1
|
Najim AA, Ismail ZZ, Hummadi KK. Immobilization of mixed bacteria by novel biocarriers extracted from Cress and Chia seeds for biotreatment of anionic surfactant (SDS)-bearing real wastewaters. Prep Biochem Biotechnol 2022:1-10. [PMID: 36332156 DOI: 10.1080/10826068.2022.2140354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Selection of biocarrier type is an essential element for successful bacterial cells immobilization. The present investigation aimed to evaluate a novel application of Cress and Chia seeds as biocarriers for immobilization of mixed bacterial cells. Being an environmentally friendly, non-polluting, inexpensive, and non-toxic substances makes them promising biocarriers. On the other hand, there is an increasing concern about contamination by surfactants, sodium dodecyl sulfate (SDS) is among the most commonly used surfactant. The Cress and Chia seeds were cross-linked with PVA to prepare two types of beads; CrE-PVA and ChE-PVA, respectively. The beads were utilized for the SDS biodegradation in four kinds of actual SDS-bearing wastewaters originated from; carwash garage (CWW), laundry facility (LWW), and household detergent industry (HWW), in addition to domestic wastewater (DWW). The results revealed that maximum efficiencies of SDS elimination in DWW, LWW, HWW, and CWW were 98.12, 94.32, 93.04, and 99.08%, respectively, using CrE-PVA and 99.04, 94.96, 94.71, and 99.27%, respectively using ChE-PVA. Finally, both types of beads were recycled for five times without losing their stability and efficiency for SDS biodegradation. Four kinetic models were adopted which were Blackman, Monod, Haldane, and Teissier. Results revealed that Teissier model well fitted the experimental data.
Collapse
Affiliation(s)
- Aya A. Najim
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| | - Zainab Z. Ismail
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| | - Khalid K. Hummadi
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Zhao Y, Lu W, Liu Y, Wang J, Zhou S, Mao Y, Li G, Deng Y. Efficient total nitrogen removal from wastewater by Paracoccus denitrificans DYTN-1. Lett Appl Microbiol 2019; 70:263-273. [PMID: 31879967 DOI: 10.1111/lam.13268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
Bioaugmentation is an effective treatment method to reduce nitrogenous pollutants from wastewater. A strain of DYTN-1, which could effectively remove TN from sewage, was isolated from the sludge of a wastewater treatment plant and was identified as Paracoccus denitrificans. The TN in wastewater reduced to <20 mg l-1 within 12 h under optimal conditions by free cells of P. denitrificans DYTN-1. To enhance the removal of TN, P. denitrificans DYTN-1 cells were immobilized in sodium alginate (SA) using different divalent metal ions as cross-linking agents. It was found that the immobilized P. denitrificans DYTN-1 cells could reduce the TN concentration from 100 to below 20 mg l-1 within 8 h. After the optimization of an orthogonal experiment, the immobilized P. denitrificans DYTN-1 cells could reduce the TN concentration from 100 mg l-1 to below 20 mg l-1 within 1 h and significantly reduce the fermentation cycle. These findings would provide an economical and effective method for the removal of total nitrogen in wastewater by immobilized cells of P. denitrificans DYTN-1. SIGNIFICANCE AND IMPACT OF THE STUDY: We identified a new Paracoccus denitrificans strain (DYTN-1) for removal of the total nitrogen in wastewater. The total nitrogen could be removed effectively by P. denitrificans DYTN-1 within 12 h in wastewater. Using sodium alginate as the carrier and Ba2+ as cross-linking agent, the immobilized P. denitrificans DYTN-1 cells could improve the removal efficiency of total nitrogen in wastewater and significantly reduce the fermentation cycle. The assay has provided an economical and effective method for the removal of total nitrogen in wastewater by immobilized cell.
Collapse
Affiliation(s)
- Y Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - W Lu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, China
| | - J Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, China
| | - S Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Mao
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - G Li
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Imam A, Suman SK, Ghosh D, Kanaujia PK. Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Pradeep V, Subbaiah UM. Use of Ca-alginate immobilized Pseudomonas aeruginosa for repeated batch and continuous degradation of Endosulfan. 3 Biotech 2016; 6:124. [PMID: 28330200 PMCID: PMC4909023 DOI: 10.1007/s13205-016-0438-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/25/2016] [Indexed: 01/10/2023] Open
Abstract
The current investigation is taken up with the aim of studying repeated batch and continuous degradation of Endosulfan, using Ca-alginate immobilized cells of Pseudomonas aeruginosa isolated from an agricultural soil. The work involves the study of genes and enzymes involved in the degradation of the pesticide and was carried out with an objective of reducing the toxicity of Endosulfan by degrading it to less toxic metabolites. The long-term stability of Endosulfan degradation was studied during its repeated batch degradation, carried out over a period of 35 days. Immobilized cells of Ps. aeruginosa were able to show 60 % degradation of Endosulfan at the end of the 35th cycle with a cell leakage of 642 × 104 Cfu/mL. During continuous treatment, with 2 % concentration of Endosulfan, 100 % degradation was recorded up to 100 mL/h flow rate and with 10 % concentration of the Endosulfan, and 100 and 85 % degradation was recorded at 20 mL/h flow rate and 100 mL/h flow rate, respectively. After degradation of Endosulfan, products were extracted from a large amount of spent medium using two volumes of ethyl acetate and subjected to the LC–MS analysis. Endosulfan lactone and Endosulfan ether were the products of degradation detected by the LCMS analysis. Plasmid curing experiments indicated that genes responsible for the degradation of Endosulfan are present on the chromosome and not on the plasmid, as growth of Ps. aeruginosa was observed on modified non-sulfur medium with Endosulfan after the plasmid was cured with ethidium bromide. The results of PCR indicated that there is no amplified product of ~1350 bp expected for esd gene, in Ps. aeruginosa, although there were some non-specific bands. Enzymatic degradation studies indicated that the enzymes involved in the degradation of Endosulfan are intracellular. With this investigation, it was indicated that immobilized cells of Ps.aeruginosa have the potential to be used in the bioremediation of water contaminated with Endosulfan.
Collapse
Affiliation(s)
- Vijayalakshmi Pradeep
- Department of Life Sciences, SGS, Jain University, JC Road, Bangalore, 560011, India
| | | |
Collapse
|
5
|
Pradeep V, Subbaiah UM. Repeated batch and continuous degradation of chlorpyrifos by Pseudomonas putida. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:346-360. [PMID: 25826103 DOI: 10.1080/03601234.2015.1000180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 10(3) cfu mL(-1). During continuous treatment, 100% degradation was observed at 100 mL h(-1) flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h(-1) and 100 mL h(-1) flow rate respectively. The products of degradation detected by liquid chromatography-mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.
Collapse
|
6
|
Paracoccus denitrificans SD1 mediated augmentation with indigenous mixed cultures for enhanced removal of N,N-dimethylformamide from industrial effluents. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads. Biodegradation 2012; 24:353-64. [DOI: 10.1007/s10532-012-9592-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/10/2012] [Indexed: 11/26/2022]
|
8
|
Kumar SS, Kumar MS, Siddavattam D, Karegoudar TB. Generation of continuous packed bed reactor with PVA-alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N,N-dimethylformamide from industrial effluents. JOURNAL OF HAZARDOUS MATERIALS 2012; 199-200:58-63. [PMID: 22079508 DOI: 10.1016/j.jhazmat.2011.10.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
Effective removal of dimethylformamide (DMF), the organic solvent found in industrial effluents of textile and pharma industries, was demonstrated by using free and immobilized cells of Ochrobactrum sp. DGVK1, a soil isolate capable of utilizing DMF as a sole source of carbon, nitrogen. The free cells have efficiently removed DMF from culture media and effluents, only when DMF concentration was less than 1% (v/v). Entrapment of cells either in alginate or in polyvinyl alcohol (PVA) failed to increase tolerance limits. However, the cells of Ochrobactrum sp. DGVK1 entrapped in PVA-alginate mixed matrix tolerated higher concentration of DMF (2.5%, v/v) and effectively removed DMF from industrial effluents. As determined through batch fermentation, these immobilized cells have retained viability and degradability for more than 20 cycles. A continuous packed bed reactor, generated by using PVA-alginate beads, efficiently removed DMF from industrial effluents, even in the presence of certain organic solvents frequently found in effluents along with DMF.
Collapse
Affiliation(s)
- S Sanjeev Kumar
- Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka, India
| | | | | | | |
Collapse
|
9
|
Wang Q, Zhang S, Li Y, Klassen W. Potential Approaches to Improving Biodegradation of Hydrocarbons for Bioremediation of Crude Oil Pollution. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jep.2011.21005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
John RP, Tyagi R, Brar S, Surampalli R, Prévost D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 2010; 31:211-26. [DOI: 10.3109/07388551.2010.513327] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Wang J, Yang H, Lu H, Zhou J, Wang J, Zheng C. Aerobic biodegradation of nitrobenzene by a defined microbial consortium immobilized in polyurethane foam. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9962-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Taxonomic Identification and Use of Free and Entrapped Cells of a New Mycobacterium sp., Strain Spyr1 for Degradation of Polycyclic Aromatic Hydrocarbons (PAHs). Appl Biochem Biotechnol 2008; 159:155-67. [DOI: 10.1007/s12010-008-8463-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/02/2008] [Indexed: 11/25/2022]
|
13
|
Wang Y, Riess R, Nemati M, Hill G, Headley J. Scale-up impacts on mass transfer and bioremediation of suspended naphthalene particles in bead mill bioreactors. BIORESOURCE TECHNOLOGY 2008; 99:8143-8150. [PMID: 18468888 DOI: 10.1016/j.biortech.2008.03.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 05/26/2023]
Abstract
Scale-up effects on mass transfer and bioremediation of suspended naphthalene particles have been studied in 20 and 58L bead mill bioreactors and compared to data generated earlier with a laboratory scaled bioreactor. The bead mill bioreactor performance with respect to naphthalene mass transfer rate was dependent on the size and loading of the inert particles, as well as the rotational speed of the roller apparatus. The optimum operating conditions were found to be 15mm glass beads at a loading of 50% (total volume of particles/working volume of bioreactor: v/v%) and a bioreactor rotational speed of 50rpm. The highest naphthalene mass transfer coefficients obtained in the large scale system under these optimum conditions (19.6 and 22.4h(-1) for 20 and 58L vessels, respectively) were higher than those determined previously in a 2.5L bead mill bioreactor (0.7h(-1)). The acute toxicity tests indicated that the bioreactor effluent was less toxic than the untreated naphthalene suspension. Biodegradation rates obtained in these large scale bead mill bioreactors under optimum conditions (36-37.4mgL(-1)h(-1)) were higher than those achieved in the control bioreactors of similar sizes (11.4 and 11.6mgL(-1)h(-1)) but were slower than those previously determined in a 2.5L bead mill bioreactor (59-61.5mgL(-1)h(-1)). The limitation of oxygen in the large scale systems and damage of the bacterial cells due to the crushing effects of the large beads are likely contributing factors in the lower observed biodegradation rates. The optimum conditions with respect to naphthalene mass transfer might not necessarily translate to optimum performance with regard to bioremediation.
Collapse
Affiliation(s)
- Yuching Wang
- Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9
| | | | | | | | | |
Collapse
|
14
|
Rezaee A, Godini H, Dehestani S, Reza Yazdanbakhsh A, Mosavi G, Kazemnejad A. Biological denitrification by Pseudomonas stutzeri immobilized on microbial cellulose. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9753-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Koukkou AI, Drainas C. Addressing PAH biodegradation in Greece: Biochemical and molecular approaches. IUBMB Life 2008; 60:275-80. [DOI: 10.1002/iub.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Verma M, Brar SK, Blais JF, Tyagi RD, Surampalli RY. Aerobic Biofiltration Processes—Advances in Wastewater Treatment. ACTA ACUST UNITED AC 2006. [DOI: 10.1061/(asce)1090-025x(2006)10:4(264)] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Karigar C, Mahesh A, Nagenahalli M, Yun DJ. Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation 2006; 17:47-55. [PMID: 16453171 DOI: 10.1007/s10532-005-3048-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2005] [Indexed: 11/27/2022]
Abstract
An aerobic microorganism with an ability to utilize phenol as carbon and energy source was isolated from a hydrocarbon contamination site by employing selective enrichment culture technique. The isolate was identified as Arthrobacter citreus based on morphological, physiological and biochemical tests. This mesophilic organism showed optimal growth at 25 degrees C and at pH of 7.0. The phenol utilization studies with Arthrobacter citreus showed that the complete assimilation occurred in 24 hours. The organism metabolized phenol up to 22 mM concentrations whereas higher levels were inhibitory. Thin layer chromatography, UV spectral and enzyme analysis were suggestive of catechol, as a key intermediate of phenol metabolism. The enzyme activities of phenol hydroxylase and catechol 2,3-dioxygenase in cell free extracts of Arthrobacter citreus were indicative of operation of a meta-cleavage pathway for phenol degradation. The organism had additional ability to degrade catechol, cresols and naphthol. The degradation rates of phenol by alginate and agar immobilized cells in batch fermentations showed continuous phenol metabolism for a period of eight days.
Collapse
Affiliation(s)
- Chandrakant Karigar
- Biochemistry Division, Department of Chemistry, Central College Campus, Bangalore University, Bangalore, India.
| | | | | | | |
Collapse
|
18
|
Singh P, Mishra LC, Pandey A, Iyengar L. Degradation of 4-aminobenzenesulfonate by alginate encapsulated cells of Agrobacterium sp. PNS-1. BIORESOURCE TECHNOLOGY 2006; 97:1655-9. [PMID: 16223583 DOI: 10.1016/j.biortech.2005.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 08/12/2005] [Accepted: 08/16/2005] [Indexed: 05/04/2023]
Abstract
Studies were carried out on 4-aminobenzenesulfonate (4-ABS) degradation by free and alginate entrapped cells of Agrobacterium sp. PNS-1. Degradation rate in batch reactors with free cells was marginally higher than Ca-encapsulated cells. Comparison of Ca2+ and Ba2+ as gelling agents showed that 4-ABS removal rate was significantly less with Ba-alginate entrapped cells. Specific degradation rates, using linear regression analysis and based on the initial biomass in the beads, varied from 49.7 mg/mg biomass/h to 92.0 mg/mg biomass/h for Ca-alginate encapsulated cells for different initial 4-ABS concentrations ranging from 200 to 800 mg/L. UV spectra of the aliquots drawn at different time intervals from batch reactors did not show accumulation of any intermediate during degradation. Ca-alginate immobilized cells could be repeatedly reused upto five cycles without any loss of activity. Studies with packed bed reactors, operated in a semi-continuous mode, showed that this could be used for 4-ABS degradation.
Collapse
Affiliation(s)
- Poonam Singh
- Biotechnology Laboratory, Department of Chemistry, I.I.T., Kanpur 208 016, India
| | | | | | | |
Collapse
|
19
|
Parametric Studies on Batch Degradation of a Plasticizer Di-n-Butylphthalate by Immobilized Bacillus sp. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-7369-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Cattony EBM, Chinalia FA, Ribeiro R, Zaiat M, Foresti E, Varesche MBA. Ethanol and toluene removal in a horizontal-flow anaerobic immobilized biomass reactor in the presence of sulfate. Biotechnol Bioeng 2005; 91:244-53. [PMID: 15915510 DOI: 10.1002/bit.20509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study it is reported the operation of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor under sulfate-reducing condition which was also exposed to different amounts of ethanol and toluene. The system was inoculated with sludge taken from up-flow anaerobic sludge blanket (UASB) reactors treating refuses from a poultry slaughterhouse. The HAIB reactor comprised of an immobilized biomass on polyurethane foam and ferrous and sodium sulfate solutions were used (91 and 550 mg/L, respectively), to promote a sulfate-reducing environment. Toluene was added at an initial concentration of 2.0 mg/L followed by an increased range of different amendments (5, 7, and 9 mg/L). Ethanol was added at an initial concentration of 170 mg/L followed by an increased range of 960 mg/L. The reactor was operated at 30(+/-2) degrees C with hydraulic detention time of 12 h. Organic matter removal efficiency was close to 90% with a maximum toluene degradation rate of 0.06 mg(toluene)/mg(vss)/d. Sulfate reduction was close to 99.9% for all-nutritional amendments. Biofilm microscopic characterization revealed a diversity of microbial morphologies and DGGE-profiling showed a variation of bacterial and sulfate reducing bacteria (SRB) populations, which were significantly associated with toluene amendments. Diversity of archaea remained unaltered during the different phases of this experiment. Thus, this study demonstrates that compact units of HAIB reactors, under sulfate reducing conditions, are a potential alternative for in situ aromatics bioremediation.
Collapse
Affiliation(s)
- E B M Cattony
- Laboratório de Processos Biológicos, Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brasil
| | | | | | | | | | | |
Collapse
|
21
|
Purwaningsih IS, Hill GA, Headley JV. Mass transfer and bioremediation of naphthalene particles in a roller bioreactor. WATER RESEARCH 2004; 38:2027-2034. [PMID: 15087183 DOI: 10.1016/j.watres.2004.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Revised: 09/16/2003] [Accepted: 01/27/2004] [Indexed: 05/24/2023]
Abstract
Naphthalene particles in a water slurry have been bioremediated in a sealed, roller bioreactor using a pure strain of Pseudomonas putida. High stripping losses of particles due to both splashing and aeration made the use of the traditional CSTR bioreactor unsuitable for bioremediation of naphthalene particles. The overall dissolution mass transfer coefficient of naphthalene particles in the roller bioreactor was low, 0.055 h(-1) at 50 RPM. The dissolution mass transfer rate was the limiting step for bioremediation. Although mass transfer was identified as the rate limiting step, the addition of hydroxypropyl-beta-cyclodextrin (a solubility enhancer) failed to improve naphthalene slurry bioremediation. In order to successfully bioremediate naphthalene particles at concentrations over 300 mg/L, intermittent aeration was applied in the sealed roller bioreactor on a daily basis. By operating in sequential batch mode with intermittent aeration, the roller bioreactor was successfully used to continuously bioremediate naphthalene particles at concentrations up to 1000 mg/L and at rates up to 10 mg/Lh.
Collapse
Affiliation(s)
- I Sulistiyati Purwaningsih
- Department of Chemical Engineering, Research Annex, 105 Maintenance Road, University of Saskatchewan, Saskatoon, Canada SK S7N 5C5
| | | | | |
Collapse
|
22
|
Chen F, Cui M, Fu J, Sheng G, Sun G, Xu M. Biodegradation of quinoline by freely suspended and immobilized cells of Comamonas sp strain Q10. J GEN APPL MICROBIOL 2003; 49:123-8. [PMID: 12833215 DOI: 10.2323/jgam.49.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fanzhong Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| | | | | | | | | | | |
Collapse
|
23
|
Moslemy P, Neufeld RJ, Guiot SR. Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnol Bioeng 2002; 80:175-84. [PMID: 12209773 DOI: 10.1002/bit.10358] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Encapsulated cell bioaugmentation is a novel alternative solution to in situ bioremediation of contaminated aquifers. This study was conducted to evaluate the feasibility of such a remediation strategy based on the performance of encapsulated cells in the biodegradation of gasoline, a major groundwater contaminant. An enriched bacterial consortium, isolated from a gasoline-polluted site, was encapsulated in gellan gum microbeads (16-53 microm diameter). The capacity of the encapsulated cells to degrade gasoline under aerobic conditions was evaluated in comparison with free (non-encapsulated) cells. Encapsulated cells (2.6 mg(cells) x g(-1) bead) degraded over 90% gasoline hydrocarbons (initial concentration 50-600 mg x L(-1)) within 5-10 days at 10 degrees C. Equivalent levels of free cells removed comparable amounts of gasoline (initial concentration 50-400 mg x L(-1)) within the same period but required up to 30 days to degrade the highest level of gasoline tested (600 mg x L(-1)). Free cells exhibited a lag phase in biodegradation, which increased from 1 to 5 days with an increase in gasoline concentration (200-600 x mg L(-1)). Encapsulation provided cells with a protective barrier against toxic hydrocarbons, eliminating the adaptation period required by free cells. The reduction of encapsulated cell mass loading from 2.6 to 1.0 mg(cells) x g(-1) bead caused a substantial decrease in the extent of biodegradation within a 30-day incubation period. Encapsulated cells dispersed within the porous soil matrix of saturated soil microcosms demonstrated a reduced performance in the removal of gasoline (initial concentrations of 400 and 600 mg x L(-1)), removing 30-50% gasoline hydrocarbons compared to 40-60% by free cells within 21 days of incubation. The results of this study suggest that gellan gum-encapsulated bacterial cells have the potential to be used for biodegradation of gasoline hydrocarbons in aqueous systems.
Collapse
Affiliation(s)
- Peyman Moslemy
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2, Canada
| | | | | |
Collapse
|
24
|
Niazi JH, Karegoudar TB. Degradation of dimethylphthalate by cells of Bacillus sp. immobilized in calcium alginate and polyurethane foam. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2001; 36:1135-1144. [PMID: 11501311 DOI: 10.1081/ese-100104137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A Bacillus sp. which is capable of degrading dimethylphthalate (DMP) was immobilized in calcium alginate and polyurethane foam for efficient and long term degradation of DMP. Freely suspended cells (10(12) cfu ml-1) degraded a maximum of 20 mM DMP. Whereas, alginate-(10(12)cfu g-1 beads) and polyurethane foam-entrapped (0.34 x 10(6-9) cfu g-1 foam cubes) cells degraded a maximum of 40 mM DMP within 12-15 days of incubation. Polyurethane foam-entrapped cells degraded 30 mM of DMP at 4 days and alginate-entrapped cells degraded within 10 to 12 days of incubation irrespective of the cell population. When the initial concentration of DMP increased to 50 mM, the DMP degrading ability of the immobilized cells was not increased even after 20 days. Repeated batch cultures by alginate-entrapped cells with initial 35 mM DMP loading could be reused for a maximum of 20 cycles. However, the degradation rate was gradually decreased when the beads were reused for more than 15 cycles. On the other hand, the foam-entrapped cells, with the same initial DMP loading there was no decrease in DMP degrading ability and could be reused for more than 20 cycles. The packed bed reactor with alginate-entrapped cells (1 x 10(10-12) cfu g-1 bead) could be continuously operated for 7-8 days with an initial 25 mM DMP at a flow rate of 50 ml h-1. Whereas, the polyurethane foam-entrapped cells (1 x 10(6-9) cfu g-1 foam cubes) could be operated continuously for more than 90 days with the same initial DMP loading at a flow rate of 100 ml h-1. Thus the enhanced degradation of DMP could be achieved by immobilizing the cells of Bacillus sp. in calcium alginate and polyurethane foam as compared to that of freely suspended cells.
Collapse
Affiliation(s)
- J H Niazi
- Department of Biochemistry, Gulbarga University, Gulbarga-595 106, India
| | | |
Collapse
|