification (WGA) as a preliminary step. However, the most common WGA method, multiple displacement amplification (MDA), is known to be costly and biased against specific genomic regions, preventing high-throughput applications and resulting in uneven genome coverage. Thus, obtaining high-quality genomes from many taxa, especially minority members of microbial communities, becomes difficult. Here, we present a volume reduction approach that significantly reduces costs while improving genome coverage and uniformity of DNA amplification products in standard 384-well plates. Our results demonstrate that further volume reduction in specialized and complex setups (e.g., microfluidic chips) is likely unnecessary to obtain higher-quality microbial genomes. This volume reduction method makes SCG more feasible for future studies, thus helping to broaden our knowledge on the diversity and function of understudied and uncharacterized microorganisms in the environment.
Collapse
|
12
|
Shi H, An F, Lin H, Li M, Wu J, Wu R. Advances in fermented foods revealed by multi-omics: A new direction toward precisely clarifying the roles of microorganisms. Front Microbiol 2022; 13:1044820. [PMID: 36590428 PMCID: PMC9794733 DOI: 10.3389/fmicb.2022.1044820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Fermented foods generally comprise a complex micro-ecosystem with beneficial microbiota, functional products, and special flavors and qualities that are welcomed globally. Single-omics analysis allows for a comprehensive characterization of the main microbial factors influencing the function, flavor, and quality of fermented foods. However, the species, relative abundance, viability, growth patterns, and metabolic processes of microorganisms vary with changes in processing and environmental conditions during fermentation. Furthermore, the mechanisms underlying the complex interaction among microorganisms are still difficult to completely understand and analyze. Recently, multi-omics analysis and the integration of multiple types of omics data allowed researchers to more comprehensively explore microbial communities and understand the precise relationship between fermented foods and their functions, flavors, and qualities. Multi-omics approaches might help clarify the mechanisms underpinning the fermentation processes, metabolites, and functional components of these communities. This review clarified the recent advances in the roles of microorganisms in fermented foods based on multi-omics data. Current research achievements may allow for the precise control of the whole industrial processing technology of fermented foods, meeting consumers' expectations of healthy products.
Collapse
Affiliation(s)
- Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Hao Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China,Junrui Wu,
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China,*Correspondence: Rina Wu,
| |
Collapse
|
13
|
Smedile F, Foustoukos DI, Patwardhan S, Mullane K, Schlegel I, Adams MW, Schut GJ, Giovannelli D, Vetriani C. Adaptations to high pressure of Nautilia sp. strain PV-1, a piezophilic Campylobacterium (aka Epsilonproteobacterium) isolated from a deep-sea hydrothermal vent. Environ Microbiol 2022; 24:6164-6183. [PMID: 36271901 PMCID: PMC10092268 DOI: 10.1111/1462-2920.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
Physiological and gene expression studies of deep-sea bacteria under pressure conditions similar to those experienced in their natural habitat are critical for understanding growth kinetics and metabolic adaptations to in situ conditions. The Campylobacterium (aka Epsilonproteobacterium) Nautilia sp. strain PV-1 was isolated from hydrothermal fluids released from an active deep-sea hydrothermal vent at 9° N on the East Pacific Rise. Strain PV-1 is a piezophilic, moderately thermophilic, chemolithoautotrophic anaerobe that conserves energy by coupling the oxidation of hydrogen to the reduction of nitrate or elemental sulfur. Using a high-pressure-high temperature continuous culture system, we established that strain PV-1 has the shortest generation time of all known piezophilic bacteria and we investigated its protein expression pattern in response to different hydrostatic pressure regimes. Proteogenomic analyses of strain PV-1 grown at 20 and 5 MPa showed that pressure adaptation is not restricted to stress response or homeoviscous adaptation but extends to enzymes involved in central metabolic pathways. Protein synthesis, motility, transport, and energy metabolism are all affected by pressure, although to different extents. In strain PV-1, low-pressure conditions induce the synthesis of phage-related proteins and an overexpression of enzymes involved in carbon fixation.
Collapse
Affiliation(s)
- Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Institute of Polar Science (ISP-CNR), Messina, Italy
| | - Dionysis I Foustoukos
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| | - Sushmita Patwardhan
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kelli Mullane
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Ian Schlegel
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Michael W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gerrit J Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Donato Giovannelli
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
14
|
Zoheir A, Meisch L, Martín MV, Bickmann C, Kiselev A, Lenk F, Kaster AK, Rabe KS, Niemeyer CM. Macroporous Silicone Chips for Decoding Microbial Dark Matter in Environmental Microbiomes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49592-49603. [PMID: 36288792 PMCID: PMC9650684 DOI: 10.1021/acsami.2c15470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Natural evolution has produced an almost infinite variety of microorganisms that can colonize almost any conceivable habitat. Since the vast majority of these microbial consortia are still unknown, there is a great need to elucidate this "microbial dark matter" (MDM) to enable exploitation in biotechnology. We report the fabrication and application of a novel device that integrates a matrix of macroporous elastomeric silicone foam (MESIF) into an easily fabricated and scalable chip design that can be used for decoding MDM in environmental microbiomes. Technical validation, performed with the model organism Escherichia coli expressing a fluorescent protein, showed that this low-cost, bioinert, and widely modifiable chip is rapidly colonized by microorganisms. The biological potential of the chip was then illustrated through targeted sampling and enrichment of microbiomes in a variety of habitats ranging from wet, turbulent moving bed biofilters and wastewater treatment plants to dry air-based environments. Sequencing analyses consistently showed that MESIF chips are not only suitable for sampling with high robustness but also that the material can be used to detect a broad cross section of microorganisms present in the habitat in a short time span of a few days. For example, results from the biofilter habitat showed efficient enrichment of microorganisms belonging to the enigmatic Candidate Phyla Radiation, which comprise ∼70% of the MDM. From dry air, the MESIF chip was able to enrich a variety of members of Actinobacteriota, which is known to produce specific secondary metabolites. Targeted sampling from a wastewater treatment plant where the herbicide glyphosate was added to the chip's reservoir resulted in enrichment of Cyanobacteria and Desulfobacteria, previously associated with glyphosate degradation. These initial case studies suggest that this chip is very well suited for the systematic study of MDM and opens opportunities for the cultivation of previously unculturable microorganisms.
Collapse
Affiliation(s)
- Ahmed
E. Zoheir
- Institute
for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Biotechnology
Research Institute, Department of Genetics and Cytology, National Research Centre (NRC), 33 El Buhouth St., Dokki, 12622 Cairo, Egypt
| | - Laura Meisch
- Institute
for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Marta Velaz Martín
- Institute
for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christoph Bickmann
- Institute
for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Alexei Kiselev
- Institute
of Meteorology and Climate Research, Department of Atmospheric Aerosol
Research (IMK-AAF), Karlsruhe Institute
of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Florian Lenk
- Institute
for Biological Interfaces 5 (IBG-5), Biotechnology and Microbial Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344 Karlsruhe, Germany
| | - Anne-Kristin Kaster
- Institute
for Biological Interfaces 5 (IBG-5), Biotechnology and Microbial Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344 Karlsruhe, Germany
| | - Kersten S. Rabe
- Institute
for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christof M. Niemeyer
- Institute
for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Aoki H, Masahiro Y, Shimizu M, Hongoh Y, Ohkuma M, Yamagata Y. Agarose gel microcapsules enable easy-to-prepare, picolitre-scale, single-cell genomics, yielding high-coverage genome sequences. Sci Rep 2022; 12:17014. [PMID: 36257967 PMCID: PMC9579161 DOI: 10.1038/s41598-022-20923-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A novel type of agarose gel microcapsule (AGM), consisting of an alginate picolitre sol core and an agarose gel shell, was developed to obtain high-quality, single-cell, amplified genomic DNA of bacteria. The AGM is easy to prepare in a stable emulsion with oil of water-equivalent density, which prevents AGM aggregation, with only standard laboratory equipment. Single cells from a pure culture of Escherichia coli, a mock community comprising 15 strains of human gut bacteria, and a termite gut bacterial community were encapsulated within AGMs, and their genomic DNA samples were prepared with massively parallel amplifications in a tube. The genome sequencing did not need second-round amplification and showed an average genome completeness that was much higher than that obtained using a conventional amplification method on the microlitre scale, regardless of the genomic guanine-cytosine content. Our novel method using AGM will allow many researchers to perform single-cell genomics easily and effectively, and can accelerate genomic analysis of yet-uncultured microorganisms.
Collapse
Affiliation(s)
- Hiroyoshi Aoki
- grid.509457.aUltrahigh Precision Optics Technology Team, Advanced Photonics Technology Group, RIKEN Center for Advanced Photonics, 3-1, Hirosawa, Wako, Saitama 351-0198 Japan
| | - Yuki Masahiro
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Michiru Shimizu
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Yuichi Hongoh
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Moriya Ohkuma
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Yutaka Yamagata
- grid.509457.aUltrahigh Precision Optics Technology Team, Advanced Photonics Technology Group, RIKEN Center for Advanced Photonics, 3-1, Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
16
|
Escudeiro P, Henry CS, Dias RP. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100159. [PMID: 36561390 PMCID: PMC9764257 DOI: 10.1016/j.crmicr.2022.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eight-hundred thousand to one trillion prokaryotic species may inhabit our planet. Yet, fewer than two-hundred thousand prokaryotic species have been described. This uncharted fraction of microbial diversity, and its undisclosed coding potential, is known as the "microbial dark matter" (MDM). Next-generation sequencing has allowed to collect a massive amount of genome sequence data, leading to unprecedented advances in the field of genomics. Still, harnessing new functional information from the genomes of uncultured prokaryotes is often limited by standard classification methods. These methods often rely on sequence similarity searches against reference genomes from cultured species. This hinders the discovery of unique genetic elements that are missing from the cultivated realm. It also contributes to the accumulation of prokaryotic gene products of unknown function among public sequence data repositories, highlighting the need for new approaches for sequencing data analysis and classification. Increasing evidence indicates that these proteins of unknown function might be a treasure trove of biotechnological potential. Here, we outline the challenges, opportunities, and the potential hidden within the functional dark matter (FDM) of prokaryotes. We also discuss the pitfalls surrounding molecular and computational approaches currently used to probe these uncharted waters, and discuss future opportunities for research and applications.
Collapse
Affiliation(s)
- Pedro Escudeiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Christopher S. Henry
- Argonne National Laboratory, Lemont, Illinois, USA
- University of Chicago, Chicago, Illinois, USA
| | - Ricardo P.M. Dias
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- iXLab - Innovation for National Biological Resilience, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
17
|
Vollmers J, Wiegand S, Lenk F, Kaster AK. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res 2022; 50:e76. [PMID: 35536293 PMCID: PMC9303271 DOI: 10.1093/nar/gkac294] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
As of today, the majority of environmental microorganisms remain uncultured and is therefore referred to as 'microbial dark matter' (MDM). Hence, genomic insights into these organisms are limited to cultivation-independent approaches such as single-cell- and metagenomics. However, without access to cultured representatives for verifying correct taxon-assignments, MDM genomes may cause potentially misleading conclusions based on misclassified or contaminant contigs, thereby obfuscating our view on the uncultured microbial majority. Moreover, gradual database contaminations by past genome submissions can cause error propagations which affect present as well as future comparative genome analyses. Consequently, strict contamination detection and filtering need to be applied, especially in the case of uncultured MDM genomes. Current genome reporting standards, however, emphasize completeness over purity and the de facto gold standard genome assessment tool, checkM, discriminates against uncultured taxa and fragmented genomes. To tackle these issues, we present a novel contig classification, screening, and filtering workflow and corresponding open-source python implementation called MDMcleaner, which was tested and compared to other tools on mock and real datasets. MDMcleaner revealed substantial contaminations overlooked by current screening approaches and sensitively detects misattributed contigs in both novel genomes and the underlying reference databases, thereby greatly improving our view on 'microbial dark matter'.
Collapse
Affiliation(s)
- John Vollmers
- Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) 76344, Eggenstein-Leopoldshafen, Germany
| | - Sandra Wiegand
- Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) 76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Lenk
- Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) 76344, Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Valecha M, Posada D. Somatic variant calling from single-cell DNA sequencing data. Comput Struct Biotechnol J 2022; 20:2978-2985. [PMID: 35782734 PMCID: PMC9218383 DOI: 10.1016/j.csbj.2022.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022] Open
Abstract
Single-cell sequencing has gained popularity in recent years. Despite its numerous applications, single-cell DNA sequencing data is highly error-prone due to technical biases arising from uneven sequencing coverage, allelic dropout, and amplification error. With these artifacts, the identification of somatic genomic variants becomes a challenging task, and over the years, several methods have been developed explicitly for this type of data. Single-cell variant callers implement distinct strategies, make different use of the data, and typically result in many discordant calls when applied to real data. Here, we review current approaches for single-cell variant calling, emphasizing single nucleotide variants. We highlight their potential benefits and shortcomings to help users choose a suitable tool for their data at hand.
Collapse
Key Words
- ADO, allelic dropout
- Allele dropout
- Amplification error
- CNV, copy number variant
- Indel, short insertion or deletion
- LDO, locus dropout
- SNV, single nucleotide variant
- SV, structural variant
- Single-cell genomics
- Somatic variants
- VAF, variant allele frequency
- Variant calling
- hSNP, heterozygous single-nucleotide polymorphism
- scATAC-seq, single-cell sequencing assay for transposase-accessible chromatin
- scDNA-seq, single-cell DNA sequencing
- scHi-C, single-cell Hi-C sequencing
- scMethyl-seq, single-cell Methylation sequencing
- scRNA-seq, single-cell RNA sequencing
- scWGA, single-cell whole-genome amplification
Collapse
Affiliation(s)
- Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
19
|
Grujcic V, Taylor GT, Foster RA. One Cell at a Time: Advances in Single-Cell Methods and Instrumentation for Discovery in Aquatic Microbiology. Front Microbiol 2022; 13:881018. [PMID: 35677911 PMCID: PMC9169044 DOI: 10.3389/fmicb.2022.881018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Studying microbes from a single-cell perspective has become a major theme and interest within the field of aquatic microbiology. One emerging trend is the unfailing observation of heterogeneity in activity levels within microbial populations. Wherever researchers have looked, intra-population variability in biochemical composition, growth rates, and responses to varying environmental conditions has been evident and probably reflect coexisting genetically distinct strains of the same species. Such observations of heterogeneity require a shift away from bulk analytical approaches and development of new methods or adaptation of existing techniques, many of which were first pioneered in other, unrelated fields, e.g., material, physical, and biomedical sciences. Many co-opted approaches were initially optimized using model organisms. In a field with so few cultivable models, method development has been challenging but has also contributed tremendous insights, breakthroughs, and stimulated curiosity. In this perspective, we present a subset of methods that have been effectively applied to study aquatic microbes at the single-cell level. Opportunities and challenges for innovation are also discussed. We suggest future directions for aquatic microbiological research that will benefit from open access to sophisticated instruments and highly interdisciplinary collaborations.
Collapse
Affiliation(s)
- Vesna Grujcic
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
21
|
McElhinney JMWR, Catacutan MK, Mawart A, Hasan A, Dias J. Interfacing Machine Learning and Microbial Omics: A Promising Means to Address Environmental Challenges. Front Microbiol 2022; 13:851450. [PMID: 35547145 PMCID: PMC9083327 DOI: 10.3389/fmicb.2022.851450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are ubiquitous and carry an exceptionally broad metabolic capability. Upon environmental perturbation, microbes are also amongst the first natural responsive elements with perturbation-specific cues and markers. These communities are thereby uniquely positioned to inform on the status of environmental conditions. The advent of microbial omics has led to an unprecedented volume of complex microbiological data sets. Importantly, these data sets are rich in biological information with potential for predictive environmental classification and forecasting. However, the patterns in this information are often hidden amongst the inherent complexity of the data. There has been a continued rise in the development and adoption of machine learning (ML) and deep learning architectures for solving research challenges of this sort. Indeed, the interface between molecular microbial ecology and artificial intelligence (AI) appears to show considerable potential for significantly advancing environmental monitoring and management practices through their application. Here, we provide a primer for ML, highlight the notion of retaining biological sample information for supervised ML, discuss workflow considerations, and review the state of the art of the exciting, yet nascent, interdisciplinary field of ML-driven microbial ecology. Current limitations in this sphere of research are also addressed to frame a forward-looking perspective toward the realization of what we anticipate will become a pivotal toolkit for addressing environmental monitoring and management challenges in the years ahead.
Collapse
Affiliation(s)
- James M. W. R. McElhinney
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Aurelie Mawart
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ayesha Hasan
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jorge Dias
- EECS, Center for Autonomous Robotic Systems, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
High-Throughput Time-Lapse Fluorescence Microscopy Screening for Heterogeneously Expressed Genes in Bacillus subtilis. Microbiol Spectr 2022; 10:e0204521. [PMID: 35171018 PMCID: PMC8849057 DOI: 10.1128/spectrum.02045-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elucidating phenotypic heterogeneity in clonal bacterial populations is important for both the fundamental understanding of bacterial behavior and the synthetic engineering of bacteria in biotechnology. In this study, we present and validate a high-throughput and high-resolution time-lapse fluorescence microscopy-based strategy to easily and systematically screen for heterogeneously expressed genes in the Bacillus subtilis model bacterium. This screen allows detection of expression patterns at high spatial and temporal resolution, which often escape detection by other approaches, and can readily be extrapolated to other bacteria. A proof-of-concept screening in B. subtilis revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating the approach. IMPORTANCE Differential gene expression among isogenic siblings often leads to phenotypic heterogeneity and the emergence of complex social behavior and functional capacities within clonal bacterial populations. Despite the importance of such features for both the fundamental understanding and synthetic engineering of bacterial behavior, approaches to systematically map such population heterogeneity are scarce. In this context, we have elaborated a new time-lapse fluorescence microscopy-based strategy to easily and systematically screen for such heterogeneously expressed genes in bacteria with high resolution and throughput. A proof-of-concept screening in the Bacillus subtilis model bacterium revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating our approach.
Collapse
|
23
|
Chen Z, Mo B, Lei A, Wang J. Microbial Single-Cell Analysis: What Can We Learn From Mammalian? Front Cell Dev Biol 2022; 9:829990. [PMID: 35111764 PMCID: PMC8801874 DOI: 10.3389/fcell.2021.829990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Jiangxin Wang,
| |
Collapse
|
24
|
Comparison of methods for mapping rhizosphere processes in the context of their surrounding root and soil environments. Biotechniques 2021; 71:604-614. [PMID: 34809497 DOI: 10.2144/btn-2021-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The rhizosphere embodies a complex biogeochemical zone with enhanced rates of nutrient exchange between plants, soil, and microbial communities. Understanding controls on rhizosphere dynamics is critical to support emerging concepts including rhizosphere engineering and reduced dependence on chemical fertilizers which have direct application to food production, increased biofuel generation, and habitat restoration efforts. Yet, its fine spatial scale and complex interactions between geochemical and microbial processes within complex spatiotemporal gradients make the rhizosphere notoriously difficult to study. Emerging instrumentation and methodologies, however, are providing improved resolution to rhizosphere measurements and helping to address critical knowledge gaps in rhizosphere function, ecology, and establishment. Here, we examine recent advances in analysis techniques and the resulting potential for improved understanding of rhizosphere function.
Collapse
|
25
|
Hare PJ, LaGree TJ, Byrd BA, DeMarco AM, Mok WWK. Single-Cell Technologies to Study Phenotypic Heterogeneity and Bacterial Persisters. Microorganisms 2021; 9:2277. [PMID: 34835403 PMCID: PMC8620850 DOI: 10.3390/microorganisms9112277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic persistence is a phenomenon in which rare cells of a clonal bacterial population can survive antibiotic doses that kill their kin, even though the entire population is genetically susceptible. With antibiotic treatment failure on the rise, there is growing interest in understanding the molecular mechanisms underlying bacterial phenotypic heterogeneity and antibiotic persistence. However, elucidating these rare cell states can be technically challenging. The advent of single-cell techniques has enabled us to observe and quantitatively investigate individual cells in complex, phenotypically heterogeneous populations. In this review, we will discuss current technologies for studying persister phenotypes, including fluorescent tags and biosensors used to elucidate cellular processes; advances in flow cytometry, mass spectrometry, Raman spectroscopy, and microfluidics that contribute high-throughput and high-content information; and next-generation sequencing for powerful insights into genetic and transcriptomic programs. We will further discuss existing knowledge gaps, cutting-edge technologies that can address them, and how advances in single-cell microbiology can potentially improve infectious disease treatment outcomes.
Collapse
Affiliation(s)
- Patricia J. Hare
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
- School of Dental Medicine, University of Connecticut, Farmington, CT 06032, USA
| | - Travis J. LaGree
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| | - Brandon A. Byrd
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
- School of Medicine, University of Connecticut, Farmington, CT 06032, USA
| | - Angela M. DeMarco
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| | - Wendy W. K. Mok
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| |
Collapse
|
26
|
Contribution of single-cell omics to microbial ecology. Trends Ecol Evol 2021; 37:67-78. [PMID: 34602304 DOI: 10.1016/j.tree.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Micro-organisms play key roles in various ecosystems, but many of their functions and interactions remain undefined. To investigate the ecological relevance of microbial communities, new molecular tools are being developed. Among them, single-cell omics assessing genetic diversity at the population and community levels and linking each individual cell to its functions is gaining interest in microbial ecology. By giving access to a wider range of ecological scales (from individual to community) than culture-based approaches and meta-omics, single-cell omics can contribute not only to micro-organisms' genomic and functional identification but also to the testing of concepts in ecology. Here, we discuss the contribution of single-cell omics to possible breakthroughs in concepts and knowledge on microbial ecosystems and ecoevolutionary processes.
Collapse
|
27
|
Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes. iScience 2021; 24:102975. [PMID: 34485857 PMCID: PMC8397914 DOI: 10.1016/j.isci.2021.102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Accessing enormous uncultivated microorganisms (microbial dark matter) in various Earth environments requires accurate, nondestructive classification, and molecular understanding of the microorganisms in in situ and at the single-cell level. Here we demonstrate a combined approach of random forest (RF) machine learning and single-cell Raman microspectroscopy for accurate classification of phylogenetically diverse prokaryotes (three bacterial and three archaeal species from different phyla). Our RF classifier achieved a 98.8 ± 1.9% classification accuracy among the six species in pure populations and 98.4% for three species in an artificially mixed population. Feature importance scores against each wavenumber reveal that the presence of carotenoids and structure of membrane lipids play key roles in distinguishing the prokaryotic species. We also find unique Raman markers for an ammonia-oxidizing archaeon. Our approach with moderate data pretreatment and intuitive visualization of feature importance is easy to use for non-spectroscopists, and thus offers microbiologists a new single-cell tool for shedding light on microbial dark matter. Random forest models classify prokaryotic species with high accuracy of >98% Both bacteria and archaea are classified using minimally preprocessed Raman data Feature importance reveals what biomolecules contribute to species classification Raman marker bands for some archaeal species are discovered
Collapse
|
28
|
Facilitating the industrial transition to microbial and microalgal factories through mechanistic modelling within the Industry 4.0 paradigm. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Dorado G, Gálvez S, Rosales TE, Vásquez VF, Hernández P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. Biomolecules 2021; 11:1111. [PMID: 34439777 PMCID: PMC8393538 DOI: 10.3390/biom11081111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.
Collapse
Affiliation(s)
- Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Sergio Gálvez
- Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 35, Universidad de Málaga, 29071 Málaga, Spain;
| | - Teresa E. Rosales
- Laboratorio de Arqueobiología, Avda. Universitaria s/n, Universidad Nacional de Trujillo, 13011 Trujillo, Peru;
| | - Víctor F. Vásquez
- Centro de Investigaciones Arqueobiológicas y Paleoecológicas Andinas Arqueobios, Martínez de Companón 430-Bajo 100, Urbanización San Andres, 13088 Trujillo, Peru;
| | - Pilar Hernández
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain;
| |
Collapse
|
30
|
Wiegand S, Dam HT, Riba J, Vollmers J, Kaster AK. Printing Microbial Dark Matter: Using Single Cell Dispensing and Genomics to Investigate the Patescibacteria/Candidate Phyla Radiation. Front Microbiol 2021; 12:635506. [PMID: 34220732 PMCID: PMC8241940 DOI: 10.3389/fmicb.2021.635506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
As of today, the majority of environmental microorganisms remain uncultured. They are therefore referred to as "microbial dark matter." In the recent past, cultivation-independent methods like single-cell genomics (SCG) enabled the discovery of many previously unknown microorganisms, among them the Patescibacteria/Candidate Phyla Radiation (CPR). This approach was shown to be complementary to metagenomics, however, the development of additional and refined sorting techniques beyond the most commonly used fluorescence-activated cell sorting (FACS) is still desirable to enable additional downstream applications. Adding image information on the number and morphology of sorted cells would be beneficial, as would be minimizing cell stress caused by sorting conditions such as staining or pressure. Recently, a novel cell sorting technique has been developed, a microfluidic single-cell dispenser, which assesses the number and morphology of the cell in each droplet by automated light microscopic processing. Here, we report for the first time the successful application of the newly developed single-cell dispensing system for label-free isolation of individual bacteria from a complex sample retrieved from a wastewater treatment plant, demonstrating the potential of this technique for single cell genomics and other alternative downstream applications. Genome recovery success rated above 80% with this technique-out of 880 sorted cells 717 were successfully amplified. For 50.1% of these, analysis of the 16S rRNA gene was feasible and led to the sequencing of 50 sorted cells identified as Patescibacteria/CPR members. Subsequentially, 27 single amplified genomes (SAGs) of 15 novel and distinct Patescibacteria/CPR members, representing yet unseen species, genera and families could be captured and reconstructed. This phylogenetic distinctness of the recovered SAGs from available metagenome-assembled genomes (MAGs) is accompanied by the finding that these lineages-in whole or in part-have not been accessed by genome-resolved metagenomics of the same sample, thereby emphasizing the importance and opportunities of SCGs.
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hang T. Dam
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julian Riba
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
31
|
Saraiva JP, Worrich A, Karakoç C, Kallies R, Chatzinotas A, Centler F, Nunes da Rocha U. Mining Synergistic Microbial Interactions: A Roadmap on How to Integrate Multi-Omics Data. Microorganisms 2021; 9:microorganisms9040840. [PMID: 33920040 PMCID: PMC8070991 DOI: 10.3390/microorganisms9040840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Mining interspecies interactions remain a challenge due to the complex nature of microbial communities and the need for computational power to handle big data. Our meta-analysis indicates that genetic potential alone does not resolve all issues involving mining of microbial interactions. Nevertheless, it can be used as the starting point to infer synergistic interspecies interactions and to limit the search space (i.e., number of species and metabolic reactions) to a manageable size. A reduced search space decreases the number of additional experiments necessary to validate the inferred putative interactions. As validation experiments, we examine how multi-omics and state of the art imaging techniques may further improve our understanding of species interactions’ role in ecosystem processes. Finally, we analyze pros and cons from the current methods to infer microbial interactions from genetic potential and propose a new theoretical framework based on: (i) genomic information of key members of a community; (ii) information of ecosystem processes involved with a specific hypothesis or research question; (iii) the ability to identify putative species’ contributions to ecosystem processes of interest; and, (iv) validation of putative microbial interactions through integration of other data sources.
Collapse
Affiliation(s)
- Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Rene Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- Correspondence:
| |
Collapse
|
32
|
Ruby E. Getting to know our microbial friends by dropping into their neighbourhood. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:27-30. [PMID: 33047473 DOI: 10.1111/1758-2229.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Edward Ruby
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| |
Collapse
|