1
|
Zhang Z, Li H, Xiao S, Zhou Q, Liu S, Zhou X, Fan L. Hyperpolarized Gas Imaging in Lung Diseases: Functional and Artificial Intelligence Perspective. Acad Radiol 2024; 31:4203-4216. [PMID: 38233260 DOI: 10.1016/j.acra.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Pathophysiologic changes in lung diseases are often accompanied by changes in ventilation and gas exchange. Comprehensive evaluation of lung function cannot be obtained through chest X-ray and computed tomography. Proton-based lung MRI is particularly challenging due to low proton density within the lung tissue. In this review, we discuss an emerging technology--hyperpolarized gas MRI with inhaled 129Xe, which provides functional and microstructural information and has the potential as a clinical tool for detecting the early stage and progression of certain lung diseases. We review the hyperpolarized 129Xe MRI studies in patients with a range of pulmonary diseases, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, pulmonary hypertension, radiation-induced lung injury and interstitial lung disease, and the applications of artificial intelligence were reviewed as well.
Collapse
Affiliation(s)
- Ziwei Zhang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.)
| | - Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Qian Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.)
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.)
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.).
| |
Collapse
|
2
|
Baschnagel AM, Flakus MJ, Wallat EM, Wuschner AE, Chappell RJ, Bayliss RA, Kimple RJ, Christensen GE, Reinhardt JM, Bassetti MF, Bayouth JE. A Phase 2 Randomized Clinical Trial Evaluating 4-Dimensional Computed Tomography Ventilation-Based Functional Lung Avoidance Radiation Therapy for Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 119:1393-1402. [PMID: 38387810 DOI: 10.1016/j.ijrobp.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE To determine whether 4-dimensional computed tomography (4DCT) ventilation-based functional lung avoidance radiation therapy preserves pulmonary function compared with standard radiation therapy for non-small cell lung cancer (NSCLC). METHODS AND MATERIALS This single center, randomized, phase 2 trial enrolled patients with NSCLC receiving curative intent radiation therapy with either stereotactic body radiation therapy or conventionally fractionated radiation therapy between 2016 and 2022. Patients were randomized 1:1 to standard of care radiation therapy or functional lung avoidance radiation therapy. The primary endpoint was the change in Jacobian-based ventilation as measured on 4DCT from baseline to 3 months postradiation. Secondary endpoints included changes in volume of high- and low-ventilating lung, pulmonary toxicity, and changes in pulmonary function tests (PFTs). RESULTS A total of 122 patients were randomized and 116 were available for analysis. Median follow up was 29.9 months. Functional avoidance plans significantly (P < .05) reduced dose to high-functioning lung without compromising target coverage or organs at risk constraints. When analyzing all patients, there was no difference in the amount of lung showing a reduction in ventilation from baseline to 3 months between the 2 arms (1.91% vs 1.87%; P = .90). Overall grade ≥2 and grade ≥3 pulmonary toxicities for all patients were 24.1% and 8.6%, respectively. There was no significant difference in pulmonary toxicity or changes in PFTs between the 2 study arms. In the conventionally fractionated cohort, there was a lower rate of grade ≥2 pneumonitis (8.2% vs 32.3%; P = .049) and less of a decline in change in forced expiratory volume in 1 second (-3 vs -5; P = .042) and forced vital capacity (1.5 vs -6; P = .005) at 3 months, favoring the functional avoidance arm. CONCLUSIONS There was no difference in posttreatment ventilation as measured by 4DCT between the arms. In the cohort of patients treated with conventionally fractionated radiation therapy with functional lung avoidance, there was reduced pulmonary toxicity, and less decline in PFTs suggesting a clinical benefit in patients with locally advanced NSCLC.
Collapse
Affiliation(s)
- Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin.
| | - Mattison J Flakus
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Eric M Wallat
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Antonia E Wuschner
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard J Chappell
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - R Adam Bayliss
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa; Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - John E Bayouth
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
3
|
Peiffer JD, Altes T, Ruset IC, Hersman FW, Mugler JP, Meyer CH, Mata J, Qing K, Thomen R. Hyperpolarized 129Xe MRI, 99mTc scintigraphy, and SPECT in lung ventilation imaging: a quantitative comparison. Acad Radiol 2024; 31:1666-1675. [PMID: 37977888 PMCID: PMC11015986 DOI: 10.1016/j.acra.2023.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
RATIONALE AND OBJECTIVES The current clinical standard for functional imaging of patients with lung ailments is nuclear medicine scintigraphy and Single Photon Emission Computed Tomography (SPECT) which detect the gamma decay of inhaled radioactive tracers. Hyperpolarized (HP) Xenon-129 MRI (XeMRI) of the lungs has recently been FDA approved and provides similar functional images of the lungs with higher spatial resolution than scintigraphy and SPECT. Here we compare Technetium-99m (99mTc) diethylene-triamine-pentaacetate scintigraphy and SPECT with HP XeMRI in healthy controls, asthma, and chronic obstructive pulmonary disorder (COPD) patients. MATERIALS AND METHODS 59 subjects, healthy, with asthma, and with COPD, underwent 99mTc scintigraphy/SPECT, standard spirometry, and HP XeMRI. XeMRI and SPECT images were registered for direct voxel-wise signal comparisons. Images were also compared using ventilation defect percentage (VDP), and a standard 6-compartment method. VDP calculated from XeMRI and SPECT images was compared to spirometry. RESULTS Median Pearson correlation coefficient for voxel-wise signal comparison was 0.698 (0.613-0.782) between scintigraphy and XeMRI and 0.398 (0.286-0.502) between SPECT and XeMRI. Correlation between VDP measures was r = 0.853, p < 0.05. VDP separated asthma and COPD from the control group and was significantly correlated with FEV1, FEV1/FVC, and FEF 25-75. CONCLUSION HP XeMRI provides equivalent information to 99mTc SPECT and standard spirometry measures. Additionally, XeMRI is non-invasive, hence it could be used for longitudinal studies for evaluating emerging treatment for lung ailments.
Collapse
Affiliation(s)
- J D Peiffer
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65201, USA (J.D.P., R.T.)
| | - Talissa Altes
- Department of Radiology, University of Missouri, Columbia, Missouri 65201, USA (T.A., R.T.)
| | - Iulian C Ruset
- Xemed LLC, Durham, New Hampshire 03833, USA (I.C.R., F.W.H.)
| | - F W Hersman
- Xemed LLC, Durham, New Hampshire 03833, USA (I.C.R., F.W.H.)
| | - John P Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M., J.M., K.Q.); Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M.)
| | - Craig H Meyer
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M., J.M., K.Q.); Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M.)
| | - Jamie Mata
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M., J.M., K.Q.)
| | - Kun Qing
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M., J.M., K.Q.)
| | - Robert Thomen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65201, USA (J.D.P., R.T.); Department of Radiology, University of Missouri, Columbia, Missouri 65201, USA (T.A., R.T.).
| |
Collapse
|
4
|
Radadia N, Friedlander Y, Priel E, Konyer NB, Huang C, Jamal M, Farncombe T, Marriott C, Finley C, Agzarian J, Dolovich M, Noseworthy MD, Nair P, Shargall Y, Svenningsen S. Comparison of ventilation defects quantified by Technegas SPECT and hyperpolarized 129Xe MRI. Front Physiol 2023; 14:1133334. [PMID: 37234422 PMCID: PMC10206636 DOI: 10.3389/fphys.2023.1133334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: The ideal contrast agents for ventilation SPECT and MRI are Technegas and 129Xe gas, respectively. Despite increasing interest in the clinical utility of ventilation imaging, these modalities have not been directly compared. Therefore, our objective was to compare the ventilation defect percent (VDP) assessed by Technegas SPECT and hyperpolarized 129Xe MRI in patients scheduled to undergo lung cancer resection with and without pre-existing obstructive lung disease. Methods: Forty-one adults scheduled to undergo lung cancer resection performed same-day Technegas SPECT, hyperpolarized 129Xe MRI, spirometry, and diffusing capacity of the lung for carbon monoxide (DLCO). Ventilation abnormalities were quantified as the VDP using two different methods: adaptive thresholding (VDPT) and k-means clustering (VDPK). Correlation and agreement between VDP quantified by Technegas SPECT and 129Xe MRI were determined by Spearman correlation and Bland-Altman analysis, respectively. Results: VDP measured by Technegas SPECT and 129Xe MRI were correlated (VDPT: r = 0.48, p = 0.001; VDPK: r = 0.63, p < 0.0001). A 2.0% and 1.6% bias towards higher Technegas SPECT VDP was measured using the adaptive threshold method (VDPT: 23.0% ± 14.0% vs. 21.0% ± 5.2%, p = 0.81) and k-means method (VDPK: 9.4% ± 9.4% vs. 7.8% ± 10.0%, p = 0.02), respectively. For both modalities, higher VDP was correlated with lower FEV1/FVC (SPECT VDPT: r = -0.38, p = 0.01; MRI VDPK: r = -0.46, p = 0.002) and DLCO (SPECT VDPT: r = -0.61, p < 0.0001; MRI VDPK: r = -0.68, p < 0.0001). Subgroup analysis revealed that VDP measured by both modalities was significantly higher for participants with COPD (n = 13) than those with asthma (n = 6; SPECT VDPT: p = 0.007, MRI VDPK: p = 0.006) and those with no history of obstructive lung disease (n = 21; SPECT VDPT: p = 0.0003, MRI VDPK: p = 0.0003). Discussion: The burden of ventilation defects quantified by Technegas SPECT and 129Xe MRI VDP was correlated and greater in participants with COPD when compared to those without. Our observations indicate that, despite substantial differences between the imaging modalities, quantitative assessment of ventilation defects by Technegas SPECT and 129Xe MRI is comparable.
Collapse
Affiliation(s)
- Nisarg Radadia
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Yonni Friedlander
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Eldar Priel
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Thoracic Surgery, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Thoracic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Norman B. Konyer
- Imaging Research Centre, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Chynna Huang
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Mobin Jamal
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Troy Farncombe
- Department of Radiology, McMaster University, Hamilton, ON, Canada
- Department of Nuclear Medicine, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Christopher Marriott
- Department of Radiology, McMaster University, Hamilton, ON, Canada
- Department of Nuclear Medicine, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Christian Finley
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Thoracic Surgery, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Thoracic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - John Agzarian
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Thoracic Surgery, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Thoracic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Myrna Dolovich
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Michael D. Noseworthy
- Imaging Research Centre, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Department of Radiology, McMaster University, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Parameswaran Nair
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Yaron Shargall
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Thoracic Surgery, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Thoracic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sarah Svenningsen
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
5
|
Kooner HK, McIntosh MJ, Desaigoudar V, Rayment JH, Eddy RL, Driehuys B, Parraga G. Pulmonary functional MRI: Detecting the structure-function pathologies that drive asthma symptoms and quality of life. Respirology 2022; 27:114-133. [PMID: 35008127 PMCID: PMC10025897 DOI: 10.1111/resp.14197] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary functional MRI (PfMRI) using inhaled hyperpolarized, radiation-free gases (such as 3 He and 129 Xe) provides a way to directly visualize inhaled gas distribution and ventilation defects (or ventilation heterogeneity) in real time with high spatial (~mm3 ) resolution. Both gases enable quantitative measurement of terminal airway morphology, while 129 Xe uniquely enables imaging the transfer of inhaled gas across the alveolar-capillary tissue barrier to the red blood cells. In patients with asthma, PfMRI abnormalities have been shown to reflect airway smooth muscle dysfunction, airway inflammation and remodelling, luminal occlusions and airway pruning. The method is rapid (8-15 s), cost-effective (~$300/scan) and very well tolerated in patients, even in those who are very young or very ill, because unlike computed tomography (CT), positron emission tomography and single-photon emission CT, there is no ionizing radiation and the examination takes only a few seconds. However, PfMRI is not without limitations, which include the requirement of complex image analysis, specialized equipment and additional training and quality control. We provide an overview of the three main applications of hyperpolarized noble gas MRI in asthma research including: (1) inhaled gas distribution or ventilation imaging, (2) alveolar microstructure and finally (3) gas transfer into the alveolar-capillary tissue space and from the tissue barrier into red blood cells in the pulmonary microvasculature. We highlight the evidence that supports a deeper understanding of the mechanisms of asthma worsening over time and the pathologies responsible for symptoms and disease control. We conclude with a summary of approaches that have the potential for integration into clinical workflows and that may be used to guide personalized treatment planning.
Collapse
Affiliation(s)
- Harkiran K Kooner
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Marrissa J McIntosh
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Vedanth Desaigoudar
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jonathan H Rayment
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel L Eddy
- Centre of Heart Lung Innovation, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Centre, Durham, North Carolina, USA
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Meng XF, Lin QY, Yin H, Li ZQ. Hyperpolarized 3 helium MRI measured apparent diffusion coefficient and its correlations with pulmonary functions tests in patients with chronic obstructive pulmonary disease: A meta-analysis. THE CLINICAL RESPIRATORY JOURNAL 2021; 15:1185-1193. [PMID: 34288505 DOI: 10.1111/crj.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND This study evaluates role of hyperpolarized 3 helium (3 He) MRI measured apparent diffusion coefficient (ADC) in examining pulmonary function of chronic obstructive pulmonary disease (COPD) patients. METHODS After literature search in electronic databases, studies were selected by following precise eligibility criteria. Meta-analyses were performed to estimate mean difference in ADC between COPD patients and healthy individuals and to seek correlations between lung ADC and pulmonary function. Metaregression analyses were performed to seek relationships between ADC and age, gender, BMI, cigarette pack-years, and pulmonary function tests. RESULTS Twenty-five studies (622 COPD patients and 469 healthy controls) were included. Lung ADC was 0.402 (95% confidence interval [CI]: 0.374, 0.429) in COPD patients and 0.228 (95% CI: 0.205, 0.252) in healthy individuals (mean difference 0.160 [95% CI: 0.127, 0.193]; p < 0.001). In metaregression, age (coefficient: 0.006; p = 0.004), pack-years (coefficient: 0.005; p = 0.018), forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio (coefficient: -1.815; p = 0.007), percent predicted diffusion capacity of carbon monoxide (DLCO) (coefficient: -0.004; p = 0.008), and percent predicted inspiratory capacity (coefficient: -0.004; p = 0.012) were significantly associated with ADC in COPD patients. In meta-analysis of correlation coefficients, ADC was significantly correlated with FEV1 (r = -0.62; p < 0.00001), FEV1/FVC (r = -0.80; p < 0.00001), DLCO (r = -0.85; p < 0.00001), functional residual capacity (r = 0.71; p < 0.00001), reserve volume (r = 0.53; p = 0.0001), and emphysema index (r = 0.89; p < 0.00001). CONCLUSION Hyperpolarized 3 He MRI measured ADC was higher in COPD patients than in healthy individuals and was inversely associated with FEV1, FEV1/FVC, DLCO, and inspiratory capacity.
Collapse
Affiliation(s)
- Xian-Feng Meng
- Department of Medical Imaging, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Qing-Yan Lin
- Department of Respiratory and Critical Care Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Honglei Yin
- Department of Respiratory and Critical Care Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Zeng-Qi Li
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Li Y, Li XY, Yuan LR, Wang HL, Pang M. Evaluation of small airway function and its application in patients with chronic obstructive pulmonary disease (Review). Exp Ther Med 2021; 22:1386. [PMID: 34650634 DOI: 10.3892/etm.2021.10822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterized by incomplete reversible airflow limitation. The diagnosis of COPD is mainly based on pulmonary function examination. In recent years, it has been indicated that small airway dysfunction occurs in patients with all stages of COPD, even in high-risk smoking groups who have not yet met the diagnostic criteria for COPD. Early recognition of small airway dysfunction and early initiation of small airway targeted therapy have become foci of research. In the present review, the methods of evaluating small airway function were summarized and their merits and shortcomings were discussed. Furthermore, the potential of targeted treatment of small airways in patients with COPD was outlined.
Collapse
Affiliation(s)
- Yan Li
- Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xin-Yang Li
- Department of Medical Parasitology, School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Li-Rong Yuan
- Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hai-Long Wang
- Department of Medical Parasitology, School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
8
|
Hwang HJ, Lee SM, Seo JB, Lee JS, Kim N, Lee SW, Oh YM. Visual and Quantitative Assessments of Regional Xenon-Ventilation Using Dual-Energy CT in Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome: A Comparison with Chronic Obstructive Pulmonary Disease. Korean J Radiol 2020; 21:1104-1113. [PMID: 32691546 PMCID: PMC7371623 DOI: 10.3348/kjr.2019.0936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 01/08/2023] Open
Abstract
Objective To assess the regional ventilation in patients with asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome (ACOS) using xenon-ventilation dual-energy CT (DECT), and to compare it to that in patients with COPD. Materials and Methods Twenty-one patients with ACOS and 46 patients with COPD underwent xenon-ventilation DECT. The ventilation abnormalities were visually determined to be 1) peripheral wedge/diffuse defect, 2) diffuse heterogeneous defect, 3) lobar/segmental/subsegmental defect, and 4) no defect on xenon-ventilation maps. Emphysema index (EI), airway wall thickness (Pi10), and mean ventilation values in the whole lung, peripheral lung, and central lung areas were quantified and compared between the two groups using the Student's t test. Results Most patients with ACOS showed the peripheral wedge/diffuse defect (n = 14, 66.7%), whereas patients with COPD commonly showed the diffuse heterogeneous defect and lobar/segmental/subsegmental defect (n = 21, 45.7% and n = 20, 43.5%, respectively). The prevalence of ventilation defect patterns showed significant intergroup differences (p < 0.001). The quantified ventilation values in the peripheral lung areas were significantly lower in patients with ACOS than in patients with COPD (p = 0.045). The quantified Pi10 was significantly higher in patients with ACOS than in patients with COPD (p = 0.041); however, EI was not significantly different between the two groups. Conclusion The ventilation abnormalities on the visual and quantitative assessments of xenon-ventilation DECT differed between patients with ACOS and patients with COPD. Xenon-ventilation DECT may demonstrate the different physiologic changes of pulmonary ventilation in patients with ACOS and COPD.
Collapse
Affiliation(s)
- Hye Jeon Hwang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Mok Oh
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Doganay O, Matin T, Chen M, Kim M, McIntyre A, McGowan DR, Bradley KM, Povey T, Gleeson FV. Time-series hyperpolarized xenon-129 MRI of lobar lung ventilation of COPD in comparison to V/Q-SPECT/CT and CT. Eur Radiol 2018; 29:4058-4067. [PMID: 30552482 PMCID: PMC6610266 DOI: 10.1007/s00330-018-5888-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 12/23/2022]
Abstract
Purpose To derive lobar ventilation in patients with chronic obstructive pulmonary disease (COPD) using a rapid time-series hyperpolarized xenon-129 (HPX) magnetic resonance imaging (MRI) technique and compare this to ventilation/perfusion single-photon emission computed tomography (V/Q-SPECT), correlating the results with high-resolution computed tomography (CT) and pulmonary function tests (PFTs). Materials and methods Twelve COPD subjects (GOLD stages I–IV) participated in this study and underwent HPX-MRI, V/Q-SPECT/CT, high-resolution CT, and PFTs. HPX-MRI was performed using a novel time-series spiral k-space sampling approach. Relative percentage ventilations were calculated for individual lobe for comparison to the relative SPECT lobar ventilation and perfusion. The absolute HPX-MRI percentage ventilation in each lobe was compared to the absolute CT percentage emphysema score calculated using a signal threshold method. Pearson’s correlation and linear regression tests were performed to compare each imaging modality. Results Strong correlations were found between the relative lobar percentage ventilation with HPX-MRI and percentage ventilation SPECT (r = 0.644; p < 0.001) and percentage perfusion SPECT (r = 0.767; p < 0.001). The absolute CT percentage emphysema and HPX percentage ventilation correlation was also statistically significant (r = 0.695, p < 0.001). The whole lung HPX percentage ventilation correlated with the PFT measurements (FEV1 with r = − 0.886, p < 0.001*, and FEV1/FVC with r = − 0.861, p < 0.001*) better than the whole lung CT percentage emphysema score (FEV1 with r = − 0.635, p = 0.027; and FEV1/FVC with r = − 0.652, p = 0.021). Conclusion Lobar ventilation with HPX-MRI showed a strong correlation with lobar ventilation and perfusion measurements derived from SPECT/CT, and is better than the emphysema score obtained with high-resolution CT. Key Points • The ventilation hyperpolarized xenon-129 MRI correlates well with ventilation and perfusion with SPECT/CT with the advantage of higher temporal and spatial resolution. • The hyperpolarized xenon-129 MRI correlates with the PFT measurements better than the high-resolution CT with the advantage of avoiding the use of ionizing radiation. Electronic supplementary material The online version of this article (10.1007/s00330-018-5888-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ozkan Doganay
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ, Oxford, UK.
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, OX3 7LE, Oxford, UK.
| | - Tahreema Matin
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, OX3 7LE, Oxford, UK
| | - Mitchell Chen
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, OX3 7LE, Oxford, UK
| | - Minsuok Kim
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK
| | - Anthony McIntyre
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, OX3 7LE, Oxford, UK
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ, Oxford, UK
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, OX3 7LE, Oxford, UK
| | - Kevin M Bradley
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, OX3 7LE, Oxford, UK
| | - Thomas Povey
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK
| | - Fergus V Gleeson
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ, Oxford, UK
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Rd, OX3 7LE, Oxford, UK
| |
Collapse
|
10
|
Abstract
Ventilation-perfusion scintigraphy is a functional imaging biomarker that has the potential of captivating the heterogeneity of chronic obstructive pulmonary disease (COPD). It specifically images the distribution of ventilation and perfusion within the lungs, which is a critical pathophysiological component of COPD. The extent of ventilation defects and ventilation inhomogeneity, as well as the ventilation-perfusion ratio distribution thus correlate with severity of disease. Furthermore, specific scintigraphic patterns, such as the "stripe sign" may detect centrilobular emphysematous lesions with a higher sensitivity than other imaging techniques. Although ventilation-perfusion scintigraphy may conceivably detect COPD before any specific changes can be detected by spirometry or high-resolution CT, it is currently mostly used in the workup of lung volume reduction treatment, and for diagnosing various complications and comorbidities of COPD when combined with low-dose CT.
Collapse
Affiliation(s)
- Jann Mortensen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Medicine, The National Hospital, Torshavn, Faroe Islands.
| | - Ronan M G Berg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark; Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| |
Collapse
|
11
|
Sanad HM, Ibrahim AA. Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2018-2960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The present work has been oriented to prepare radioiodinated olmesartan for a potential cardiac imaging. Olmesartan has been labeled using 125I or 131I with N-bromosuccinimide (NBS) as an oxidizing agent. Many factors like amount of N-bromosuccinimide, amount of substrate, pH, reaction temperature and reaction time, have been systematically studied to optimize high yield of [125I]iodoolmesartan. The biological distribution indicates the suitability of [125I]iodoolmesartan as a novel tracer to image heart.
Collapse
Affiliation(s)
- H. M. Sanad
- Labelled Compounds Department, Radioisotopes Production and Radioactive Sources Division , Hot Laboratories Center, Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| | - Alhussein A. Ibrahim
- Applied Organic Chemistry Department, Organic Chemical Industries Division , National Research Center , Cairo 12622 , Egypt
| |
Collapse
|
12
|
Marzook EA, Talaat HM, Challan SB. Comparative Biological Evaluation of 99mTc-Timonacic Acid Prepared Using Different Reducing Agents as a Complex for Hepatobiliary Imaging. RADIOCHEMISTRY 2018. [DOI: 10.1134/s1066362218030141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Tahir BA, Bragg CM, Wild JM, Swinscoe JA, Lawless SE, Hart KA, Hatton MQ, Ireland RH. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning. ACTA ACUST UNITED AC 2017; 62:7114-7130. [DOI: 10.1088/1361-6560/aa8074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Crossley D, Turner A, Subramanian D. Phenotyping emphysema and airways disease: Clinical value of quantitative radiological techniques. World J Respirol 2017; 7:1-16. [DOI: 10.5320/wjr.v7.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/23/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and Alpha one antitrypsin deficiency is increasingly recognised as complex such that lung function alone is insufficient for early detection, clinical categorisation and dictating management. Quantitative imaging techniques can detect disease earlier and more accurately, and provide an objective tool to help phenotype patients into predominant airways disease or emphysema. Computed tomography provides detailed information relating to structural and anatomical changes seen in COPD, and magnetic resonance imaging/nuclear imaging gives functional and regional information with regards to ventilation and perfusion. It is likely imaging will become part of routine clinical practice, and an understanding of the implications of the data is essential. This review discusses technical and clinical aspects of quantitative imaging in obstructive airways disease.
Collapse
|
15
|
Yablonskiy DA, Sukstanskii AL, Quirk JD. Diffusion lung imaging with hyperpolarized gas MRI. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3448. [PMID: 26676342 PMCID: PMC4911335 DOI: 10.1002/nbm.3448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 05/28/2023]
Abstract
Lung imaging using conventional 1 H MRI presents great challenges because of the low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2 * is about 1-2 ms). MRI with hyperpolarized gases (3 He and 129 Xe) provides a valuable alternative because of the very strong signal originating from inhaled gas residing in the lung airspaces and relatively slow gas T2 * relaxation (typical T2 * is about 20-30 ms). However, in vivo human experiments should be performed very rapidly - usually during a single breath-hold. In this review, we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of the results of modeling of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows the extraction of quantitative information on the lung microstructure at the alveolar level. From an MRI scan of less than 15 s, this approach, called in vivo lung morphometry, allows the provision of quantitative values and spatial distributions of the same physiological parameters as measured by means of 'standard' invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). In addition, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure: average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiment based on the in vivo lung morphometry technique combined with quantitative computed tomography measurements, as well as with gradient echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume and length of the acinar airways, and allow the evaluation of lung parenchymal and non-parenchymal tissue. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - James D Quirk
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
16
|
Schullcke B, Gong B, Krueger-Ziolek S, Tawhai M, Adler A, Mueller-Lisse U, Moeller K. Lobe based image reconstruction in Electrical Impedance Tomography. Med Phys 2017; 44:426-436. [PMID: 28121374 DOI: 10.1002/mp.12038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/22/2016] [Accepted: 11/25/2016] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Electrical Impedance Tomography (EIT) is an imaging modality used to generate two-dimensional cross-sectional images representing impedance change in the thorax. The impedance of lung tissue changes with change in air content of the lungs; hence, EIT can be used to examine regional lung ventilation in patients with abnormal lungs. In lung EIT, electrodes are attached around the circumference of the thorax to inject small alternating currents and measure resulting voltages. In contrast to X-ray computed tomography (CT), EIT images do not depict a thorax slice of well defined thickness, but instead visualize a lens-shaped region around the electrode plane, which results from diffuse current propagation in the thorax. Usually, this is considered a drawback, since image interpretation is impeded if 'off-plane' conductivity changes are projected onto the reconstructed two-dimensional image. In this paper we describe an approach that takes advantage of current propagation below and above the electrode plane. The approach enables estimation of the individual conductivity change in each lung lobe from boundary voltage measurements. This could be used to monitor disease progression in patients with obstructive lung diseases, such as chronic obstructive pulmonary disease (COPD) or cystic fibrosis (CF) and to obtain a more comprehensive insight into the pathophysiology of the lung. METHODS Electrode voltages resulting from different conductivities in each lung lobe were simulated utilizing a realistic 3D finite element model (FEM) of the human thorax and the lungs. Overall 200 different patterns of conductivity change were simulated. A 'lobe reconstruction' algorithm was developed, applying patient-specific anatomical information in the reconstruction process. A standard EIT image reconstruction algorithm and the proposed 'lobe reconstruction' algorithm were used to estimate conductivity change in the lobes. The agreement between simulated and reconstructed conductivity change in particular lobes were compared using Bland-Altman plots, correlation plots and linear regression. To test the applicability of the approach in a realistic scenario, EIT measurements of a patient suffering from cystic fibrosis (CF) were carried out. RESULTS Conductivity changes in each lobe generate specific patterns of voltage change. These can be used to estimate the conductivity change in lobes from measured boundary voltage. The correlation coefficient between simulated and reconstructed conductivity change in particular lobes is r > 0.89 for all lobes. Unknown position of the electrode plane leads to over- or underestimation of reconstructed conductivity change. Slight mismatches (± 5% of the forward model height) between the actual position of the electrode plane and the position used in the reconstruction model lead to regression coefficients of 0.7 to 1.3 between simulated and reconstructed conductivity change in the lobes. CONCLUSION The presented approach enhances common reconstruction methods by providing information about anatomically assignable units and thus facilitates image interpretation, since impedance change and thus ventilation of each lobe is directly determined in the reconstructions.
Collapse
Affiliation(s)
- Benjamin Schullcke
- Institute of Technical Medicine, Furtwangen University, 78045, VS-Schwenningen, Germany.,Department of Radiology, University of Munich, 80336, Munich, Germany
| | - Bo Gong
- Institute of Technical Medicine, Furtwangen University, 78045, VS-Schwenningen, Germany.,Department of Radiology, University of Munich, 80336, Munich, Germany
| | - Sabine Krueger-Ziolek
- Institute of Technical Medicine, Furtwangen University, 78045, VS-Schwenningen, Germany.,Department of Radiology, University of Munich, 80336, Munich, Germany
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| | - Andy Adler
- Systems and Computer Engineering, Carlton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Knut Moeller
- Institute of Technical Medicine, Furtwangen University, 78045, VS-Schwenningen, Germany
| |
Collapse
|
17
|
Foy BH, Kay D, Bordas R. Modelling responses of the inert-gas washout and MRI to bronchoconstriction. Respir Physiol Neurobiol 2017; 235:8-17. [DOI: 10.1016/j.resp.2016.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
|
18
|
Davis C, Sheikh K, Pike D, Svenningsen S, McCormack DG, O'Donnell D, Neder JA, Parraga G. Ventilation Heterogeneity in Never-smokers and COPD:: Comparison of Pulmonary Functional Magnetic Resonance Imaging with the Poorly Communicating Fraction Derived From Plethysmography. Acad Radiol 2016; 23:398-405. [PMID: 26774739 DOI: 10.1016/j.acra.2015.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES Pulmonary functional magnetic resonance imaging provides a way to quantify ventilation and its heterogeneity-a hallmark finding in chronic obstructive pulmonary disease (COPD). Unfortunately, the etiology and physiological meaning of ventilation defects and their relationship to pulmonary function and symptoms in COPD are not well understood. Another biomarker of ventilation heterogeneity is provided by the "poorly communicating fraction" (PCF), and is calculated as the ratio of total lung capacity to alveolar volume made using whole-body plethysmography. Our objective was to compare ventilation heterogeneity using hyperpolarized (3)He magnetic resonance imaging (MRI) and PCF measurements in elderly never-smokers and in ex-smokers with COPD. MATERIALS AND METHODS One hundred forty-six participants (71 ± 8 years, range = 48-87 years) provided written informed consent including 45 elderly never-smokers (71 ± 6 years, range = 61-84 years) and 101 ex-smokers with COPD (71 ± 8 years, range = 48-87 years). During a single 2-hour visit, spirometry, plethysmography, and hyperpolarized (3)He MRI were acquired. The MRI-derived ventilation defect percent (VDP) and plethysmography measurements were acquired and PCF values were calculated. Linear regression, Pearson correlations, and Bland-Altman analysis were used to evaluate the relationships for PCF and MRI VDP. RESULTS PCF (P < 0.001) and VDP (P < 0.001) were significantly increased with increasing COPD severity. There was a significant relationship for VDP and PCF (r = 0.68, P < 0.001) in all subjects and COPD subjects alone (r = 0.61, P < 0.001). Bland-Altman analysis showed that PCF and VDP were significantly different (mean bias = 9.7, upper limit = 32, lower limit = -13, P < 0.001), and in severe-grade COPD, PCF overestimates of VDP were significantly greater. CONCLUSIONS In elderly never-smokers and in ex-smokers with COPD, PCF and VDP are moderately correlated estimates of COPD ventilation heterogeneity that may be reflecting similar pathophysiology.
Collapse
Affiliation(s)
- Christopher Davis
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, N6A 5B7, Canada
| | - Khadija Sheikh
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, N6A 5B7, Canada; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, N6A 5B7, Canada
| | - Damien Pike
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, N6A 5B7, Canada; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, N6A 5B7, Canada
| | - Sarah Svenningsen
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, N6A 5B7, Canada; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, N6A 5B7, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Canada
| | - Denis O'Donnell
- Division of Respirology, Department of Medicine, Queens University, 99 University Ave, Kingston, K7L 3N6, Canada
| | - J Alberto Neder
- Division of Respirology, Department of Medicine, Queens University, 99 University Ave, Kingston, K7L 3N6, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, N6A 5B7, Canada; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, N6A 5B7, Canada.
| |
Collapse
|
19
|
Yablonskiy DA, Sukstanskii AL, Quirk JD, Woods JC, Conradi MS. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med 2016; 71:486-505. [PMID: 23554008 DOI: 10.1002/mrm.24729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of hyperpolarized gases ((3)He and (129)Xe) has opened the door to applications for which gaseous agents are uniquely suited-lung MRI. One of the pulmonary applications, diffusion MRI, relies on measuring Brownian motion of inhaled hyperpolarized gas atoms diffusing in lung airspaces. In this article we provide an overview of the theoretical ideas behind hyperpolarized gas diffusion MRI and the results obtained over the decade-long research. We describe a simple technique based on measuring gas apparent diffusion coefficient (ADC) and an advanced technique, in vivo lung morphometry, that quantifies lung microstructure both in terms of Weibel parameters (acinar airways radii and alveolar depth) and standard metrics (mean linear intercept, surface-to-volume ratio, and alveolar density) that are widely used by lung researchers but were previously available only from invasive lung biopsy. This technique has the ability to provide unique three-dimensional tomographic information on lung microstructure from a less than 15 s MRI scan with results that are in good agreement with direct histological measurements. These safe and sensitive diffusion measurements improve our understanding of lung structure and functioning in health and disease, providing a platform for monitoring the efficacy of therapeutic interventions in clinical trials.
Collapse
|
20
|
Milne S, King GG. Advanced imaging in COPD: insights into pulmonary pathophysiology. J Thorac Dis 2014; 6:1570-85. [PMID: 25478198 DOI: 10.3978/j.issn.2072-1439.2014.11.30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings.
Collapse
Affiliation(s)
- Stephen Milne
- 1 The Woolcock Institute of Medical Research, Glebe, Sydney NSW 2037, Australia ; 2 Northern Clinical School, University of Sydney, NSW 2006, Australia ; 3 Northern and Central Clinical Schools, University of Sydney, NSW 2006, Australia ; 4 Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Gregory G King
- 1 The Woolcock Institute of Medical Research, Glebe, Sydney NSW 2037, Australia ; 2 Northern Clinical School, University of Sydney, NSW 2006, Australia ; 3 Northern and Central Clinical Schools, University of Sydney, NSW 2006, Australia ; 4 Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
21
|
Ruppert K. Biomedical imaging with hyperpolarized noble gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:116701. [PMID: 25360484 DOI: 10.1088/0034-4885/77/11/116701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hyperpolarized noble gases (HNGs), polarized to approximately 50% or higher, have led to major advances in magnetic resonance (MR) imaging of porous structures and air-filled cavities in human subjects, particularly the lung. By boosting the available signal to a level about 100 000 times higher than that at thermal equilibrium, air spaces that would otherwise appear as signal voids in an MR image can be revealed for structural and functional assessments. This review discusses how HNG MR imaging differs from conventional proton MR imaging, how MR pulse sequence design is affected and how the properties of gas imaging can be exploited to obtain hitherto inaccessible information in humans and animals. Current and possible future imaging techniques, and their application in the assessment of normal lung function as well as certain lung diseases, are described.
Collapse
|
22
|
Yamamoto T, Kabus S, Lorenz C, Mittra E, Hong JC, Chung M, Eclov N, To J, Diehn M, Loo BW, Keall PJ. Pulmonary ventilation imaging based on 4-dimensional computed tomography: comparison with pulmonary function tests and SPECT ventilation images. Int J Radiat Oncol Biol Phys 2014; 90:414-22. [PMID: 25104070 DOI: 10.1016/j.ijrobp.2014.06.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. METHODS AND MATERIALS In an institutional review board-approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V4DCT) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volume change. V4DCT defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV1; % predicted) and FEV1/forced vital capacity (FVC; %). V4DCT was also compared with SPECT ventilation (VSPECT) to (1) test whether V4DCT in VSPECT defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V4DCT and VSPECT defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. RESULTS Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V4DCT defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V4DCT(HU) defect volume increased significantly with decreasing FEV1/FVC (R=-0.65, P<.01). V4DCT in VSPECT defect regions was significantly lower than in nondefect regions (mean V4DCT(HU) 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V4DCT(HU)0.39 ± 0.11). Furthermore, ventral-to-dorsal gradients of V4DCT were strong (V4DCT(HU) R(2) = 0.69, P=.08), which was similar to VSPECT (R(2) = 0.96, P<.01). CONCLUSIONS An 18-patient study demonstrated significant correlations between 4D-CT ventilation and PFT measurements as well as SPECT ventilation, providing evidence toward the validation of 4D-CT ventilation imaging.
Collapse
Affiliation(s)
- Tokihiro Yamamoto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California.
| | - Sven Kabus
- Department of Digital Imaging, Philips Research Europe, Hamburg, Germany
| | - Cristian Lorenz
- Department of Digital Imaging, Philips Research Europe, Hamburg, Germany
| | - Erik Mittra
- Departments of Radiology, Stanford University School of Medicine, Stanford, California
| | - Julian C Hong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Melody Chung
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Neville Eclov
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Jacqueline To
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Paul J Keall
- Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Swidan MM, Sakr TM, Motaleb MA, Abd El-Bary A, El-Kolaly MT. Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3328-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Synthesis, radioiodination and in vivo evaluation of ethyl 1,4-dihydro-7-iodo-4-oxoquinoline-3-carboxylate as a potential pulmonary perfusion scintigraphic radiopharmaceutical. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3299-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Sakr TM. Synthesis and preliminary affinity testing of 123I/125I-N-(3-iodophenyl)-2-methylpyrimidine-4,6-diamine as a novel potential lung scintigraphic agent. RADIOCHEMISTRY 2014. [DOI: 10.1134/s1066362214020131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Virgincar RS, Cleveland ZI, Kaushik SS, Freeman MS, Nouls J, Cofer GP, Martinez-Jimenez S, He M, Kraft M, Wolber J, McAdams HP, Driehuys B. Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease. NMR IN BIOMEDICINE 2013; 26:424-35. [PMID: 23065808 PMCID: PMC3624045 DOI: 10.1002/nbm.2880] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 05/12/2023]
Abstract
In this study, hyperpolarized (129) Xe MR ventilation and (1) H anatomical images were obtained from three subject groups: young healthy volunteers (HVs), subjects with chronic obstructive pulmonary disease (COPD) and age-matched controls (AMCs). Ventilation images were quantified by two methods: an expert reader-based ventilation defect score percentage (VDS%) and a semi-automated segmentation-based ventilation defect percentage (VDP). Reader-based values were assigned by two experienced radiologists and resolved by consensus. In the semi-automated analysis, (1) H anatomical images and (129) Xe ventilation images were both segmented following registration to obtain the thoracic cavity volume and ventilated volume, respectively, which were then expressed as a ratio to obtain the VDP. Ventilation images were also characterized by generating signal intensity histograms from voxels within the thoracic cavity volume, and heterogeneity was analyzed using the coefficient of variation (CV). The reader-based VDS% correlated strongly with the semi-automatically generated VDP (r = 0.97, p < 0.0001) and with CV (r = 0.82, p < 0.0001). Both (129) Xe ventilation defect scoring metrics readily separated the three groups from one another and correlated significantly with the forced expiratory volume in 1 s (FEV1 ) (VDS%: r = -0.78, p = 0.0002; VDP: r = -0.79, p = 0.0003; CV: r = -0.66, p = 0.0059) and other pulmonary function tests. In the healthy subject groups (HVs and AMCs), the prevalence of ventilation defects also increased with age (VDS%: r = 0.61, p = 0.0002; VDP: r = 0.63, p = 0.0002). Moreover, ventilation histograms and their associated CVs distinguished between subjects with COPD with similar ventilation defect scores, but visibly different ventilation patterns.
Collapse
Affiliation(s)
- Rohan S. Virgincar
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Zackary I. Cleveland
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - S. Sivaram Kaushik
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew S. Freeman
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - John Nouls
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Gary P. Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | | - Mu He
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Monica Kraft
- Department of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jan Wolber
- GE Healthcare, The Grove Center, White Lion Rd, Amersham, UK
- Academic Radiology, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - H. Page McAdams
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| |
Collapse
|
27
|
Conway J. Lung imaging - two dimensional gamma scintigraphy, SPECT, CT and PET. Adv Drug Deliv Rev 2012; 64:357-68. [PMID: 22310158 DOI: 10.1016/j.addr.2012.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/18/2012] [Accepted: 01/24/2012] [Indexed: 12/17/2022]
Abstract
This review will cover the principles of imaging the deposition of inhaled drugs and some of the state-of-the art imaging techniques being used today. Aerosol deposition can be imaged and quantified by the addition of a radiolabel to the aerosol formulation. The subsequent imaging of the inhaled deposition pattern can be acquired by different imaging techniques. Specifically, this review will focus on the use of two-dimensional planar, gamma scintigraphy, SPECT, CT and PET. This review will look at how these imaging techniques are used to investigate the mechanisms of drug delivery in the lung and how the lung anatomy and physiology have the potential to alter therapeutic outcomes.
Collapse
Affiliation(s)
- Joy Conway
- Faculty of Health Sciences, University of Southampton, Southampton General Hospital, UK.
| |
Collapse
|
28
|
|
29
|
Aysola R, de Lange EE, Castro M, Altes TA. Demonstration of the heterogeneous distribution of asthma in the lungs using CT and hyperpolarized helium-3 MRI. J Magn Reson Imaging 2011; 32:1379-87. [PMID: 21105142 DOI: 10.1002/jmri.22388] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease that affects both the large and small airways and results in bronchoconstriction, mucous hypersecretion, smooth muscle hypertrophy, and subepithelial fibrosis. To gain insight into the pathophysiology of asthma, chest computed tomography (CT) has been investigated as a noninvasive method to evaluate airway wall thickness of medium and large airways. Hyperpolarized gas MRI can assess the functional alterations of airflow within the lung resulting from the structural changes in the airways. In this article, we review the application of CT-based techniques and hyperpolarized gas MRI to study structural and functional changes in asthma. From the result of studies with CT and hyperpolarized gas MRI, it is becoming apparent that asthma has a regional distribution within the lung, that is, some areas of the lung are more affected than others. Furthermore, there appears to be some persistence to this distribution which may explain the observed patterns of airway remodeling and provide targets for localized therapies such as local application of anti-inflammatory agents or bronchial thermoplasty. Thus, cross sectional imaging in asthma is providing new insights into the pathophysiology of the disease and has the potential to become essential in the guidance of localized treatments.
Collapse
Affiliation(s)
- Ravi Aysola
- University of California Los Angeles Medical Center, Department of Medicine, Pulmonary and Critical Care Medicine, Los Angeles, California, USA
| | | | | | | |
Collapse
|
30
|
King GG, Harris B, Mahadev S. V/Q SPECT: utility for investigation of pulmonary physiology. Semin Nucl Med 2011; 40:467-73. [PMID: 20920636 DOI: 10.1053/j.semnuclmed.2010.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Single-photon emission computed tomography (SPECT) is being increasingly used as a tool in respiratory research, in particular ventilation SPECT. Much of the basic understanding of pulmonary physiology has been derived from inhaled radioactive inert gases because, as the lung behaves in an asymmetric manner, the nature of regional differences in ventilation is ideally studied with the use of imaging. It is well known to clinicians that ventilation is patchy in patients who have airways disease. However, the relevance to the disease mechanisms itself only started to be studied with the use of 3-dimensional imaging and with advances in quantitative image analysis. The measurements of both ventilation distribution and nonventilation (airway closure) have become very topical in the study of asthma, and accurate quantification of those parameters is of relevance to disease mechanisms. In chronic obstructive pulmonary disease, the drive is towards better characterization of disease groups ("phenotypes") and, again, description of ventilation patterns may prove to be useful. This is a review, therefore, on pulmonary SPECT imaging in respiratory research which includes a focus on methodology in relation to respiratory physiology. There has been relatively little published in this area but there is great potential for advances in the understanding of airways disease to be gained from SPECT imaging.
Collapse
Affiliation(s)
- Gregory G King
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; University of Sydney, Sydney, NSW, Australia.
| | | | | |
Collapse
|
31
|
Roach PJ, Bailey DL, Schembri GP, Thomas PA. Transition from Planar to SPECT V/Q Scintigraphy: Rationale, Practicalities, and Challenges. Semin Nucl Med 2010; 40:397-407. [DOI: 10.1053/j.semnuclmed.2010.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Ireland RH, Din OS, Swinscoe JA, Woodhouse N, van Beek EJR, Wild JM, Hatton MQ. Detection of radiation-induced lung injury in non-small cell lung cancer patients using hyperpolarized helium-3 magnetic resonance imaging. Radiother Oncol 2010; 97:244-8. [PMID: 20724011 DOI: 10.1016/j.radonc.2010.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 07/01/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To compare hyperpolarized helium-3 magnetic resonance imaging ((3)He-MRI) acquired from non-small cell lung cancer (NSCLC) patients before and after external beam radiotherapy (EBRT). METHODS AND MATERIALS In an Ethics Committee-approved prospective study, five patients with histologically confirmed NSCLC gave written informed consent to undergo computed tomography (CT) and (3)He-MR ventilation imaging 1 week prior to and 3 months after radiotherapy. Images were registered to pre-treatment CT using anatomical landmark-based rigid registration to enable comparison. Emphysema was graded from examination of the CT. MRI-defined ventilation was calculated as the intersection of (3)He-MRI and CT lung volume as a percentage of the CT lung volume for the whole lung and regions of CT-defined pneumonitis. RESULTS On pre-treatment images, there was a significant correlation between the degree of CT-defined emphysema and (3)He-MRI whole lung ventilation (Spearman's rho=0.90, p=0.04). After radiation therapy, pneumonitis was evident on CT for 3/5 patients. For these cases, (3)He-MRI ventilation was significantly reduced within the regions of pneumonitis (pre: 94.1±2.2%, post: 73.7±4.7%; matched pairs Student's t-test, p=0.02, mean difference=20.4%, 95% confidence interval 6.3-34.6%). CONCLUSIONS This work demonstrates the feasibility of detecting ventilation changes between pre- and post-treatment using hyperpolarized helium-3 MRI for patients with NSCLC. Pre-treatment, the degree of emphysema and (3)He-MRI ventilation were correlated. For three cases of radiation pneumonitis, (3)He-MRI ventilation changes between pre- and post-treatment imaging were consistent with CT evidence of radiation-induced lung injury.
Collapse
Affiliation(s)
- Rob H Ireland
- Academic Unit of Clinical Oncology, University of Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Pulmonary diseases have a high health-related and economic significance. (3)He-MRI is an alternative imaging method which can detect ventilatory disturbances with a high sensitivity. The application of different pulse sequences allows static and dynamic assessment of ventilation and bronchial gas flow, non-invasive measurement of intrapulmonary oxygen partial pressure and quantification of pulmonary parenchyma destruction and overinflation. Generally, the method is applicable for obstructive and restrictive ventilatory disturbances but initial approaches also exist for vascular pulmonary diseases. Specific clinical applications remain to be determined but (3)He-MRI is an excellent instrument for the assessment of physiologic and pathophysiologic interrelations in the distribution of ventilation.
Collapse
|
34
|
Bates EL, Bragg CM, Wild JM, Hatton MQF, Ireland RH. Functional image-based radiotherapy planning for non-small cell lung cancer: A simulation study. Radiother Oncol 2009; 93:32-6. [PMID: 19552978 PMCID: PMC2754943 DOI: 10.1016/j.radonc.2009.05.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/19/2009] [Accepted: 05/24/2009] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the incorporation of data from single-photon emission computed tomography (SPECT) or hyperpolarized helium-3 magnetic resonance imaging ((3)He-MRI) into intensity-modulated radiotherapy (IMRT) planning for non-small cell lung cancer (NSCLC). MATERIAL AND METHODS Seven scenarios were simulated that represent cases of NSCLC with significant functional lung defects. Two independent IMRT plans were produced for each scenario; one to minimise total lung volume receiving >or=20Gy (V(20)), and the other to minimise only the functional lung volume receiving >or=20Gy (FV(20)). Dose-volume characteristics and a plan quality index related to planning target volume coverage by the 95% isodose (V(PTV95)/FV(20)) were compared between anatomical and functional plans using the Wilcoxon signed ranks test. RESULTS Compared to anatomical IMRT plans, functional planning reduced FV(20) (median 2.7%, range 0.6-3.5%, p=0.02), and total lung V(20) (median 1.5%, 0.5-2.7%, p=0.02), with a small reduction in mean functional lung dose (median 0.4Gy, 0-0.7Gy, p=0.03). There were no significant differences in target volume coverage or organ-at-risk doses. Plan quality index was improved for functional plans (median increase 1.4, range 0-11.8, p=0.02). CONCLUSIONS Statistically significant reductions in FV(20), V(20) and mean functional lung dose are possible when IMRT planning is supplemented by functional information derived from SPECT or (3)He-MRI.
Collapse
Affiliation(s)
- Emma L Bates
- Department of Clinical Oncology, Weston Park Hospital, UK.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Chronic obstructive pulmonary disease (COPD) is divided into pulmonary emphysema and chronic bronchitis (CB). Emphysema is defined patho-anatomically as "permanent enlargement of airspaces distal to the terminal bronchiole, accompanied by the destruction of their walls, and without obvious fibrosis" (1). These lesions are readily identified and quantitated using computed tomography (CT), whereas the accompanying hyperinflation is best detected on plain chest X-ray, especially in advanced disease. The diagnosis of CB is clinical and relies on the presence of productive cough for 3 months in 2 or more successive years. The pathological changes of mucosal inflammation and bronchial wall thickening have been more difficult to identify with available imaging techniques. However, recent studies using Multi-detector row CT (MDCT) reported more reproducible assessment of air wall thickening.
Collapse
Affiliation(s)
- Saher B Shaker
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Denmark.
| | | | | | | |
Collapse
|
36
|
Bannier E, Neyran B, Cieslar K, Rivoire J, Heidemann RM, Gaillard S, Sulaiman AR, Canet-Soulas E, Cremillieux Y. Free breathing hyperpolarized 3He lung ventilation spiral MR imaging. Invest Radiol 2009; 44:185-91. [PMID: 19252441 DOI: 10.1097/rli.0b013e3181965d52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Current clinical hyperpolarized He lung ventilation MR imaging protocols rely on the patient's ability to control inhalation and exhalation and hold their breath on demand. This is impractical for intensive care unit patients under ventilation or for pediatric populations under the age of 3 to 4 years. To address this problem, we propose a free-breathing protocol for hyperpolarized He lung ventilation spiral imaging. This approach was evaluated in vitro and on rabbits. MATERIALS AND METHODS The protocol was implemented on a clinical 1.5-T magnetic resonance imaging scanner. Ventilation images were acquired using a spiral sequence, in vitro on a lung phantom and in vivo on rabbits, the animal breathing freely from a gas reservoir. Dynamic spiral ventilation images were reconstructed using retrospective Cine synchronization. Magnetic resonance (MR) signal dynamics was modeled taking account of gas inflow and outflow, radiofrequency depolarization and oxygen-induced relaxation. RESULTS Cine ventilation images acquired in spontaneously breathing rabbits were reconstructed with a temporal resolution of 50 milliseconds. Gas volume variations and time-to-maximum maps were obtained. The numerical model was validated in vitro and in vivo with various gas mixtures. Ventilation parameters (functional residual capacity, tidal volume, and alveolar pO2) were extracted from the MR signal dynamics. CONCLUSIONS Ventilation imaging can be performed at tidal volume using a simple experimental protocol, without any ventilation device or breath-hold period. Acquisition time, SNR and pO2 decay can be optimized using the developed numerical model. Free-breathing ventilation images can be obtained without artifacts related to motion or gas flow. Lastly, parametric maps can be derived from the time-resolved ventilation images and physiological parameters extracted from the global signal dynamics.
Collapse
|
37
|
Roach PJ, Bailey DL, Harris BE. Enhancing Lung Scintigraphy With Single-Photon Emission Computed Tomography. Semin Nucl Med 2008; 38:441-9. [DOI: 10.1053/j.semnuclmed.2008.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Ireland RH, Woodhouse N, Hoggard N, Swinscoe JA, Foran BH, Hatton MQ, Wild JM. An image acquisition and registration strategy for the fusion of hyperpolarized helium-3 MRI and x-ray CT images of the lung. Phys Med Biol 2008; 53:6055-63. [PMID: 18843168 DOI: 10.1088/0031-9155/53/21/011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this ethics committee approved prospective study was to evaluate an image acquisition and registration protocol for hyperpolarized helium-3 magnetic resonance imaging ((3)He-MRI) and x-ray computed tomography. Nine patients with non-small cell lung cancer (NSCLC) gave written informed consent to undergo a free-breathing CT, an inspiration breath-hold CT and a 3D ventilation (3)He-MRI in CT position using an elliptical birdcage radiofrequency (RF) body coil. (3)He-MRI to CT image fusion was performed using a rigid registration algorithm which was assessed by two observers using anatomical landmarks and a percentage volume overlap coefficient. Registration of (3)He-MRI to breath-hold CT was more accurate than to free-breathing CT; overlap 82.9 +/- 4.2% versus 59.8 +/- 9.0% (p < 0.001) and mean landmark error 0.75 +/- 0.24 cm versus 1.25 +/- 0.60 cm (p = 0.002). Image registration is significantly improved by using an imaging protocol that enables both (3)He-MRI and CT to be acquired with similar breath holds and body position through the use of a birdcage (3)He-MRI body RF coil and an inspiration breath-hold CT. Fusion of (3)He-MRI to CT may be useful for the assessment of patients with lung diseases.
Collapse
Affiliation(s)
- Rob H Ireland
- Academic Units of Radiology and Clinical Oncology, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sukstanskii AL, Yablonskiy DA. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 190:200-10. [PMID: 18037313 PMCID: PMC2258216 DOI: 10.1016/j.jmr.2007.10.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/22/2007] [Accepted: 10/27/2007] [Indexed: 05/12/2023]
Abstract
MRI-based study of (3)He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the (3)He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients-longitudinal (D(L)) and transverse (D(T)) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D(L) and D(T) and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D(L) and D(T) on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry-evaluation of the geometrical parameters of acinar airways from hyperpolarized (3)He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of (3)He ADC on the experimentally-controllable diffusion time, Delta. If Delta is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.
Collapse
Affiliation(s)
- A L Sukstanskii
- Department of Radiology, Washington University, St. Louis, MO 63110, USA.
| | | |
Collapse
|
40
|
Harris B, Bailey DL, Chicco P, Bailey EA, Roach PJ, King GG. Objective analysis of whole lung and lobar ventilation/ perfusion relationships in pulmonary embolism. Clin Physiol Funct Imaging 2007; 28:14-26. [DOI: 10.1111/j.1475-097x.2007.00767.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Ireland RH, Bragg CM, McJury M, Woodhouse N, Fichele S, van Beek EJR, Wild JM, Hatton MQ. Feasibility of image registration and intensity-modulated radiotherapy planning with hyperpolarized helium-3 magnetic resonance imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007; 68:273-81. [PMID: 17448880 PMCID: PMC2713782 DOI: 10.1016/j.ijrobp.2006.12.068] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 12/25/2022]
Abstract
Purpose: To demonstrate the feasibility of registering hyperpolarized helium-3 magnetic resonance images (3He-MRI) to X-ray computed tomography (CT) for functionally weighted intensity-modulated radiotherapy (IMRT) planning. Methods and Materials: Six patients with non–small-cell lung cancer underwent 3He ventilation MRI, which was fused with radiotherapy planning CT using rigid registration. Registration accuracy was assessed using an overlap coefficient, calculated as the proportion of the segmented 3He-MR volume (VMRI) that intersects the segmented CT lung volume expressed as a percentage of VMRI. For each patient, an IMRT plan that minimized the volume of total lung receiving a dose ≥20 Gy (V20) was compared with a plan that minimized the V20 to well-ventilated lung defined by the registered 3He-MRI. Results: The 3He-MRI and CT were registered with sufficient accuracy to enable functionally guided IMRT planning (median overlap, 89%; range, 72–97%). In comparison with the total lung IMRT plans, IMRT constrained with 3He-MRI reduced the V20 not only for the well-ventilated lung (median reduction, 3.1%; range, 0.4–5.1%; p = 0.028) but also for the total lung volume (median reduction, 1.6%; range, 0.2–3.7%; p = 0.028). Conclusions: Statistically significant improvements to IMRT plans are possible using functional information provided by 3He-MRI that has been registered to radiotherapy planning CT.
Collapse
Affiliation(s)
- Rob H Ireland
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Harris B, Bailey D, Miles S, Bailey E, Rogers K, Roach P, Thomas P, Hensley M, King GG. Objective Analysis of Tomographic Ventilation–Perfusion Scintigraphy in Pulmonary Embolism. Am J Respir Crit Care Med 2007; 175:1173-80. [PMID: 17363770 DOI: 10.1164/rccm.200608-1110oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Ventilation-perfusion scintigraphy is highly sensitive for pulmonary embolism (PE), but its clinical usefulness is limited by its nondiagnostic rate. Objective analysis of single photon emission computed tomography (SPECT) three-dimensional scintigraphy may improve its diagnostic performance compared with subjective interpretation. OBJECTIVES To determine the diagnostic accuracy of objective SPECT analysis in PE. METHODS We determined the ventilation/perfusion (V(.)/Q(.)) relationship using SPECT scintigraphy in a retrospective cohort of 73 patients. Measures of V(.)/Q(.) heterogeneity (logSD(Q(.)), logSD(V(.)), logSD(VQR)), including a novel parameter, the weighted median V(.)/Q(.) value, were calculated. Using receiver operating characteristic (ROC) analysis, each parameter's diagnostic accuracy was determined. The weighted median V(.)/Q(.) value was then assessed prospectively in a second cohort of 50 patients. MEASUREMENTS AND MAIN RESULTS In cohort 1, all parameters of V(.)/Q(.) heterogeneity were higher in patients with PE (p < 0.002). The weighted median V(.)/Q(.) had the highest area under the ROC curve (0.93; 95% confidence interval, 0.87-0.98). When applied to the prospective cohort, the area under the ROC curve was 0.87 (95% confidence interval, 0.75-0.99), with diagnostic cutoff values having negative and positive predictive values of 96 and 83%, respectively. In the retrospective and prospective cohorts, 82 and 73% of initially reported intermediate or low probability scans had diagnostic weighted median V(.)/Q(.) values, with 90 and 100% accuracy, respectively. CONCLUSIONS Objective analysis of SPECT scintigraphy has a high diagnostic accuracy in patients with suspected PE. Objective analysis has the potential to reduce the number of nondiagnostic scan results, and may be useful for quantifying V(.)/Q(.) mismatch in other pulmonary disorders.
Collapse
Affiliation(s)
- Benjamin Harris
- Department of Respiratory Medicine, Royal North Shore Hospital, Pacific Highway, St. Leonards 2065, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
McMahon CJ, Dodd JD, Hill C, Woodhouse N, Wild JM, Fichele S, Gallagher CG, Skehan SJ, van Beek EJR, Masterson JB. Hyperpolarized 3helium magnetic resonance ventilation imaging of the lung in cystic fibrosis: comparison with high resolution CT and spirometry. Eur Radiol 2006; 16:2483-90. [PMID: 16871384 DOI: 10.1007/s00330-006-0311-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 04/20/2006] [Accepted: 04/21/2006] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to compare hyperpolarized 3helium magnetic resonance imaging (3He MRI) of the lungs in adults with cystic fibrosis (CF) with high-resolution computed tomography (HRCT) and spirometry. Eight patients with stable CF prospectively underwent 3He MRI, HRCT, and spirometry within 1 week. Three-dimensional (3D) gradient-echo sequence was used during an 18-s breath-hold following inhalation of hyperpolarized 3He. Each lung was divided into six zones; 3He MRI was scored as percentage ventilation per lung zone. HRCT was scored using a modified Bhalla scoring system. Univariate (Spearman rank) and multivariate correlations were performed between 3He MRI, HRCT, and spirometry. Results are expressed as mean+/-SD (range). Spirometry is expressed as percent predicted. There were four men and four women, mean age = 31.9+/-9 (20-46). Mean forced expiratory volume in 1 s (FEV)1 = 52%+/-29 (27-93). Mean 3He MRI score = 74%+/-25 (55-100). Mean HRCT score = 48.8+/-24 (13.5-83). The correlation between 3He MRI and HRCT was strong (R = +/-0.89, p < 0.001). Bronchiectasis was the only independent predictor of 3He MRI; 3He MRI correlated better with FEV1 and forced vital capacity (FVC) (R = 0.86 and 0.93, p < 0.01, respectively) than HRCT (R = +/-0.72 and +/-0.81, p < 0.05, respectively). This study showed that 3He MRI correlates strongly with structural HRCT abnormalities and is a stronger correlate of spirometry than HRCT in CF.
Collapse
Affiliation(s)
- Colm J McMahon
- Department of Radiology, St. Vincent's University Hospital, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|