1
|
Orban AM, Eichberg J, Marner M, Breuer S, Patras MA, Mettal U, Schäberle TF, Rühl M. 5'-Methoxyarmillane, a Bioactive Sesquiterpenoid Aryl Ester from the Fungus Armillaria ostoyae. Chembiochem 2024; 25:e202400168. [PMID: 38738599 DOI: 10.1002/cbic.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Higher fungi of the genus Armillaria belonging to the phylum Basidiomycota produce bioactive sesquiterpenoid aryl esters called melleolides. A bioactivity-guided discovery process led to the identification of the new melleolide 5'-methoxyarmillane (1) in organic extracts from the mycelium of Armillaria ostoyae. Remarkably, supplementation of rapeseed oil to the culture medium potato dextrose broth increased the production of 1 by a factor of six during the course of the 35 days fermentation. Compound 1 was isolated and its structure elucidated by UHPLC-QTOF-HR-MS/MS and NMR spectroscopy. It showed toxicity against Madin-Darby canine kidney II (MDCK II, IC50 19.2 μg/mL, 44.1 μM) and human lung cancer Calu-3 cells (IC50 15.2 μg/mL, 34.9 μM) as well as moderate bioactivity against Mycobacterium tuberculosis (MIC 8 mg/mL, 18.4 μM) and Mycobacterium smegmatis (MIC 16 mg/mL, 36.8 μM), but not against Staphylococcus aureus, Escherichia coli, Candida albicans, and Septoria tritici. No inhibitory effects of 1 against the influenza viruses H3N2, H1N1pdm, B/Malaysia, and B/Massachusetts were observed.
Collapse
Affiliation(s)
- Axel M Orban
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Bioresources, 35392, Giessen, Germany
| | - Johanna Eichberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Bioresources, 35392, Giessen, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Bioresources, 35392, Giessen, Germany
| | - Sandra Breuer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Bioresources, 35392, Giessen, Germany
| | - Maria A Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Bioresources, 35392, Giessen, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Division for Natural Product Research, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Till F Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Bioresources, 35392, Giessen, Germany
- Institute for Insect Biotechnology, Division for Natural Product Research, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Martin Rühl
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Bioresources, 35392, Giessen, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| |
Collapse
|
2
|
Chen X, Wei Y, Meng G, Wang M, Peng X, Dai J, Dong C, Huo G. Telomere-to-Telomere Haplotype-Resolved Genomes of Agrocybe chaxingu Reveals Unique Genetic Features and Developmental Insights. J Fungi (Basel) 2024; 10:602. [PMID: 39330362 PMCID: PMC11433599 DOI: 10.3390/jof10090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Agrocybe chaxingu is a widely cultivated edible fungus in China, which is rich in nutrients and medicinal compounds. However, the lack of a high-quality genome hinders further research. In this study, we assembled the telomere-to-telomere genomes of two sexually compatible monokaryons (CchA and CchB) derived from a primarily cultivated strain AS-5. The genomes of CchA and CchB were 50.60 Mb and 51.66 Mb with contig N50 values of 3.95 Mb and 3.97 Mb, respectively. Each contained 13 complete chromosomes with telomeres at both ends. The high mapping rate, uniform genome coverage, high LAI score, all BUSCOs with 98.5%, and all base accuracy exceeding 99.999% indicated the high level of integrity and quality of these two assembled genomes. Comparison of the two genomes revealed that approximately 30% of the nucleotide sequences between homologous chromosomes were non-syntenic, including 19 translocations, 36 inversions, and 15 duplications. An additional gene CchA_000467 was identified at the Mat A locus of CchA, which was observed exclusively in the Cyclocybe cylindracea species complex. A total of 613 (4.26%) and 483 (3.4%) unique genes were identified in CchA and CchB, respectively, with over 80% of these being hypothetical proteins. Transcriptomic analysis revealed that the expression levels of unique genes in CchB were significantly higher than those in CchA, and both CchA and CchB had unique genes specifically expressed at stages of mycelium and fruiting body. It was indicated that the growth and development of the A. chaxingu strain AS-5 required the coordinated action of two different nuclei, with CchB potentially playing a more significant role. These findings contributed to a more profound comprehension of the growth and developmental processes of basidiomycetes.
Collapse
Affiliation(s)
- Xutao Chen
- Jiangxi Key Laboratory for Excavation and Utilization of Agricultural Microorganisms, Jiangxi Agricultural University, Nanchang 330045, China;
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (G.M.); (M.W.)
- Jiangxi Provincial Key Laboratory of Agricultural Non-Point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (Y.W.); (X.P.); (J.D.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yunhui Wei
- Jiangxi Provincial Key Laboratory of Agricultural Non-Point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (Y.W.); (X.P.); (J.D.)
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (G.M.); (M.W.)
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (G.M.); (M.W.)
| | - Xinhong Peng
- Jiangxi Provincial Key Laboratory of Agricultural Non-Point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (Y.W.); (X.P.); (J.D.)
| | - Jiancheng Dai
- Jiangxi Provincial Key Laboratory of Agricultural Non-Point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (Y.W.); (X.P.); (J.D.)
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (G.M.); (M.W.)
| | - Guanghua Huo
- Jiangxi Key Laboratory for Excavation and Utilization of Agricultural Microorganisms, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
3
|
Luo P, Huang JH, Lv JM, Wang GQ, Hu D, Gao H. Biosynthesis of fungal terpenoids. Nat Prod Rep 2024; 41:748-783. [PMID: 38265076 DOI: 10.1039/d3np00052d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Pfütze S, Charria-Girón E, Schulzke E, Toshe R, Khonsanit A, Franke R, Surup F, Brönstrup M, Stadler M. Depicting the Chemical Diversity of Bioactive Meroterpenoids Produced by the Largest Organism on Earth. Angew Chem Int Ed Engl 2024; 63:e202318505. [PMID: 38390787 DOI: 10.1002/anie.202318505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
In this investigation, we explored the diversity of melleolide-type meroterpenoids produced by Armillaria ostoyae, one of the largest and oldest organisms on Earth, using extracts from liquid and solid fermentation media. The study unveiled three unprecedented dimeric bismelleolides and three novel fatty-acid-substituted congeners, along with 11 new and 21 known derivatives. The structures were elucidated by 1D and 2D NMR spectroscopy and HRESI-MS, and ROESY spectral analysis for relative configurations. Absolute configurations were determined from crystal structures and through ECD spectra comparison. A compound library of melleolide-type meroterpenoids facilitated metabolomics-wide associations, revealing production patterns under different culture conditions. The library enabled assessments of antimicrobial and cytotoxic activities, revealing that the Δ2,4 double bond is not crucial for antifungal activity. Cytotoxicity was linked to the presence of an aldehyde at C1, but lost with hydroxylation at C13. Chemoinformatic analyses demonstrated the intricate interplay of chemical modifications on biological properties. This study marks the first systematic exploration of Armillaria spp. meroterpenoid diversity by MS-based untargeted metabolomics, offering insight into structure-activity relationships through innovative chemoinformatics.
Collapse
Affiliation(s)
- Sebastian Pfütze
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Esther Schulzke
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Rita Toshe
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Pharmaceutical Biology Pharm. Biotechnology, Universität des Saarlandes Campus C2 3, 66123, Saarbrücken, Germany
| | - Artit Khonsanit
- BIOTEC, National Science and Technology Development, Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Raimo Franke
- Department Chemical Biology, Helmholtz Centre for Infection Research (HZI), and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Mark Brönstrup
- Department Chemical Biology, Helmholtz Centre for Infection Research (HZI), and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| |
Collapse
|
5
|
Fukaya M, Nagamine S, Ozaki T, Liu Y, Ozeki M, Matsuyama T, Miyamoto K, Kawagishi H, Uchiyama M, Oikawa H, Minami A. Total Biosynthesis of Melleolides from Basidiomycota Fungi: Mechanistic Analysis of the Multifunctional GMC Oxidase Mld7. Angew Chem Int Ed Engl 2023; 62:e202308881. [PMID: 37534412 DOI: 10.1002/anie.202308881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Mushroom terpenoids are biologically and chemically diverse fungal metabolites. Among them, melleolides are representative sesquiterpenoids with a characteristic protoilludane skeleton. In this study, we applied a recently established hot spot knock-in method to elucidate the biosynthetic pathway leading to 1α-hydroxymelleolide. The biosynthesis of the sesquiterpene core involves the cytochrome P450 catalyzing stepwise hydroxylation of the Δ6 -protoilludene framework and a stereochemical inversion process at the C5 position catalyzed by short-chain dehydrogenase/reductase family proteins. The highlight of the biosynthesis is that the flavoprotein Mld7 catalyzes an oxidation-triggered double-bond shift accompanying dehydration and acyl-group-assisted substitution with two different nucleophiles at the C6 position to afford the Δ7 -protoilludene derivatives, such as melleolide and armillarivin. The complex reaction mechanism was proposed by DFT calculations. Of particular importance is that product distribution is regulated by interaction with the cell membrane.
Collapse
Affiliation(s)
- Mitsunori Fukaya
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shota Nagamine
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yaping Liu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Miina Ozeki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8526, Japan
- Research Institute for Mushroom Science, Shizuoka, 422-8529, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
6
|
Deep Learning Approach for Predicting the Therapeutic Usages of Unani Formulas towards Finding Essential Compounds. Life (Basel) 2023; 13:life13020439. [PMID: 36836796 PMCID: PMC9959740 DOI: 10.3390/life13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The use of herbal medicines in recent decades has increased because their side effects are considered lower than conventional medicine. Unani herbal medicines are often used in Southern Asia. These herbal medicines are usually composed of several types of medicinal plants to treat various diseases. Research on herbal medicine usually focuses on insight into the composition of plants used as ingredients. However, in the present study, we extended to the level of metabolites that exist in the medicinal plants. This study aimed to develop a predictive model of the Unani therapeutic usage based on its constituent metabolites using deep learning and data-intensive science approaches. Furthermore, the best prediction model was then utilized to extract important metabolites for each therapeutic usage of Unani. In this study, it was observed that the deep neural network approach provided a much better prediction model than other algorithms including random forest and support vector machine. Moreover, according to the best prediction model using the deep neural network, we identified 118 important metabolites for nine therapeutic usages of Unani.
Collapse
|
7
|
Zhang T, Cai G, Rong X, Wang Y, Gong K, Liu W, Wang L, Pang X, Yu L. A Combination of Genome Mining with an OSMAC Approach Facilitates the Discovery of and Contributions to the Biosynthesis of Melleolides from the Basidiomycete Armillaria tabescens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12430-12441. [PMID: 36134616 DOI: 10.1021/acs.jafc.2c04079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genome mining revealed that the genomes of basidiomycetes may include a considerable number of biosynthetic gene clusters (BGCs), yet numerous clusters remain unidentified. Herein, we report a combination of genome mining with an OSMAC (one strain, many compounds) approach to characterize the spectrum of melleolides produced by Armillaria tabescens CPCC 401429. Using F1 fermentation medium, the metabolic pathway of the gene cluster mel was successfully upregulated. From the extracts of the wild-type strain, two new melleolides (1 and 2), along with five new orsellinic acid-derived lactams (10-14), were isolated, and their structures were elucidated by LC-HR-ESIMS/MS and 2D-NMR. Several melleolides exhibited moderate anti-carcinoma (A549, NCI-H520, and H1299) effects with IC50 values of 4.0-48.8 μM. RNA-sequencing based transcriptomic profiling broadened our knowledge of the genetic background, regulation, and mechanisms of melleolide biosynthesis. These results may promote downstream metabolic engineering studies of melleolides. Our study demonstrates the approach is effective for discovering new secondary metabolites from Armillaria sp. and will facilitate the mining of the unexploited biosynthetic potential in other basidiomycetes.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guowei Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Xiaoting Rong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yuquan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - KaiKai Gong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wancang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xu Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|