1
|
Liang S, Sun J, Gu X, Zhao Y, Wang X, Tao H, Wang Z, Zhong Y, Wang J, Han B. Lactobacillus plantarum L11 and Lactobacillus reuteri LR: Ameliorate Obesity via AMPK Pathway. Nutrients 2024; 17:4. [PMID: 39796438 PMCID: PMC11723306 DOI: 10.3390/nu17010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVES The purpose of this study was to find the potential mechanism of two Lactobacillus (Lactobacillus plantarum L11 and Lactobacillus reuteri LR) on ameliorating obesity, including lipid metabolism and gut microbiota. The two isolates have been studied to have good characterization in vitro, but in vivo studies in modulating lipid metabolism and gut microbiota were not studied. METHODS In this study, mice with HFD supplemented with L11 or LR exhibited slower obesity progression, including reduced weight gain, abdominal fat accumulation, liver damage, inflammation, and adipose lesions. RESULTS Total cholesterol (TC) and triglycerides (TG) in the serum were significantly reduced (p < 0.01). The inflammatory marker interleukin-6 (IL-6) notably decreased (p < 0.05). Both Lactobacillus strains altered the gut microbiota composition, increasing the relative abundance of Alistipes and Lactobacillus, while L11 also raised Lachnospiraceae abundance. Results of the Western blot analysis showed that L11 and LR influenced the PPAR and AMPK pathways. CONCLUSIONS L11 and LR can effectively reduce obesity by modulating gut microbiota and activating the PPAR-AMPK pathway, leading to decreased liver injury and systemic inflammation in mice fed with an HFD. In the future, the two probiotics may provide a new way for clinically ameliorating obesity on human beings.
Collapse
Affiliation(s)
- Shukun Liang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
- School of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Jintao Sun
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
| | - Xinshu Gu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
| | - Ya Zhao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
| | - Yougang Zhong
- School of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China (J.W.)
| |
Collapse
|
2
|
Hasani F, Tarrahimofrad H, Safa ZJ, Farrokhi N, Karkhane AA, Haghbeen K, Aminzadeh S. Expression optimization and characterization of a novel amylopullulanase from the thermophilic Cohnella sp. A01. Int J Biol Macromol 2024; 279:135135. [PMID: 39208893 DOI: 10.1016/j.ijbiomac.2024.135135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Amylopullulanase (EC. 3.2.1.41/1) is an enzyme that hydrolyzes starch and pullulan, capable of breaking (4 → 1)-α and (6 → 1)-α bonds in starch. Here, the Amy1136 gene (2166 base pairs) from the thermophilic bacterium Cohnella sp. A01 was cloned into the expression vector pET-26b(+) and expressed in Escherichia coli BL21. The enzyme was purified using heat shock at 90 °C for 15 min. The expression optimization of Amy1136 was performed using Plackett-Burman and Box-Behnken design as follows: temperature of 26.7 °C, rotational speed of 180 rpm, and bacterial population of 1.25. The Amy1136 displayed the highest activity at a temperature of 50 °C (on pullulan) and a pH of 8.0 (on starch) and, also exhibited stability at high temperatures (90 °C) and over a range of pH values. Ag+ significantly increased enzyme activity, while Co2+ completely inhibited amylase activity. The enzyme was found to be calcium-independent. The kinetic parameters Km, Vmax, kcat, and kcat/Km for amylase activity were 2.4 mg/mL, 38.650 μmol min-1 mg-1, 38.1129 S-1, and 0.09269 S-1mg mL-1, respectively, and for pullulanase activity were 173.1 mg/mL, 59.337 μmol min-1 mg-1, 1.586 S-1, and 1.78338 S-1mg mL-1, respectively. The thermodynamic parameters Kin, t1/2, Ea#, ΔH#, ΔG# and ΔS# were calculated equal to 0.20 × 10-2 (m-1), 462.09 (min), 16.87 (kJ/mol), 14.18 (kJ/mol), 47.34 (kJ/mol) and 102.60 (Jmol K-1), respectively. The stability of Amy1136 under high temperature, acidic and alkaline pH, surfactants, organic solvents, and calcium independence, suggests its suitability for industrial applications.
Collapse
Affiliation(s)
- Faezeh Hasani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zohreh Javaheri Safa
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Naser Farrokhi
- Dept. of Cell & Molecular Biology, Shahid Beheshti University, Tehran, Iran
| | - Ali Asghar Karkhane
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
3
|
Feng S, Zhang W, Liu J, Hu Y, Wu J, Ni G, Wang F. Molecular Cloning, Characterization, and Application of a Novel Multifunctional Isoamylase (MIsA) from Myxococcus sp. Strain V11. Foods 2024; 13:3481. [PMID: 39517265 PMCID: PMC11544908 DOI: 10.3390/foods13213481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
A novel multifunctional isoamylase, MIsA from Myxococcus sp. strain V11, was expressed in Escherichia coli BL21(DE3). Sequence alignment revealed that MIsA is a typical isoamylase that belongs to glycoside hydrolase family 13 (GH 13). MIsA can hydrolyze the α-1,6-branches of amylopectin and pullulan, as well as the α-1,4-glucosidic bond in amylose. Additionally, MIsA demonstrates 4-α-D-glucan transferase activity, enabling the transfer of α-1,4-glucan oligosaccharides between molecules, particularly with linear maltooligosaccharides. The Km, Kcat, and Vmax values of the MIsA for amylopectin were 1.22 mM, 40.42 µmol·min-1·mg-1, and 4046.31 mM·min-1. The yields of amylopectin and amylose hydrolyzed into oligosaccharides were 10.16% and 11.70%, respectively. The hydrolysis efficiencies were 55%, 35%, and 30% for amylopectin, soluble starch, and amylose, respectively. In the composite enzyme hydrolysis of amylose, the yield of maltotetraose increased by 1.81-fold and 2.73-fold compared with that of MIsA and MTHase (MCK8499120) alone, respectively.
Collapse
Affiliation(s)
- Siting Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Weiqi Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Jun Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Yusen Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Jialei Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Guorong Ni
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Ecological Restoration Innovation of Zhongke Jiangxi, Nanchang 330045, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| |
Collapse
|
4
|
Maduta CS, McCormick JK, Dufresne K. Vaginal community state types (CSTs) alter environmental cues and production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1). J Bacteriol 2024; 206:e0044723. [PMID: 38334326 PMCID: PMC10955855 DOI: 10.1128/jb.00447-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
Menstrual toxic shock syndrome (mTSS) is a rare but life-threatening disease associated with the use of high-absorbency tampons. The production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) superantigen is involved in nearly all cases of mTSS and is tightly controlled by regulators responding to the environment. In the prototypic mTSS strain S. aureus MN8, the major repressor of TSST-1 is the carbon catabolite protein A (CcpA), which responds to glucose concentrations in the vaginal tract. Healthy vaginal Lactobacillus species also depend on glucose for both growth and acidification of the vaginal environment through lactic acid production. We hypothesized that interactions between the vaginal microbiota [herein referred to as community state types (CSTs)] and S. aureus MN8 depend on environmental cues and that these interactions subsequently affect TSST-1 production. Using S. aureus MN8 ΔccpA growing in various glucose concentrations, we demonstrate that the supernatants from different CSTs grown in vaginally defined medium (VDM) could significantly decrease tst expression. When co-culturing CST species with MN8 ∆ccpA, we show that Lactobacillus jensenii completely inhibits TSST-1 production in conditions mimicking healthy menstruation or mTSS. Finally, we show that growing S. aureus in "unhealthy" or "transitional" CST supernatants results in higher interleukin 2 (IL-2) production from T cells. These findings suggest that dysbiotic CSTs may encourage TSST-1 production in the vaginal tract and further indicate that the CSTs are likely important for the protection from mTSS.IMPORTANCEIn this study, we investigate the impact of the vaginal microbiota against Staphylococcus aureus in conditions mimicking the vaginal environment at various stages of the menstrual cycle. We demonstrate that Lactobacillus jensenii can inhibit toxic shock syndrome toxin-1 (TSST-1) production, suggesting the potential for probiotic activity in treating and preventing menstrual toxic shock syndrome (mTSS). On the other side of the spectrum, "unhealthy" or "transient" bacteria such as Gardnerella vaginalis and Lactobacillus iners support more TSST-1 production by S. aureus, suggesting that community state types are important in the development of mTSS. This study sets forward a model for examining contact-independent interactions between pathogenic bacteria and the vaginal microbiota. It also demonstrates the necessity of replicating the environment when studying one as dynamic as the vagina.
Collapse
Affiliation(s)
- Carla S. Maduta
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Jenkins DJ, Woolston BM, Hood-Pishchany MI, Pelayo P, Konopaski AN, Quinn Peters M, France MT, Ravel J, Mitchell CM, Rakoff-Nahoum S, Whidbey C, Balskus EP. Bacterial amylases enable glycogen degradation by the vaginal microbiome. Nat Microbiol 2023; 8:1641-1652. [PMID: 37563289 PMCID: PMC10465358 DOI: 10.1038/s41564-023-01447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
The human vaginal microbiota is frequently dominated by lactobacilli and transition to a more diverse community of anaerobic microbes is associated with health risks. Glycogen released by lysed epithelial cells is believed to be an important nutrient source in the vagina. However, the mechanism by which vaginal bacteria metabolize glycogen is unclear, with evidence implicating both bacterial and human enzymes. Here we biochemically characterize six glycogen-degrading enzymes (GDEs), all of which are pullanases (PulA homologues), from vaginal bacteria that support the growth of amylase-deficient Lactobacillus crispatus on glycogen. We reveal variations in their pH tolerance, substrate preferences, breakdown products and susceptibility to inhibition. Analysis of vaginal microbiome datasets shows that these enzymes are expressed in all community state types. Finally, we confirm the presence and activity of bacterial and human GDEs in cervicovaginal fluid. This work establishes that bacterial GDEs can participate in the breakdown of glycogen, providing insight into metabolism that may shape the vaginal microbiota.
Collapse
Affiliation(s)
- Dominick J Jenkins
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Benjamin M Woolston
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - M Indriati Hood-Pishchany
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Paula Pelayo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - M Quinn Peters
- Department of Chemistry, Seattle University, Seattle, WA, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline M Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | | | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Tarracchini C, Argentini C, Alessandri G, Lugli GA, Mancabelli L, Fontana F, Anzalone R, Viappiani A, Turroni F, Ventura M, Milani C. The core genome evolution of Lactobacillus crispatus as a driving force for niche competition in the human vaginal tract. Microb Biotechnol 2023; 16:1774-1789. [PMID: 37491806 PMCID: PMC10443340 DOI: 10.1111/1751-7915.14305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
The lower female reproductive tract is notoriously dominated by Lactobacillus species, among which Lactobacillus crispatus emerges for its protective and health-promoting activities. Although previous comparative genome analyses highlighted genetic and phenotypic diversity within the L. crispatus species, most studies have focused on the presence/absence of accessory genes. Here, we investigated the variation at the single nucleotide level within protein-encoding genes shared across a human-derived L. crispatus strain selection, which includes 200 currently available human-derived L. crispatus genomes as well as 41 chromosome sequences of such taxon that have been decoded in the framework of this study. Such data clearly pointed out the presence of intra-species micro-diversities that could have evolutionary significance contributing to phenotypical diversification by affecting protein domains. Specifically, two single nucleotide variations in the type II pullulanase gene sequence led to specific amino acid substitutions, possibly explaining the substantial differences in the growth performances and competition abilities observed in a multi-strain bioreactor culture simulating the vaginal environment. Accordingly, L. crispatus strains display different growth performances, suggesting that the colonisation and stable persistence in the female reproductive tract between the members of this taxon is highly variable.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | | | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio SrlParmaItaly
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
7
|
Navarro S, Abla H, Delgado B, Colmer-Hamood JA, Ventolini G, Hamood AN. Glycogen availability and pH variation in a medium simulating vaginal fluid influence the growth of vaginal Lactobacillus species and Gardnerella vaginalis. BMC Microbiol 2023; 23:186. [PMID: 37442975 PMCID: PMC10339506 DOI: 10.1186/s12866-023-02916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Glycogen metabolism by Lactobacillus spp. that dominate the healthy vaginal microbiome contributes to a low vaginal pH (3.5-4.5). During bacterial vaginosis (BV), strict and facultative anaerobes including Gardnerella vaginalis become predominant, leading to an increase in the vaginal pH (> 4.5). BV enhances the risk of obstetrical complications, acquisition of sexually transmitted infections, and cervical cancer. Factors critical for the maintenance of the healthy vaginal microbiome or the transition to the BV microbiome are not well defined. Vaginal pH may affect glycogen metabolism by the vaginal microflora, thus influencing the shift in the vaginal microbiome. RESULTS The medium simulating vaginal fluid (MSVF) supported growth of L. jensenii 62G, L. gasseri 63 AM, and L. crispatus JV-V01, and G. vaginalis JCP8151A at specific initial pH conditions for 30 d. L. jensenii at all three starting pH levels (pH 4.0, 4.5, and 5.0), G. vaginalis at pH 4.5 and 5.0, and L. gasseri at pH 5.0 exhibited the long-term stationary phase when grown in MSVF. L. gasseri at pH 4.5 and L. crispatus at pH 5.0 displayed an extended lag phase over 30 d suggesting inefficient glycogen metabolism. Glycogen was essential for the growth of L. jensenii, L. crispatus, and G. vaginalis; only L. gasseri was able to survive in MSVF without glycogen, and only at pH 5.0, where it used glucose. All four species were able to survive for 15 d in MSVF with half the glycogen content but only at specific starting pH levels - pH 4.5 and 5.0 for L. jensenii, L. gasseri, and G. vaginalis and pH 5.0 for L. crispatus. CONCLUSIONS These results suggest that variations in the vaginal pH critically influence the colonization of the vaginal tract by lactobacilli and G. vaginalis JCP8151A by affecting their ability to metabolize glycogen. Further, we found that L. jensenii 62G is capable of glycogen metabolism over a broader pH range (4.0-5.0) while L. crispatus JV-V01 glycogen utilization is pH sensitive (only functional at pH 5.0). Finally, our results showed that G. vaginalis JCP8151A can colonize the vaginal tract for an extended period as long as the pH remains at 4.5 or above.
Collapse
Affiliation(s)
- Stephany Navarro
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Habib Abla
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Betsaida Delgado
- Honors College, Texas Tech University, Lubbock, TX USA
- Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Jane A. Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Gary Ventolini
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center Permian Basin, Odessa, TX USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|