1
|
Merrill JR, Inguscio A, Chung T, Demestichas B, Garcia LA, Habel J, Lewis DY, Janowitz T, Lyons SK. Sensitive, non-immunogenic in vivo imaging of cancer metastases and immunotherapy response. Cell Stress 2023; 7:59-68. [PMID: 37664695 PMCID: PMC10468692 DOI: 10.15698/cst2023.08.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Non-invasive imaging of tumors expressing reporter transgenes is a popular preclinical method for studying tumor development and response to therapy in vivo due to its ability to distinguish signal from tumors over background noise. However, the utilized transgenes, such as firefly luciferase, are immunogenic and, therefore, impact results when expressed in immune-competent hosts. This represents an important limitation, given that cancer immunology and immunotherapy are currently among the most impactful areas of research and therapeutic development. Here we present a non-immunogenic preclinical tumor imaging approach. Based on the expression of murine sodium iodide symporter (mNIS), it facilitates sensitive, non-invasive detection of syngeneic tumor cells in immune-competent tumor models without additional immunogenicity arising from exogenous transgenic protein or selection marker expression. NIS-expressing tumor cells internalize the gamma-emitting [99mTc]pertechnetate ion and so can be detected by SPECT (single photon emission computed tomography). Using a mouse model of pancreatic ductal adenocarcinoma hepatic metastases in immune-competent C57BL/6 mice, we demonstrate that the technique enables the detection of very early metastatic lesions and longitudinal assessment of immunotherapy responses using precise and quantifiable whole-body SPECT/CT imaging.
Collapse
Affiliation(s)
- Joseph R. Merrill
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Alessandra Inguscio
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Taemoon Chung
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Breanna Demestichas
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Libia A. Garcia
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Jill Habel
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - David Y. Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Scott K. Lyons
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| |
Collapse
|
2
|
Xi Y, Chen H, Xi Y, Hai W, Qu Q, Zhang M, Li B. Visualization research on ENT1/NIS dual-function gene therapy to reverse drug resistance mediated by MUC1 in GEM-resistant pancreatic cancer. Nucl Med Biol 2023; 120-121:108350. [PMID: 37229950 DOI: 10.1016/j.nucmedbio.2023.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE To use bifunctional target genes to increase the intracellular transport of gemcitabine (GEM) to reverse chemotherapy resistance and to simultaneously use reporter gene imaging to localize therapeutic genes. The therapeutic effect was evaluated by [18F]FLT PET/CT to visualize the effect of gene therapy. METHODS A viral gene vector containing the pancreatic cancer-targeting promoter MUC1 for specific transcription of equilibrative nucleoside transporter 1 (ENT1) and NIS (nuclide transport channel) was employed. [125I]NaI uptake tests and [131I]NaI SPECT imaging were performed to verify the function of NIS and the target function of MUC1. The correlation between [18F]FLT uptake and GEM resistance were assessed, and the influence ENT1 and thymidine kinase 1 (TK1) expression on [18F]FLT micro-PET/CT was measured, which provides a theoretical basis for the use of [18F]FLT micro-PET/CT to evaluate the efficacy of gene therapy. RESULTS First, functions of gene therapy were confirmed: ENT1 reversed the drug resistance of GEM-resistant pancreatic cancer cells by increasing GEM intracellular transport; MUC1 drove NIS target gene expression in pancreatic cancer; and therapeutic genes could be localized using [131I]NaI SPECT reporter gene imaging. Second, the [18F]FLT uptake ratio was affected by drug resistance and GEM treatment. The mechanism underlying this effect was related to ENT1 and TK1. Increased expression of ENT1 inhibited the expression of TK1 after GEM chemotherapy to reduce the uptake of [18F]FLT. Finally, micro-PET/CT indicated that the SUVmax of [18F]FLT could predict survival time. SUVmax exhibited an increasing trend in resistant pancreatic cancer but a trend of inhibition after upregulation of ENT1, which was more significant after GEM treatment. CONCLUSIONS Bifunctional targeted genes can localize therapeutic genes through reporter gene imaging, reverse the drug resistance of GEM-resistant pancreatic cancer and be visually evaluated through [18F]FLT micro-PET/CT.
Collapse
Affiliation(s)
- Yun Xi
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Hong Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yue Xi
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Qian Qu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China.
| |
Collapse
|
3
|
Costa IM, Siksek N, Volpe A, Man F, Osytek KM, Verger E, Schettino G, Fruhwirth GO, Terry SYA. Relationship of In Vitro Toxicity of Technetium-99m to Subcellular Localisation and Absorbed Dose. Int J Mol Sci 2021; 22:13466. [PMID: 34948266 PMCID: PMC8703725 DOI: 10.3390/ijms222413466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023] Open
Abstract
Auger electron-emitters increasingly attract attention as potential radionuclides for molecular radionuclide therapy in oncology. The radionuclide technetium-99m is widely used for imaging; however, its potential as a therapeutic radionuclide has not yet been fully assessed. We used MDA-MB-231 breast cancer cells engineered to express the human sodium iodide symporter-green fluorescent protein fusion reporter (hNIS-GFP; MDA-MB-231.hNIS-GFP) as a model for controlled cellular radionuclide uptake. Uptake, efflux, and subcellular location of the NIS radiotracer [99mTc]TcO4- were characterised to calculate the nuclear-absorbed dose using Medical Internal Radiation Dose formalism. Radiotoxicity was determined using clonogenic and γ-H2AX assays. The daughter radionuclide technetium-99 or external beam irradiation therapy (EBRT) served as controls. [99mTc]TcO4- in vivo biodistribution in MDA-MB-231.hNIS-GFP tumour-bearing mice was determined by imaging and complemented by ex vivo tissue radioactivity analysis. [99mTc]TcO4- resulted in substantial DNA damage and reduction in the survival fraction (SF) following 24 h incubation in hNIS-expressing cells only. We found that 24,430 decays/cell (30 mBq/cell) were required to achieve SF0.37 (95%-confidence interval = [SF0.31; SF0.43]). Different approaches for determining the subcellular localisation of [99mTc]TcO4- led to SF0.37 nuclear-absorbed doses ranging from 0.33 to 11.7 Gy. In comparison, EBRT of MDA-MB-231.hNIS-GFP cells resulted in an SF0.37 of 2.59 Gy. In vivo retention of [99mTc]TcO4- after 24 h remained high at 28.0% ± 4.5% of the administered activity/gram tissue in MDA-MB-231.hNIS-GFP tumours. [99mTc]TcO4- caused DNA damage and reduced clonogenicity in this model, but only when the radioisotope was taken up into the cells. This data guides the safe use of technetium-99m during imaging and potential future therapeutic applications.
Collapse
Affiliation(s)
- Ines M. Costa
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Noor Siksek
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Alessia Volpe
- Memorial Sloan Kettering Cancer Center, Molecular Imaging Group, Department of Radiology, New York, NY 10065, USA;
| | - Francis Man
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Katarzyna M. Osytek
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Elise Verger
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Giuseppe Schettino
- National Physical Laboratory, Department of Medical Radiation Sciences, Teddington TW11 0LW, UK;
- Faculty of Engineering and Physical Sciences, University of Surrey, Guilford GU2 7XH, UK
| | - Gilbert O. Fruhwirth
- Comprehensive Cancer Centre, Imaging Therapies and Cancer Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK;
| | - Samantha Y. A. Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| |
Collapse
|
4
|
Meng LJ, Clinthorne NH. Small-Animal SPECT, SPECT/CT, and SPECT/MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
6
|
Pan CT, Chang WH, Kumar A, Singh SP, Kaushik AC, Sharma J, Long ZJ, Wen ZH, Mishra SK, Yen CK, Chaudhary RK, Shiue YL. Nanoparticles-mediated Brain Imaging and Disease Prognosis by Conventional as well as Modern Modal Imaging Techniques: a Comparison. Curr Pharm Des 2020; 25:2637-2649. [PMID: 31603057 DOI: 10.2174/1381612825666190709220139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multimodal imaging plays an important role in the diagnosis of brain disorders. Neurological disorders need to be diagnosed at an early stage for their effective treatment as later, it is very difficult to treat them. If possible, diagnosing at an early stage can be much helpful in curing the disease with less harm to the body. There is a need for advanced and multimodal imaging techniques for the same. This paper provides an overview of conventional as well as modern imaging techniques for brain diseases, specifically for tumor imaging. In this paper, different imaging modalities are discussed for tumor detection in the brain along with their advantages and disadvantages. Conjugation of two and more than two modalities provides more accurate information rather than a single modality. They can monitor and differentiate the cellular processes of normal and diseased condition with more clarity. The advent of molecular imaging, including reporter gene imaging, has opened the door of more advanced noninvasive detection of brain tumors. Due to specific optical properties, semiconducting polymer-based nanoparticles also play a pivotal role in imaging tumors. OBJECTIVE The objective of this paper is to review nanoparticles-mediated brain imaging and disease prognosis by conventional as well as modern modal imaging techniques. CONCLUSION We reviewed in detail various medical imaging techniques. This paper covers recent developments in detail and elaborates a possible research aspect for the readers in the field.
Collapse
Affiliation(s)
- Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Wei-Hsi Chang
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ajay Kumar
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Satya P Singh
- School of EEE, Nanyang Technological University, Nanyang Ave, Singapore
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, ShanghaiJia Tong University, Shanghai 200240, China
| | - Jyotsna Sharma
- Amity School of Applied Sciences, Amity University Haryana, Gurugram-122413, Manesai, Panchgaon, Haryana, India
| | - Zheng-Jing Long
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sunil Kumar Mishra
- Patronage Institute of Management Studies, Greater Noida, Uttar Pradesh, India
| | - Chung-Kun Yen
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Ravi Kumar Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pardesh, India, India
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| |
Collapse
|
7
|
Targeting uptake transporters for cancer imaging and treatment. Acta Pharm Sin B 2020; 10:79-90. [PMID: 31993308 PMCID: PMC6977162 DOI: 10.1016/j.apsb.2019.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells reprogram their gene expression to promote growth, survival, proliferation, and invasiveness. The unique expression of certain uptake transporters in cancers and their innate function to concentrate small molecular substrates in cells make them ideal targets for selective delivering imaging and therapeutic agents into cancer cells. In this review, we focus on several solute carrier (SLC) transporters known to be involved in transporting clinically used radiopharmaceutical agents into cancer cells, including the sodium/iodine symporter (NIS), norepinephrine transporter (NET), glucose transporter 1 (GLUT1), and monocarboxylate transporters (MCTs). The molecular and functional characteristics of these transporters are reviewed with special emphasis on their specific expressions in cancers and interaction with imaging or theranostic agents [e.g., I-123, I-131, 123I-iobenguane (mIBG), 18F-fluorodeoxyglucose (18F-FDG) and 13C pyruvate]. Current clinical applications and research areas of these transporters in cancer diagnosis and treatment are discussed. Finally, we offer our views on emerging opportunities and challenges in targeting transporters for cancer imaging and treatment. By analyzing the few clinically successful examples, we hope much interest can be garnered in cancer research towards uptake transporters and their potential applications in cancer diagnosis and treatment.
Collapse
Key Words
- CT, computed tomography
- Cancer imaging
- DDI, drug–drug interaction
- DTC, differentiated thyroid cancer
- FDA, U.S. Food and Drug Administrations
- FDG, fluorodeoxyglucose
- GLUT, glucose transporter
- IAEA, the International Atomic Energy Agency
- LACC, locally advanced cervical cancer
- LAT, large amino acid transporter
- MCT, monocarboxylate transporter
- MRI, magnetic resonance imaging
- NE, norepinephrine
- NET, norepinephrine transporter
- NIS, sodium/iodine symporter
- Neuroblastoma
- OCT, organic cation transporter
- PET, positron emission tomography
- PHEO, pheochromocytoma
- RA, retinoic acid
- RET, rearranged during transfection
- SLC, solute carrier
- SPECT, single-photon emission computed tomography
- SUV, standardized uptake value
- TFB, tetrafluoroborate
- TSH, thyroid stimulating hormones
- Thyroid cancer
- Uptake transporter
- Warburg effect
- mIBG
- mIBG, iobenguane/meta-iodobenzylguanidine
- vHL, von Hippel-Lindau
Collapse
|
8
|
Adamiano A, Iafisco M, Sandri M, Basini M, Arosio P, Canu T, Sitia G, Esposito A, Iannotti V, Ausanio G, Fragogeorgi E, Rouchota M, Loudos G, Lascialfari A, Tampieri A. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging. Acta Biomater 2018; 73:458-469. [PMID: 29689381 DOI: 10.1016/j.actbio.2018.04.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
The identification of alternative biocompatible magnetic NPs for advanced clinical application is becoming an important need due to raising concerns about iron accumulation in soft issues associated to the administration of superparamagnetic iron oxide nanoparticles (NPs). Here, we report on the performance of previously synthetized iron-doped hydroxyapatite (FeHA) NPs as contrast agent for magnetic resonance imaging (MRI). The MRI contrast abilities of FeHA and Endorem® (dextran coated iron oxide NPs) were assessed by 1H nuclear magnetic resonance relaxometry and their performance in healthy mice was monitored by a 7 Tesla scanner. FeHA applied a higher contrast enhancement, and had a longer endurance in the liver with respect to Endorem® at iron equality. Additionally, a proof of concept of FeHA use as scintigraphy imaging agent for positron emission tomography (PET) and single photon emission computed tomography (SPECT) was given labeling FeHA with 99mTc-MDP by a straightforward surface functionalization process. Scintigraphy/x-ray fused imaging and ex vivo studies confirmed its dominant accumulation in the liver, and secondarily in other organs of the mononuclear phagocyte system. FeHA efficiency as MRI-T2 and PET-SPECT imaging agent combined to its already reported intrinsic biocompatibility qualifies it as a promising material for innovative nanomedical applications. STATEMENT OF SIGNIFICANCE The ability of iron-doped hydroxyapatite nanoaprticles (FeHA) to work in vivo as imaging agents for magnetic resonance (MR) and nuclear imaging is demonstrated. FeHA applied an higher MR contrast in the liver, spleen and kidneys of mice with respect to Endorem®. The successful radiolabeling of FeHA allowed for scintigraphy/X-ray and ex vivo biodistribution studies, confirming MR results and envisioning FeHA application for dual-imaging.
Collapse
|
9
|
Wunderlich G, Wendisch M, Aurich D, Runge R, Freudenberg R, Kotzerke J. Preincubation with Sn-complexes causes intensive intracellular retention of 99mTc in thyroid cells in vitro. Nuklearmedizin 2018; 51:179-85. [DOI: 10.3413/nukmed-0450-11-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/02/2012] [Indexed: 11/20/2022]
Abstract
SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.
Collapse
Affiliation(s)
- G Wunderlich
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität, 01307 Dresden, Fetscherstr. 74, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Wendisch M, Freudenberg R, Runge R, Oehme L, Meyer G, Kunz-Schughart LA, Wunderlich G, Kotzerke J. Sodium-iodide symporter positive cells after intracellular uptake of 99mTc versus α-emitter 211At. Nuklearmedizin 2018; 51:170-8. [DOI: 10.3413/nukmed-0506-12-05] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/30/2012] [Indexed: 11/20/2022]
Abstract
SummaryPurpose: We evaluated the DNA damaging potential of Auger electrons emitted in the decay of 99mTc compared to α-particles of 211At. Material and methods: The impact of 99mTc and 211At was monitored in a NIS-expressing rat thyroid cell model PC Cl3 with varying, yet defined intra- and extracellular radionuclide distribution (using ± perchlorate). The radiotoxicity of 99mTc and 211At was studied by the comet assay under neutral and alkaline conditions and colony formation. Results: In the presence of perchlorate, the radioactivity yielding 37 % cellular survival, A37, was estimated to be (0.27 ± 0.02) MBq/ml and (450 ± 30) MBq/ml for 211At and 99mTc, respectively. In absence of perchlorate, cellular radiotracer uptake was similar for both radionuclides (2.2 %, 2.7 %), yet the A37 was reduced by 82% for the α-emitter and by 95 % for 99mTc. Cellular dose increased by a factor of 5 (211At) and 38 (99mTc). Comet assays revealed an increased DNA damage after intracellular uptake of both radiotracers. Conclusions: The data indicate damage to the cell to occur from absorbed dose without recognizable contribution from intracellular heterogeneity of radionuclide distribution. Comet assay under alkaline and neutral conditions did not reveal any shift to more complex DNA damage after radionuclide uptake. Cellular uptake of 99mTc and 211At increased cellular dose and reduced clonogenic survival.
Collapse
|
11
|
Rudqvist N, Spetz J, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Transcriptional response to 131I exposure of rat thyroid gland. PLoS One 2017; 12:e0171797. [PMID: 28222107 PMCID: PMC5319760 DOI: 10.1371/journal.pone.0171797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 01/26/2017] [Indexed: 12/25/2022] Open
Abstract
Humans are exposed to 131I in medical diagnostics and treatment but also from nuclear accidents, and better knowledge of the molecular response in thyroid is needed. The aim of the study was to examine the transcriptional response in thyroid tissue 24 h after 131I administration in rats. The exposure levels were chosen to simulate both the clinical situation and the case of nuclear fallout. Thirty-six male rats were i.v. injected with 0–4700 kBq 131I, and killed at 24 h after injection (Dthyroid = 0.0058–3.0 Gy). Total RNA was extracted from individual thyroid tissue samples and mRNA levels were determined using oligonucleotide microarray technique. Differentially expressed transcripts were determined using Nexus Expression 3.0. Hierarchical clustering was performed in the R statistical computing environment. Pathway analysis was performed using the Ingenuity Pathway Analysis tool and the Gene Ontology database. T4 and TSH plasma concentrations were measured using ELISA. Totally, 429 differentially regulated transcripts were identified. Downregulation of thyroid hormone biosynthesis associated genes (e.g. thyroglobulin, thyroid peroxidase, the sodium-iodine symporter) was identified in some groups, and an impact on thyroid function was supported by the pathway analysis. Recurring downregulation of Dbp and Slc47a2 was found. Dbp exhibited a pattern with monotonous reduction of downregulation with absorbed dose at 0.0058–0.22 Gy. T4 plasma levels were increased and decreased in rats whose thyroids were exposed to 0.057 and 0.22 Gy, respectively. Different amounts of injected 131I gave distinct transcriptional responses in the rat thyroid. Transcriptional response related to thyroid function and changes in T4 plasma levels were found already at very low absorbed doses to thyroid.
Collapse
Affiliation(s)
- Nils Rudqvist
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emil Schüler
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
12
|
van der Have F, Ivashchenko O, Goorden MC, Ramakers RM, Beekman FJ. High-resolution clustered pinhole 131Iodine SPECT imaging in mice. Nucl Med Biol 2016; 43:506-11. [DOI: 10.1016/j.nucmedbio.2016.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/12/2016] [Accepted: 05/28/2016] [Indexed: 11/25/2022]
|
13
|
Maucksch U, Runge R, Wunderlich G, Freudenberg R, Naumann A, Kotzerke J. Comparison of the radiotoxicity of the 99mTc-labeled compounds 99mTc-pertechnetate, 99mTc-HMPAO and 99mTc-MIBI. Int J Radiat Biol 2016; 92:698-706. [DOI: 10.3109/09553002.2016.1168533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ute Maucksch
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Roswitha Runge
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Gerd Wunderlich
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Robert Freudenberg
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Anne Naumann
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Jörg Kotzerke
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| |
Collapse
|
14
|
Mion G, Gianferrara T, Bergamo A, Gasser G, Pierroz V, Rubbiani R, Vilar R, Leczkowska A, Alessio E. Phototoxic Activity and DNA Interactions of Water-Soluble Porphyrins and Their Rhenium(I) Conjugates. ChemMedChem 2015; 10:1901-14. [PMID: 26332425 DOI: 10.1002/cmdc.201500288] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/13/2015] [Indexed: 12/12/2022]
Abstract
In the search for alternative photosensitizers for use in photodynamic therapy (PDT), herein we describe two new water-soluble porphyrins, a neutral fourfold-symmetric compound and a +3-charged tris-methylpyridinium derivative, in which either four or one [1,4,7]-triazacyclononane (TACN) units are connected to the porphyrin macrocycle through a hydrophilic linker; we also report their corresponding tetracationic Re(I) conjugates. The in vitro (photo)toxic effects of the compounds toward the human cell lines HeLa (cervical cancer), H460M2 (non-small-cell lung carcinoma), and HBL-100 (non-tumorigenic epithelial cells) are reported. Three of the compounds are not cytotoxic in the dark up to 100 μm, and the fourfold-symmetric couple revealed very good phototoxic indexes (PIs). The intracellular localization of all derivatives was studied in HeLa cells by confocal fluorescence microscopy. Although low nuclear localization was observed for some of them, it still prompted us to investigate their capacity to bind both quadruplex and duplex DNA; we observed significant selectivity in the tris-methylpyridinium derivatives for G-quadruplex interactions.
Collapse
Affiliation(s)
- Giuliana Mion
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| | - Teresa Gianferrara
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy.
| | - Alberta Bergamo
- Callerio Foundation Onlus, Via A. Fleming 22-31, 34127, Trieste, Italy
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Vanessa Pierroz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | - Anna Leczkowska
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Enzo Alessio
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| |
Collapse
|
15
|
99mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency. PLoS One 2014; 9:e104653. [PMID: 25098953 PMCID: PMC4123991 DOI: 10.1371/journal.pone.0104653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022] Open
Abstract
99mTc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, 99mTc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a 99mTc-labeled HYNIC-DAPI compound with that of 99mTc pertechnetate (99mTcO4−). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by 99mTcO4− (0.51), and the number of DSBs increased fivefold in the 99mTc-HYNIC-DAPI-treated sample compared with the 99mTcO4− treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the 99mTcO4– treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the 99mTc-HYNIC-DAPI-treated samples. These results indicated that 99mTc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the 99mTc-labeled compound with DNA. In contrast to these results, 99mTcO4− induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of 99mTc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by approximately 10-fold in terms of inducing DSBs.
Collapse
|
16
|
Cornelissen B. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. J Labelled Comp Radiopharm 2014; 57:310-6. [PMID: 24395330 DOI: 10.1002/jlcr.3152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/29/2013] [Indexed: 12/31/2022]
Abstract
Molecular imaging of tumour tissue focusses mainly on extracellular epitopes such as tumour angiogenesis or signal transduction receptors expressed on the cell membrane. However, most biological processes that define tumour phenotype occur within the cell. In this mini-review, an overview is given of the various techniques to interrogate intracellular events using molecular imaging with radiolabelled compounds. Additionally, similar targeting techniques can be employed for radionuclide therapy using Auger electron emitters, and recent advances in Auger electron therapy are discussed.
Collapse
Affiliation(s)
- Bart Cornelissen
- MRC/CRUK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| |
Collapse
|
17
|
Lyons SK, Patrick PS, Brindle KM. Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb Protoc 2013; 2013:685-99. [PMID: 23906907 DOI: 10.1101/pdb.top069864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imaging mouse models of cancer with reporter transgenes has become a relatively common experimental approach in the laboratory, which allows noninvasive and longitudinal investigation of diverse aspects of tumor biology in vivo. Our goal here is to outline briefly the principles of the relevant imaging modalities, emphasizing particularly their strengths and weaknesses and what the researcher can expect in a practical sense from each of these techniques. Furthermore, we discuss how relatively subtle modifications in the way reporter transgene expression is regulated in the cell underpin the ability of reporter transgenes as a whole to provide readouts on such varied aspects of tumor biology in vivo.
Collapse
Affiliation(s)
- Scott K Lyons
- Department of Molecular Imaging, CRUK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | | | | |
Collapse
|
18
|
Freudenberg R, Wendisch M, Runge R, Wunderlich G, Kotzerke J. Reduction in clonogenic survival of sodium-iodide symporter (NIS)-positive cells following intracellular uptake of99mTc versus188Re. Int J Radiat Biol 2012; 88:991-7. [DOI: 10.3109/09553002.2012.728303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Yang W, Qin W, Hu Z, Suo Y, Zhao R, Ma X, Ma W, Wang T, Liang J, Tian J, Wang J. Comparison of Cerenkov Luminescence Imaging (CLI) and gamma camera imaging for visualization of let-7 expression in lung adenocarcinoma A549 Cells. Nucl Med Biol 2012; 39:948-53. [DOI: 10.1016/j.nucmedbio.2012.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 05/05/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
20
|
Penheiter AR, Russell SJ, Carlson SK. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 2012; 12:33-47. [PMID: 22263922 PMCID: PMC3367315 DOI: 10.2174/156652312799789235] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employing radionuclides for positron emission tomography (PET) or singlephoton emission computed tomography (SPECT) offer the highest sensitivity and the greatest promise for deep tissue imaging in humans. Within the category of radionuclide reporters, the thyroidal sodium iodide symporter (NIS) has emerged as one of the most promising for preclinical and translational research. NIS has been incorporated into a remarkable variety of viral and non-viral vectors in which its functionality is conveniently determined by in vitro iodide uptake assays prior to live animal imaging. This review on the NIS reporter will focus on 1) differences between endogenous NIS and heterologously-expressed NIS, 2) qualitative or comparative use of NIS as an imaging reporter in preclinical and translational gene therapy, oncolytic viral therapy, and cell trafficking research, and 3) use of NIS as an absolute quantitative reporter.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
21
|
van der Horst G, van der Pluijm G. Preclinical imaging of the cellular and molecular events in the multistep process of bone metastasis. Future Oncol 2012; 8:415-30. [DOI: 10.2217/fon.12.33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bone metastasis is a complex process that ultimately leads to devastating metastatic bone disease. It is therefore of key interest to unravel the mechanisms underlying the multistep process of skeletal metastasis and cancer-induced bone disease, and to develop better treatment and management of patients with this devastating disease. Fortunately, novel technologies are rapidly emerging that allow real-time imaging of molecules, pathogenic processes, drug delivery and drug response in preclinical in vivo models. The outcome of these experimental studies will facilitate clinical cancer research by improving the detection of cancer cell invasion, metastasis and therapy response.
Collapse
Affiliation(s)
- Geertje van der Horst
- Department of Urology, Leiden University Medical Center, J3–100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, J3–100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
22
|
Esteves T, Marques F, Paulo A, Rino J, Nanda P, Smith CJ, Santos I. Nuclear targeting with cell-specific multifunctional tricarbonyl M(I) (M is Re, (99m)Tc) complexes: synthesis, characterization, and cell studies. J Biol Inorg Chem 2011; 16:1141-53. [PMID: 21706254 DOI: 10.1007/s00775-011-0803-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/01/2011] [Indexed: 11/29/2022]
Abstract
Auger-emitting radionuclides such as (99m)Tc have been the focus of recent studies aiming at finding more selective therapeutic approaches. To explore the potential usefulness of (99m)Tc as an Auger emitter, we have synthesized and biologically evaluated novel multifunctional structures comprising (1) a pyrazolyl-diamine framework bearing a set of donor atoms to stabilize the [M(CO)(3)](+) (M is Re, (99m)Tc) core; (2) a DNA intercalating moiety of the acridine orange type to ensure close proximity of the radionuclide to DNA and to follow the internalization and subcellular trafficking of the compounds by confocal fluorescence microscopy; and (3) a bombesin (BBN) analogue of the type X-BBN[7-14] (where X is SGS, GGG) to provide specificity towards cells expressing the gastrin releasing peptide receptor (GRPr). Of the evaluated (99m)Tc complexes, Tc ( 3 ) containing the GGG-BBN[7-14] peptide showed the highest cellular internalization in GRPr-positive PC3 human prostate tumor cells, presenting a remarkably high nuclear uptake in the same cell line. Live-cell confocal imaging microscopy studies with the congener Re complex, Re ( 3 ), showed a considerable accumulation of fluorescence in the nucleus, with kinetics of uptake similar to that exhibited by Tc ( 3 ). Together, these data show that the acridine orange intercalator and the metal fragment are colocalized in the nucleus, which indicates that they remain connected despite the lysosomal degradation of Tc ( 3 )/Re ( 3 ). These compounds are the first examples of (99m)Tc bioconjugates that combine specific cell targeting with nuclear internalization, a crucial issue to explore use of (99m)Tc in Auger therapy.
Collapse
Affiliation(s)
- Teresa Esteves
- Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Tecnológico e Nuclear, Estrada Nacional, Sacavém, Portugal
| | | | | | | | | | | | | |
Collapse
|
23
|
Keil B, Wiggins GC, Triantafyllou C, Wald LL, Meise FM, Schreiber LM, Klose KJ, Heverhagen JT. A 20-channel receive-only mouse array coil for a 3 T clinical MRI system. Magn Reson Med 2011; 66:584-95. [PMID: 21433066 DOI: 10.1002/mrm.22791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 11/23/2010] [Accepted: 12/02/2010] [Indexed: 12/12/2022]
Abstract
A 20-channel phased-array coil for MRI of mice has been designed, constructed, and validated with bench measurements and high-resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3- and 1.3-fold, respectively. Comparison with a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of twofold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images.
Collapse
Affiliation(s)
- Boris Keil
- Department of Diagnostic Radiology, University Hospital, Philipps University, Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Chen H, Wang L, Liu T, Yeh J, Lu G, Yang L, Mao H. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol Sci Appl 2010; 3:159-70. [PMID: 24198480 DOI: 10.2147/nsa.s7462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Radiation therapy is an effective cancer treatment option in conjunction with chemotherapy and surgery. Emerging individualized internal and systemic radiation treatment promises significant improvement in efficacy and reduction of normal tissue damage; however, it requires cancer cell targeting platforms for efficient delivery of radiation sources. With recent advances in nanoscience and nanotechnology, there is great interest in developing nanomaterials as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery and tumor response to the treatment. This paper provides an overview on developing nanoparticles for carrying and delivering therapeutic radioisotopes for systemic radiation treatment. Topics discussed in the review include: selecting nanoparticles and radiotherapy isotopes, strategies for targeting nanoparticles to cancers, together with challenges and potential solutions for the in vivo delivery of nanoparticles. Some examples of using nanoparticle platforms for the delivery of therapeutic radioisotopes in preclinical studies of cancer treatment are also presented.
Collapse
Affiliation(s)
- Longjiang Zhang
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA ; Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nangjing, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang R, Zhao Z, Ma X, Li S, Gong R, Kuang A. Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter. Cancer Gene Ther 2010; 18:144-52. [PMID: 21037556 PMCID: PMC3025317 DOI: 10.1038/cgt.2010.66] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To test the feasibility of using the survivin promoter to induce specific expression of sodium/iodide symporter (NIS) in cancer cell lines and tumors for targeted use of radionuclide therapy, a recombinant adenovirus, Ad-SUR-NIS, that expressed the NIS gene under control of the survivin promoter was constructed. Ad-SUR-NIS mediating iodide uptake and cytotoxicity was performed in vitro. Scintigraphic, biodistribution and radioiodine therapy studies were performed in vivo. PC-3 (prostate); HepG2 (hepatoma) and A375 (melanoma) cancer cells all exhibited perchlorate-sensitive iodide uptake after infection with Ad-SUR-NIS, ∼50 times higher than that of negative control Ad-CMV-GFP-infected cells. No significant iodide uptake was observed in normal human dental pulp fibroblast (DPF) cells after infection with Ad-SUR-NIS. Clonogenic assays demonstrated that Ad-SUR-NIS-infected cancer cells were selectively killed by exposure to 131I. Ad-SUR-NIS-infected tumors show significant radioiodine accumulation (13.3±2.85% ID per g at 2 h post-injection), and the effective half-life was 3.1 h. Moreover, infection with Ad-SUR-NIS in combination with 131I suppressed tumor growth. These results indicate that expression of NIS under control of the survivin promoter can likely be used to achieve cancer-specific expression of NIS in many types of cancers. In combination with radioiodine therapy, this strategy is a possible method of cancer gene therapy.
Collapse
Affiliation(s)
- R Huang
- Department of Nuclear Medicine, National Key Discipline of Medical Imaging and Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
26
|
Tavares AAS, Tavares JMRS. 99mTc Auger electrons for targeted tumour therapy: A review. Int J Radiat Biol 2010; 86:261-70. [DOI: 10.3109/09553000903564083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Vitor RF, Esteves T, Marques F, Raposinho P, Paulo A, Rodrigues S, Rueff J, Casimiro S, Costa L, Santos I. (99m)Tc-tricarbonyl complexes functionalized with anthracenyl fragments: synthesis, characterization, and evaluation of their radiotoxic effects in murine melanoma cells. Cancer Biother Radiopharm 2010; 24:551-63. [PMID: 19877885 DOI: 10.1089/cbr.2009.0647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Different pyrazolyl-diamine ligands bearing anthracenyl or anthrapyrazole functionalities as DNA-binding groups, at different positions of the chelator framework, were labeled with the fac-[(99m)Tc(CO)(3)](+) core. The resulting complexes, 1-4, are highly stable in vitro under physiologic conditions; all of them have been identified by high-performance liquid chromatography comparison with the Re congeners, with the exception of 3, that is anchored by an anthrapyrazole diamine ligand. Aiming to assess the ability of these complexes to target the cell nucleus and to induce enhanced cell death by effect of the Auger electrons emitted by (99m)Tc, the intracellular distribution and radiotoxicity of 1-4 were evaluated by using B16F1 murine melanoma cells. The radiotoxic effects depend very much on the position used to introduce the DNA-binding group and are well correlated with the nuclear uptake of the compounds. Complex 2, having the anthracenyl substituent at the 4-position of the pyrazolyl ring, rapidly entered the cells and accumulated inside the nucleus, exhibiting the highest radiotoxic effects. This compound induced an apoptotic cellular outcome, and its enhanced radiotoxic effects were certainly due to the Auger electrons emitted by the radiometal in close proximity to DNA.
Collapse
Affiliation(s)
- Rute F Vitor
- Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Tecnológico e Nuclear, Sacavém 2686-953, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hou P, Liu D, Ji M, Liu Z, Engles JM, Wahl RL, Xing M. Induction of thyroid gene expression and radioiodine uptake in melanoma cells: novel therapeutic implications. PLoS One 2009; 4:e6200. [PMID: 19593429 PMCID: PMC2703805 DOI: 10.1371/journal.pone.0006200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/08/2009] [Indexed: 01/17/2023] Open
Abstract
Both the MAP kinase and PI3K/Akt pathways play an important role in the pathogenesis of melanoma. We conducted the present study to test the hypothesis that targeting the two pathways to potently induce cell inhibition accompanied with thyroid iodide-handling gene expression for adjunct radioiodine ablation could be a novel effective therapeutic strategy for melanoma. We used specific shRNA approaches and inhibitors to individually or dually suppress the MAP kinase and PI3K/Akt pathways and examined the effects on a variety of molecular and cellular responses of melanoma cells that harbored activating genetic alterations in the two pathways. Suppression of the MAP kinase and PI3K/Akt pathways showed potent anti-melanoma cell effects, including the inhibition of cell proliferation, transformation and invasion, induction of G0/G1 cell cycle arrest and, when the two pathways were dually suppressed, cell apoptosis. Remarkably, suppression of the two pathways, particularly simultaneous suppression of them, also induced expression of genes that are normally expressed in the thyroid gland, such as the genes for sodium/iodide symporter and thyroid-stimulating hormone receptor. Melanoma cells were consequently conferred the ability to take up radioiodide. We conclude that dually targeting the MAP kinase and PI3K/Akt pathways for potent cell inhibition coupled with induction of thyroid gene expression for adjunct radioiodine ablation therapy may prove to be a novel and effective therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Peng Hou
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dingxie Liu
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Meiju Ji
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James M. Engles
- Division of Nuclear Medicine, Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard L. Wahl
- Division of Nuclear Medicine, Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mingzhao Xing
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Riese CGU, Seitz S, Schipper ML, Behr TM. Effective treatment of pancreatic neuroendocrine tumours transfected with the sodium iodide symporter gene by 186Re-perrhenate in mice. Eur J Nucl Med Mol Imaging 2009; 36:1767-73. [DOI: 10.1007/s00259-009-1153-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
|
30
|
Abstract
PURPOSE The extreme radiotoxicity of Auger electrons and their exquisite capacity to irradiate specific molecular sites has prompted scientists to extensively investigate their radiobiological effects. Their efforts have been punctuated by quadrennial international symposia that have focused on biophysical aspects of Auger processes. The latest meeting, the 6th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes, was held 5-6 July 2007 at Harvard Medical School in Boston, Massachusetts, USA. This article provides a review of the research in this field that was published during the years 2004-2007, the period that has elapsed since the previous meeting. CONCLUSION The field has advanced considerably. A glimpse of the potential of this unique form of ionizing radiation to contribute to future progress in a variety of fields of study is proffered.
Collapse
Affiliation(s)
- Roger W Howell
- Department of Radiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA.
| |
Collapse
|
31
|
Rad AM, Iskander ASM, Janic B, Knight RA, Arbab AS, Soltanian-Zadeh H. AC133+ progenitor cells as gene delivery vehicle and cellular probe in subcutaneous tumor models: a preliminary study. BMC Biotechnol 2009; 9:28. [PMID: 19327159 PMCID: PMC2669076 DOI: 10.1186/1472-6750-9-28] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 03/27/2009] [Indexed: 02/06/2023] Open
Abstract
Background Despite enormous progress in gene therapy for breast cancer, an optimal systemic vehicle for delivering gene products to the target tissue is still lacking. The purpose of this study was to determine whether AC133+ progenitor cells (APC) can be used as both gene delivery vehicles and cellular probes for magnetic resonance imaging (MRI). In this study, we used superparamagentic iron oxide (SPIO)-labeled APCs to carry the human sodium iodide symporter (hNIS) gene to the sites of implanted breast cancer in mouse model. In vivo real time tracking of these cells was performed by MRI and expression of hNIS was determined by Tc-99m pertechnetate (Tc-99m) scan. Results Three million human breast cancer (MDA-MB-231) cells were subcutaneously implanted in the right flank of nude mice. APCs, isolated from fresh human cord blood, were genetically transformed to carry the hNIS gene using adenoviral vectors and magnetically labeled with ferumoxides-protamine sulfate (FePro) complexes. Magnetically labeled genetically transformed cells were administered intravenously in tumor bearing mice when tumors reached 0.5 cm in the largest dimension. MRI and single photon emission computed tomography (SPECT) images were acquired 3 and 7 days after cell injection, with a 7 Tesla animal MRI system and a custom built micro-SPECT using Tc-99m, respectively. Expression of hNIS in accumulated cells was determined by staining with anti-hNIS antibody. APCs were efficiently labeled with ferumoxide-protamine sulfate (FePro) complexes and transduced with hNIS gene. Our study showed not only the accumulation of intravenously administered genetically transformed, magnetically labeled APCs in the implanted breast cancer, but also the expression of hNIS gene at the tumor site. Tc-99m activity ratio (tumor/non-tumor) was significantly different between animals that received non-transduced and transduced cells (P < 0.001). Conclusion This study indicates that genetically transformed, magnetically labeled APCs can be used both as delivery vehicles and cellular probes for detecting in vivo migration and homing of cells. Furthermore, they can potentially be used as a gene carrier system for the treatment of tumor or other diseases.
Collapse
Affiliation(s)
- Ali M Rad
- Department of Radiology, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Jung KH, Paik JY, Ko BH, Lee KH. Mitogen-Activated Protein Kinase Signaling Enhances Sodium Iodide Symporter Function and Efficacy of Radioiodide Therapy in Nonthyroidal Cancer Cells. J Nucl Med 2008; 49:1966-72. [DOI: 10.2967/jnumed.108.055764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
33
|
Wei LH, Olafsen T, Radu C, Hildebrandt IJ, McCoy MR, Phelps ME, Meares C, Wu AM, Czernin J, Weber WA. Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J Nucl Med 2008; 49:1828-35. [PMID: 18927335 DOI: 10.2967/jnumed.108.054452] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Reporter gene imaging has great potential for many clinical applications including the tracking of transplanted cells and monitoring of gene therapy. However, currently available reporter gene-reporter probe combinations have significant limitations with the biodistribution of the reporter probe and the specificity and immunogenicity of the reporter gene. The objective of the present study was to evaluate a new approach for reporter gene imaging based on cell surface expression of antibody fragments that can irreversibly bind to radiometal chelates. METHODS We developed a new reporter gene, designated 1,4,7,10-tetraazacyclodocecane-N,N',N'',N'''-tetraacetic acid (DOTA) antibody reporter 1 (DAbR1), which consists of the single-chain Fv (scFv) fragment of the anti-Y-DOTA antibody 2D12.5/G54C fused to the human T cell CD4 transmembrane domain. The corresponding reporter probe is yttrium-(S)-2-(4-acrylamidobenzyl)-DOTA (*Y-AABD), a DOTA complex that binds irreversibly to a cysteine residue in the 2D12.5/G54C antibody. U-87 glioma cells were stably transfected with a DAbR1 expression vector. Binding of *Y-AABD to transfected and wild-type cells was studied in vitro and in vivo. RESULTS Flow cytometry revealed high expression of the DAbR1 protein on the cell surface of tumor cells. Uptake of 90Y-AABD in DAbR1-expressing human U-87 glioma xenografts was 6.2 (+/-1.3) percentage injected dose per gram (%ID/g) at 1 h and 4.9 (+/-0.62) %ID/g at 24 h after injection. The corresponding tumor-to-plasma ratios were 45:1 and 428:1, respectively. Uptake by U-87 tumors without the DAbR1 gene was 0.16 (+/-0.02) %ID/g at 1 h and 0.05 (+/-0.03) %ID/g at 24 h. PET images in mice with 86Y-AABD demonstrated intense uptake in DAbR1-positive tumors and low background activity in the liver. CONCLUSION These findings indicate that cell surface expression of radiometal chelate binding antibodies such as 2D12.5/G54C is a promising strategy for reporter gene imaging.
Collapse
Affiliation(s)
- Liu H Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|