1
|
Byrne C, Kjaer A, Olsen NE, Forman JL, Hasbak P. Test-retest repeatability and software reproducibility of myocardial flow measurements using rest/adenosine stress Rubidium-82 PET/CT with and without motion correction in healthy young volunteers. J Nucl Cardiol 2021; 28:2860-2871. [PMID: 32390111 DOI: 10.1007/s12350-020-02140-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/24/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Myocardial flow reserve (MFR) assessment with cardiac positron emission computed tomography (PET/CT) is well established, and quantification relies on commercial software packages. However, for reliable use, repeatability and reproducibility are important. The aim of this study was therefore to investigate and compare between scans and software packages the repeatability and reproducibility of 82Rb-PET/CT estimated MFR. METHODS AND RESULTS Forty healthy volunteers completed two 82Rb-PET/CT rest and adenosine stress scans. syngo.MBF (Siemens), quantitative-gated SPECT (QGS) (Cedars-Sinai), and Corridor4DM (4DM) were used for analyses. Motion correction was available for 4DM. Fifty percent were men and age was 24 ± 4 years (mean ± SD). Repeatability of MFR varied between scans. syngo.MBF: mean difference (95% CI) 0.26 (- 0.03 to 0.54), P = 0.07, limits of agreement (LoA): - 1.43 to 1.95; QGS: 0.19 (- 0.08 to 0.46), P = 0.15, LoA: - 1.38 to 1.76; 4DM: 0.08 (- 0.17 to 0.34), P = 0.50, LoA: - 1.37 to 1.53; and 4DM motion corrected: 0.17 (- 0.17 to 0.51), P = 0.32, LoA: - 1.89 to 2.22. MFR was higher using 4DM +/- motion correction compared with syngo.MBF and QGS (all P < 0.0001). Concordance between syngo.MBF and QGS was high (P = 0.83). CONCLUSIONS Reproducibility of MFR varied for the different software. The highest concordance between MFRs was found between syngo.MBF and QGS.
Collapse
Affiliation(s)
- Christina Byrne
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, 9841, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital Rigshospitalet and University of Copenhagen, Copenhagen, Denmark.
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Naja Enevold Olsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Weng AM, Köstler H, Bley TA, Ritter CO. Effect of short-term smoking & L-arginine on coronary endothelial function assessed by cardiac magnetic resonance cold pressor testing: a pilot study. BMC Cardiovasc Disord 2021; 21:237. [PMID: 33980159 PMCID: PMC8114700 DOI: 10.1186/s12872-021-02050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background The effect of smoking on coronary vasomotion has been investigated in the past with various imaging techniques in both short- and long-term smokers. Additionally, coronary vasomotion has been shown to be normalized in long-term smokers by L-Arginine acting as a substrate for NO synthase, revealing the coronary endothelium as the major site of abnormal vasomotor response. Aim of the prospective cohort study was to investigate coronary vasomotion of young healthy short-term smokers via magnetic resonance cold pressor test with and without the administration of L-Arginine and compare obtained results with the ones from nonsmokers. Methods Myocardial blood flow (MBF) was quantified with first-pass perfusion MRI on a 1.5 T scanner in healthy short-term smokers (N = 10, age: 25.0 ± 2.8 years, 5.0 ± 2.9 pack years) and nonsmokers (N = 10, age: 34.3 ± 13.6) both at rest and during cold pressor test (CPT). Smokers underwent an additional examination after administration of L-Arginine within a median of 7 days of the naïve examination. Results MBF at rest turned out to be 0.77 ± 0.30 (smokers with no L-Arginine; mean ± standard deviation), 0.66 ± 0.21 (smokers L-Arginine) and 0.84 ± 0.08 (nonsmokers). Values under CPT were 1.21 ± 0.42 (smokers no L-Arginine), 1.09 ± 0.35 (smokers L-Arginine) and 1.63 ± 0.33 (nonsmokers). In all groups, MBF was significantly increased under CPT compared to the corresponding rest examination (p < 0.05 in all cases). Additionally, MBF under CPT was significantly different between the smokers and the nonsmokers (p = 0.002). MBF at rest was significantly different between the smokers when L-Arginine was given and the nonsmokers (p = 0.035). Conclusion Short-term smokers showed a reduced response to cold both with and without the administration of L-Arginine. However, absolute MBF values under CPT were lower compared to nonsmokers independently of L-Arginine administration.
Collapse
Affiliation(s)
- Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Christian O Ritter
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.,Institute for Diagnostic and Interventional Radiology, University Medicine Goettingen, Goettingen, Germany
| |
Collapse
|
3
|
Votaw JR, Packard RRS. Motion correction to enhance absolute myocardial blood flow quantitation by PET. J Nucl Cardiol 2020; 27:1114-1117. [PMID: 31650493 DOI: 10.1007/s12350-019-01912-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- John R Votaw
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
| | - René R Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Schindler TH, Valenta I. Relative disagreement among different software packages in PET-flow quantitation: An appeal for consistency. J Nucl Cardiol 2020; 27:1234-1236. [PMID: 30903607 DOI: 10.1007/s12350-019-01633-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Thomas H Schindler
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA.
| | - Ines Valenta
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| |
Collapse
|
5
|
Alessio AM, Bindschadler M, Busey JM, Shuman WP, Caldwell JH, Branch KR. Accuracy of Myocardial Blood Flow Estimation From Dynamic Contrast-Enhanced Cardiac CT Compared With PET. Circ Cardiovasc Imaging 2019; 12:e008323. [PMID: 31195817 DOI: 10.1161/circimaging.118.008323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background The accuracy of absolute myocardial blood flow (MBF) from dynamic contrast-enhanced cardiac computed tomography acquisitions has not been fully characterized. We evaluate computed tomography (CT) compared with rubidium-82 positron emission tomography (PET) MBF estimates in a high-risk population. Methods In a prospective trial, patients receiving clinically indicated rubidium-82 PET exams were recruited to receive a dynamic contrast-enhanced cardiac computed tomography exam. The CT protocol included a rest and stress dynamic portion each acquiring 12 to 18 cardiac-gated frames. The global MBF was estimated from the PET and CT exam. Results Thirty-four patients referred for cardiac rest-stress PET were recruited. Of the 68 dynamic contrast-enhanced cardiac computed tomography scans, 5 were excluded because of injection errors or mismatched hemodynamics. The CT-derived global MBF was highly correlated with the PET MBF (r=0.92; P<0.001) with a mean difference of 0.7±26.4%. The CT MBF estimates were within 20% of PET estimates ( P<0.02) with a mean of (1) MBF for resting flow of PET versus CT of 0.9±0.3 versus 1.0±0.2 mL/min per gram and (2) MBF for stress flow of 2.1±0.7 versus 2.0±0.8 mL/min per gram. Myocardial flow reserve was -14±28% underestimated with CT (PET versus CT myocardial flow reserve, 2.5±0.6 versus 2.2±0.6). The proposed rest+stress+computed tomography angiography protocol had a dose length product of 598±76 mGy×cm resulting in an approximate effective dose of 8.4±1.1 mSv. Conclusions In a high-risk clinical population, a clinically practical dynamic contrast-enhanced cardiac computed tomography provided unbiased MBF estimates within 20% of rubidium-82 PET. Although unbiased, the CT estimates contain substantial variance with an standard error of the estimate of 0.44 mL/min per gram. Myocardial flow reserve estimation was not as accurate as individual MBF estimates.
Collapse
Affiliation(s)
- Adam M Alessio
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington.,Computational Mathematics, Biomedical Engineering, and Radiology, Michigan State University (A.M.A.)
| | - Michael Bindschadler
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington
| | - Janet M Busey
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington
| | - William P Shuman
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington
| | - James H Caldwell
- Department of Radiology (A.M.A., M.B., J.M.B., W.P.S., J.H.C.), University of Washington.,Division of Cardiology, Department of Medicine (J.H.C., K.R.B.), University of Washington
| | - Kelley R Branch
- Division of Cardiology, Department of Medicine (J.H.C., K.R.B.), University of Washington
| |
Collapse
|
6
|
15-O-water myocardial flow reserve PET and CT angiography by full hybrid PET/CT as a potential alternative to invasive angiography. Int J Cardiovasc Imaging 2018; 34:2011-2022. [PMID: 30066164 DOI: 10.1007/s10554-018-1420-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023]
Abstract
Combined myocardial flow reserve (MFR) by PET and CT coronary angiography (CTA) is a promising tool for assessment of coronary artery disease. Prior analyses of MFR/CTA has been performed as side-by-side interpretation, not as volume rendered, full hybrid analysis, with fused MFR/CTA. We aimed to: (i) establish a method for full hybrid analysis of MFR/CTA, (ii) validate the inter- and intra-observer reproducibility of MFR values, and (iii) determine the diagnostic value of side-by-side versus full hybrid MFR/CTA with 15-O-water PET. Forty-four outpatients scheduled for invasive coronary angiography (ICA) were enrolled prospectively. All underwent rest/stress 15-O-water PET/CTA with ICA as reference. Within two observers of different experience, the Pearson r at global and territorial level exceeded 0.953 for rest, stress, and MFR values, as determined by Carimas software. Within and between observers, the mean differences between rest, stress, and MFR values were close to zero and the confidence intervals for 95% limits of agreement were narrow. The diagnostic performance of full hybrid PET/CTA did not outperform the side-by-side approach, but performed better than MFR without CTA at vessel level: specificity 93% (95% confidence limits: 89-97%) versus 76% (64-88%), p = 0.0004; positive predictive value 71% (55-86%) versus 51% (37-65%), p = 0.0001; accuracy 90% (84-95%) versus 77% (69-84%), p = 0.0009. MFR showed high reproducibility within and between observers of different experience. The full hybrid model was not superior to side-by-side interpretation of MFR/CTA, but proved better than MFR alone at vessel level with regard to specificity, positive predictive value, and accuracy.
Collapse
|
7
|
Brown LAE, Onciul SC, Broadbent DA, Johnson K, Fent GJ, Foley JRJ, Garg P, Chew PG, Knott K, Dall’Armellina E, Swoboda PP, Xue H, Greenwood JP, Moon JC, Kellman P, Plein S. Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects. J Cardiovasc Magn Reson 2018; 20:48. [PMID: 29983119 PMCID: PMC6036695 DOI: 10.1186/s12968-018-0462-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-invasive assessment of myocardial ischaemia is a cornerstone of the diagnosis of coronary artery disease. Measurement of myocardial blood flow (MBF) using positron emission tomography (PET) is the current reference standard for non-invasive quantification of myocardial ischaemia. Dynamic myocardial perfusion cardiovascular magnetic resonance (CMR) offers an alternative to PET and a recently developed method with automated inline perfusion mapping has shown good correlation of MBF values between CMR and PET. This study assessed the repeatability of myocardial perfusion mapping by CMR in healthy subjects. METHODS Forty-two healthy subjects were recruited and underwent adenosine stress and rest perfusion CMR on two visits. Scans were repeated with a minimum interval of 7 days. Intrastudy rest and stress MBF repeatability were assessed with a 15-min interval between acquisitions. Interstudy rest and stress MBF and myocardial perfusion reserve (MPR) were measured for global myocardium and regionally for coronary territories and slices. RESULTS There was no significant difference in intrastudy repeated global rest MBF (0.65 ± 0.13 ml/g/min vs 0.62 ± 0.12 ml/g/min, p = 0.24, repeatability coefficient (RC) =24%) or stress (2.89 ± 0.56 ml/g/min vs 2.83 ± 0.64 ml/g/min, p = 0.41, RC = 29%) MBF. No significant difference was seen in interstudy repeatability for global rest MBF (0.64 ± 0.13 ml/g/min vs 0.64 ± 0.15 ml/g/min, p = 0.80, RC = 32%), stress MBF (2.71 ± 0.61 ml/g/min vs 2.55 ± 0.57 ml/g/min, p = 0.12, RC = 33%) or MPR (4.24 ± 0.69 vs 3.73 ± 0.76, p = 0.25, RC = 36%). Regional repeatability was good for stress (RC = 30-37%) and rest MBF (RC = 32-36%) but poorer for MPR (RC = 35-43%). Within subject coefficient of variation was 8% for rest and 11% for stress within the same study, and 11% for rest and 12% for stress between studies. CONCLUSIONS Fully automated, inline, myocardial perfusion mapping by CMR shows good repeatability that is similar to the published PET literature. Both rest and stress MBF show better repeatability than MPR, particularly in regional analysis.
Collapse
Affiliation(s)
- Louise A. E. Brown
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - Sebastian C. Onciul
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - David A. Broadbent
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
- Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, LS1 3EX UK
| | - Kerryanne Johnson
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - Graham J. Fent
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - James R. J. Foley
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - Pankaj Garg
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - Pei G. Chew
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - Kristopher Knott
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London, UK
| | - Erica Dall’Armellina
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - Peter P. Swoboda
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD USA
| | - John P. Greenwood
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| | - James C. Moon
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD USA
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT UK
| |
Collapse
|
8
|
Klein R, Ocneanu A, Renaud JM, Ziadi MC, Beanlands RSB, deKemp RA. Consistent tracer administration profile improves test-retest repeatability of myocardial blood flow quantification with 82Rb dynamic PET imaging. J Nucl Cardiol 2018; 25:929-941. [PMID: 27804067 PMCID: PMC5966478 DOI: 10.1007/s12350-016-0698-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Quantification of myocardial blood flow (MBF) and stress/rest flow reserve is used increasingly to diagnose multi-vessel coronary artery disease and micro-vascular disease with PET imaging. However, variability in the measurements may limit physician confidence to direct revascularization therapies based on specific threshold values. This study evaluated the effects of rubidium-82 (82Rb) tracer injection profile using a constant-activity-rate (CA) vs a constant-flow-rate (CF) infusion to improve test-retest repeatability of MBF measurements. METHOD 22 participants underwent single-session 82Rb dynamic PET imaging during rest and dipyridamole stress using one of 2 test-retest infusion protocols: CA-CA (n = 12) or CA-CF (n = 10). MBF was quantified using a single-tissue-compartment model (1TCM) and a simplified retention model (SRM). Non-parametric test-retest repeatability coefficients (RPCnp) were compared between groups. Myocardium-to-blood contrast and signal-to-noise ratios of the late uptake images (2 to 6 minutes) were also compared to evaluate standard myocardial perfusion image (MPI) quality. RESULTS MBF values in the CA-CA group were more repeatable (smaller RPCnp) than the CA-CF group using the 1TCM at rest alone, rest and stress combined, and stress/rest reserve (21% vs 36%, 16% vs 19%, and 20% vs 27%, P < 0.05, respectively), and using the SRM at Rest and Stress alone, Rest and Stress combined, and stress/rest reserve (21% vs 38%, 15% vs 25%, 22% vs 38%, and 23% vs 49%, P < 0.05, respectively). In terms of image quality, myocardium-to-blood contrast and signal-to-noise ratios were not significantly different between groups. CONCLUSIONS Constant-activity-rate 'square-wave' infusion of 82Rb produces more repeatable tracer injection profiles and decreases the test-retest variability of MBF measurements, when compared to a constant-flow-rate 'bolus' administration of 82Rb, especially with SRM, and without compromising standard MPI quality.
Collapse
Affiliation(s)
- Ran Klein
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada.
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
- Division of Nuclear Medicine, Department of Medicine, The Ottawa Hospital and University of Ottawa, Box 232, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada.
| | - Adrian Ocneanu
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | - Jennifer M Renaud
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| | - Maria C Ziadi
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
- Non Invasive Cardiovascular Imaging Department, Diagnostico Medico Oroño, Rosario, Argentina
| | - Rob S B Beanlands
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
- Division of Nuclear Medicine, Department of Medicine, The Ottawa Hospital and University of Ottawa, Box 232, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| | - Robert A deKemp
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
- Division of Nuclear Medicine, Department of Medicine, The Ottawa Hospital and University of Ottawa, Box 232, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| |
Collapse
|
9
|
Juneau D, deKemp RA, Beanlands RSB. Reporting myocardial flow reserve with PET. Ready or not, here it is! But walk before you fly! J Nucl Cardiol 2018; 25:164-168. [PMID: 29058114 DOI: 10.1007/s12350-017-1087-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Daniel Juneau
- Nuclear Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada
| | - Robert A deKemp
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Rob S B Beanlands
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
10
|
Fayssal IA, Moukalled F, Alam S, Isma'eel H. An Outflow Boundary Condition Model for Noninvasive Prediction of Fractional Flow Reserve in Diseased Coronary Arteries. J Biomech Eng 2018; 140:2659642. [DOI: 10.1115/1.4038250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Indexed: 12/28/2022]
Abstract
This paper reports on a new boundary condition formulation to model the total coronary myocardial flow and resistance characteristics of the myocardial vascular bed for any specific patient when considered for noninvasive diagnosis of ischemia. The developed boundary condition model gives an implicit representation of the downstream truncated coronary bed. Further, it is based on incorporating patient-specific physiological parameters that can be noninvasively extracted to account for blood flow demand to the myocardium at rest and hyperemic conditions. The model is coupled to a steady three-dimensional (3D) collocated pressure-based finite volume flow solver and used to characterize the “functional significance” of a patient diseased coronary artery segment without the need for predicting the hemodynamics of the entire arterial system. Predictions generated with this boundary condition provide a deep understanding of the inherent challenges behind noninvasive image-based diagnostic techniques when applied to human diseased coronary arteries. The overall numerical method and formulated boundary condition model are validated via two computational-based procedures and benchmarked with available measured data. The newly developed boundary condition is used via a designed computational methodology to (a) confirm the need for incorporating patient-specific physiological parameters when modeling the downstream coronary resistance, (b) explain the discrepancies presented in the literature between measured and computed fractional flow reserve (FFRCT), and (c) discuss the current limitations and future challenges in shifting to noninvasive assessment of ischemia.
Collapse
Affiliation(s)
- Iyad A. Fayssal
- Computational Mechanics Laboratory, Mechanical Engineering Department, American University of Beirut, Riad El-Solh, Beirut 1107 2020, Lebanon e-mail:
| | - Fadl Moukalled
- Professor Mechanical Engineering Department, American University of Beirut, Riad El-Solh, Beirut 1107 2020, Lebanon e-mail:
| | - Samir Alam
- Professor Department of Internal Medicine, American University of Beirut, Riad El-Solh, Beirut 1107 2020, Lebanon e-mail:
| | - Hussain Isma'eel
- Associate Professor Department of Internal Medicine, American University of Beirut, Riad El-Solh, Beirut 1107 2020, Lebanon e-mail:
| |
Collapse
|
11
|
Campisi R, Marengo FD. Coronary microvascular dysfunction in women with nonobstructive ischemic heart disease as assessed by positron emission tomography. Cardiovasc Diagn Ther 2017; 7:196-205. [PMID: 28540214 DOI: 10.21037/cdt.2017.04.08] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Traditional approaches for risk assessment of ischemic heart disease (IHD) are based on the physiological consequences of an epicardial coronary stenosis. Of note, normal coronary arteries or nonobstructive coronary artery disease (CAD) is a common finding in women with signs and symptoms of ischemia. Therefore, assessment of risk based on a coronary stenosis approach may fail in women. Positron emission tomography (PET) quantifies absolute myocardial blood flow (MBF) which may help to elucidate other mechanisms involved such as endothelial dysfunction and alterations in the smooth muscle cell relaxation responsible for IHD in women. The objective of the present review is to describe the current state of the art of PET imaging in assessing IHD in women with nonobstructive CAD.
Collapse
Affiliation(s)
- Roxana Campisi
- Department of Nuclear Medicine and Cardiovascular Imaging, Diagnóstico Maipú, Buenos Aires, Argentina.,Department of Nuclear Medicine, Instituto Argentino de Diagnóstico y Tratamiento S.A., Buenos Aires, Argentina
| | - Fernando D Marengo
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Optimally Repeatable Kinetic Model Variant for Myocardial Blood Flow Measurements with 82Rb PET. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:6810626. [PMID: 28293274 PMCID: PMC5331165 DOI: 10.1155/2017/6810626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/24/2016] [Indexed: 11/18/2022]
Abstract
Purpose. Myocardial blood flow (MBF) quantification with 82Rb positron emission tomography (PET) is gaining clinical adoption, but improvements in precision are desired. This study aims to identify analysis variants producing the most repeatable MBF measures. Methods. 12 volunteers underwent same-day test-retest rest and dipyridamole stress imaging with dynamic 82Rb PET, from which MBF was quantified using 1-tissue-compartment kinetic model variants: (1) blood-pool versus uptake region sampled input function (Blood/Uptake-ROI), (2) dual spillover correction (SOC-On/Off), (3) right blood correction (RBC-On/Off), (4) arterial blood transit delay (Delay-On/Off), and (5) distribution volume (DV) constraint (Global/Regional-DV). Repeatability of MBF, stress/rest myocardial flow reserve (MFR), and stress/rest MBF difference (ΔMBF) was assessed using nonparametric reproducibility coefficients (RPCnp = 1.45 × interquartile range). Results. MBF using SOC-On, RVBC-Off, Blood-ROI, Global-DV, and Delay-Off was most repeatable for combined rest and stress: RPCnp = 0.21 mL/min/g (15.8%). Corresponding MFR and ΔMBF RPCnp were 0.42 (20.2%) and 0.24 mL/min/g (23.5%). MBF repeatability improved with SOC-On at stress (p < 0.001) and tended to improve with RBC-Off at both rest and stress (p < 0.08). DV and ROI did not significantly influence repeatability. The Delay-On model was overdetermined and did not reliably converge. Conclusion. MBF and MFR test-retest repeatability were the best with dual spillover correction, left atrium blood input function, and global DV.
Collapse
|
13
|
Schindler TH. Myocardial blood flow: Putting it into clinical perspective. J Nucl Cardiol 2016; 23:1056-1071. [PMID: 26711100 DOI: 10.1007/s12350-015-0372-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/19/2023]
Abstract
In recent years, positron emission tomography/computed tomography (PET/CT)-determined myocardial perfusion in conjunction with myocardial blood flow (MBF) quantification in mL·g(-1)·min(-1) has emerged from mere research application to initial clinical use in the detection and characterization of the coronary artery disease (CAD) process. The concurrent evaluation of MBF during vasomotor stress and at rest with the resulting myocardial flow reserve (MFR = MBF during stress/MBF at rest) expands the scope of conventional myocardial perfusion imaging not only to the detection of the most advanced and culprit CAD, as evidenced by the stress-related regional myocardial perfusion defect, but also to the less severe or intermediate stenosis in patients with multivessel CAD. Due to the non-specific nature of the hyperemic MBF and MFR, the interpretation of hyperemic flow increases with PET/CT necessitates an appropriate placement in the context with microvascular function, wall motion analysis, and eventually underlying coronary morphology in CAD patients. This review aims to provide a comprehensive overview of various diagnostic scenarios of PET/CT-determined myocardial perfusion and flow quantification in the detection and characterization of clinically manifest CAD.
Collapse
Affiliation(s)
- Thomas Hellmut Schindler
- Division of Nuclear Medicine, Cardiovascular Nuclear Medicine, Department of Radiology and Radiological Science SOM, Johns Hopkins University School of Medicine, JHOC 3225, 601 N. Caroline Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
14
|
Berti V, Sciagrà R, Neglia D, Pietilä M, Scholte AJ, Nekolla S, Rouzet F, Pupi A, Knuuti J. Segmental quantitative myocardial perfusion with PET for the detection of significant coronary artery disease in patients with stable angina. Eur J Nucl Med Mol Imaging 2016; 43:1522-9. [DOI: 10.1007/s00259-016-3362-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022]
|
15
|
Moody JB, Murthy VL, Lee BC, Corbett JR, Ficaro EP. Variance Estimation for Myocardial Blood Flow by Dynamic PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:2343-2353. [PMID: 25974932 DOI: 10.1109/tmi.2015.2432678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The estimation of myocardial blood flow (MBF) by (13)N-ammonia or (82)Rb dynamic PET typically relies on an empirically determined generalized Renkin-Crone equation to relate the kinetic parameter K1 to MBF. Because the Renkin-Crone equation defines MBF as an implicit function of K1, the MBF variance cannot be determined using standard error propagation techniques. To overcome this limitation, we derived novel analytical approximations that provide first- and second-order estimates of MBF variance in terms of the mean and variance of K1 and the Renkin-Crone parameters. The accuracy of the analytical expressions was validated by comparison with Monte Carlo simulations, and MBF variance was evaluated in clinical (82)Rb dynamic PET scans. For both (82)Rb and (13)N-ammonia, good agreement was observed between both (first- and second-order) analytical variance expressions and Monte Carlo simulations, with moderately better agreement for second-order estimates. The contribution of the Renkin-Crone relation to overall MBF uncertainty was found to be as high as 68% for (82)Rb and 35% for (13)N-ammonia. For clinical (82)Rb PET data, the conventional practice of neglecting the statistical uncertainty in the Renkin-Crone parameters resulted in underestimation of the coefficient of variation of global MBF and coronary flow reserve by 14-49%. Knowledge of MBF variance is essential for assessing the precision and reliability of MBF estimates. The form and statistical uncertainty in the empirical Renkin-Crone relation can make substantial contributions to the variance of MBF. The novel analytical variance expressions derived in this work enable direct estimation of MBF variance which includes this previously neglected contribution.
Collapse
|
16
|
Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J Nucl Cardiol 2015; 22:935-51. [PMID: 25868451 DOI: 10.1007/s12350-015-0100-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/11/2015] [Indexed: 12/23/2022]
Abstract
A number of exciting advances in PET/CT technology and improvements in methodology have recently converged to enhance the feasibility of routine clinical quantification of myocardial blood flow and flow reserve. Recent promising clinical results are pointing toward an important role for myocardial blood flow in the care of patients. Absolute blood flow quantification can be a powerful clinical tool, but its utility will depend on maintaining precision and accuracy in the face of numerous potential sources of methodological errors. Here we review recent data and highlight the impact of PET instrumentation, image reconstruction, and quantification methods, and we emphasize (82)Rb cardiac PET which currently has the widest clinical application. It will be apparent that more data are needed, particularly in relation to newer PET technologies, as well as clinical standardization of PET protocols and methods. We provide recommendations for the methodological factors considered here. At present, myocardial flow reserve appears to be remarkably robust to various methodological errors; however, with greater attention to and more detailed understanding of these sources of error, the clinical benefits of stress-only blood flow measurement may eventually be more fully realized.
Collapse
Affiliation(s)
| | | | - James R Corbett
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, 1338 Cardiovascular Center, 1500 E. Medical Center Dr, SPC 5873, Ann Arbor, MI, 48109-5873, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, 1338 Cardiovascular Center, 1500 E. Medical Center Dr, SPC 5873, Ann Arbor, MI, 48109-5873, USA
| | - Venkatesh L Murthy
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, 1338 Cardiovascular Center, 1500 E. Medical Center Dr, SPC 5873, Ann Arbor, MI, 48109-5873, USA.
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Abstract
Positron-emitting myocardial flow radiotracers such as (15)O-water, (13)N-ammonia and (82)Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of (15)O-water and (13)N-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of (82)Rubidium as it can be eluted from a commercially available (82)Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109 minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials.
Collapse
Affiliation(s)
- Thomas H Schindler
- Division of Nuclear Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Saraste A, Ukkonen H, Varis A, Vasankari T, Tunturi S, Taittonen M, Rautakorpi P, Luotolahti M, Airaksinen KEJ, Knuuti J. Effect of spinal cord stimulation on myocardial perfusion reserve in patients with refractory angina pectoris. Eur Heart J Cardiovasc Imaging 2014; 16:449-55. [DOI: 10.1093/ehjci/jeu276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Klein R, Hung GU, Wu TC, Huang WS, Li D, deKemp RA, Hsu B. Feasibility and operator variability of myocardial blood flow and reserve measurements with ⁹⁹mTc-sestamibi quantitative dynamic SPECT/CT imaging. J Nucl Cardiol 2014; 21:1075-88. [PMID: 25280761 DOI: 10.1007/s12350-014-9971-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Myocardial blood flow (MBF) quantification with dynamic SPECT could lead to widespread utilization of MBF imaging in clinical practice with little cost increase over current standard SPECT myocardial perfusion imaging. This work evaluates the feasibility and operator-dependent variability of MBF and flow reserve measurements with (99m)Tc-sestamibi (MIBI) dynamic SPECT imaging using a standard dual-head SPECT camera. METHODS Twenty-eight patients underwent dipyridamole-stress and rest imaging with dynamic SPECT/CT acquisition. Quantitative images were iteratively reconstructed with all physical corrections and then myocardial and arterial blood regions of interest (ROI) were defined semi-automatically. A compartmental model was fitted to these ROI-sampled time-activity-curves, and flow-dependent MIBI extraction correction was applied to derive regional MBF values. Myocardial flow reserve (MFR) was estimated as stress/rest MBF ratio. MBF and MFR in low and high risk populations were evaluated for ability to detect disease. Images were each processed twice (≥7 days apart) by one expert and one novice operator to evaluate intra- and inter-operator variability of MBF and MFR measurement in the three coronary artery vascular territories. RESULTS Mean rest flow, stress flow, and MFR values were 0.83, 1.82 mL·minute(-1)·g(-1), and 2.45, respectively. For stress/rest MFR, the inter-operator reproducibility was r(2) = 0.86 with RPC = 1.1. Stress MBF and MFR were significantly reduced (P < .05) in high risk (n = 9) vs low risk populations (n = 19), indicating ability to detect disease. For expert and novice operators very good intra-operator correlations of r(2) = 0.98 and 0.95 (n = 168, P < .001) were observed for combined rest and stress regional flow values. Bland-Altman reproducibility coefficients (RPC) were 0.25 and 0.47 mL·minute(-1)·g(-1) for the expert and novice operators, respectively (P < .001). Inter-operator correlation was r(2) = 0.91 and Bland-Altman RPC = 0.58 mL·minute(-1)·g(-1) (n = 336). CONCLUSIONS MBF and reserve measurements using (99m)Tc-sestamibi on a traditional, two-headed camera with fast rotation and with quantitative dynamic SPECT appears to be feasible, warranting further investigation.
Collapse
Affiliation(s)
- Ran Klein
- University of Ottawa Heart Institute, Cardiac PET Centre, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada,
| | | | | | | | | | | | | |
Collapse
|
20
|
Capron T, Troalen T, Robert B, Jacquier A, Bernard M, Kober F. Myocardial perfusion assessment in humans using steady-pulsed arterial spin labeling. Magn Reson Med 2014; 74:990-8. [DOI: 10.1002/mrm.25479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Thibaut Capron
- Aix-Marseille Université, UMR 7339, CNRS, CRMBM (Centre de Résonance Magnétique Biologique et Médicale); 13385 Marseille France
| | - Thomas Troalen
- Aix-Marseille Université, UMR 7339, CNRS, CRMBM (Centre de Résonance Magnétique Biologique et Médicale); 13385 Marseille France
| | | | - Alexis Jacquier
- Aix-Marseille Université, UMR 7339, CNRS, CRMBM (Centre de Résonance Magnétique Biologique et Médicale); 13385 Marseille France
| | - Monique Bernard
- Aix-Marseille Université, UMR 7339, CNRS, CRMBM (Centre de Résonance Magnétique Biologique et Médicale); 13385 Marseille France
| | - Frank Kober
- Aix-Marseille Université, UMR 7339, CNRS, CRMBM (Centre de Résonance Magnétique Biologique et Médicale); 13385 Marseille France
| |
Collapse
|
21
|
Ohira H, Dowsley T, Dwivedi G, deKemp RA, Chow BJ, Ruddy TD, Davies RA, DaSilva J, Beanlands RSB, Hessian R. Quantification of myocardial blood flow using PET to improve the management of patients with stable ischemic coronary artery disease. Future Cardiol 2014; 10:611-31. [DOI: 10.2217/fca.14.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT Cardiac PET has been evolving over the past 30 years. Today, it is accepted as a valuable imaging modality for the noninvasive assessment of coronary artery disease. PET has demonstrated superior diagnostic accuracy for the detection of coronary artery disease compared with single-photon emission computed tomography, and also has a well-established prognostic value. The routine addition of absolute quantification of myocardial blood flow increases the diagnostic accuracy for three-vessel disease and provides incremental functional and prognostic information. Moreover, the characterization of the vasodilator capacity of the coronary circulation may guide proper decision-making and monitor the effects of lifestyle changes, exercise training, risk factor modification or medical therapy for improving regional and global myocardial blood flow. This type of image-guided approach to individualized patient therapy is now attainable with the routine use of cardiac PET flow reserve imaging.
Collapse
Affiliation(s)
- Hiroshi Ohira
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Taylor Dowsley
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Girish Dwivedi
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Robert A deKemp
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Benjamin J Chow
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Terrence D Ruddy
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ross A Davies
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jean DaSilva
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Rob SB Beanlands
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Renee Hessian
- MFI program, National Cardiac PET Center, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
22
|
Zhang SJ, Wang YX, Yuan J, Jin J, Wang YC, Chang D, Weng D, Greiser A, Ju S. Time-efficient myocardial contrast partition coefficient measurement from early enhancement with magnetic resonance imaging. PLoS One 2014; 9:e93124. [PMID: 24667489 PMCID: PMC3965516 DOI: 10.1371/journal.pone.0093124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/28/2014] [Indexed: 11/21/2022] Open
Abstract
Objective Our purpose was to validate an early enhancement time point for accurately measuring the myocardial contrast partition coefficient (lambda) using dynamic-equilibrium magnetic resonance imaging. Materials and Methods The pre- and post-contrast longitudinal relaxation rates (reciprocal of T1) of the interventricular septum (R1m) and blood pool (R1b) were obtained from fifteen healthy volunteers and three diabetic patients with hypertension using two optimized T1 mapping sequences (modified Look-Locker inversion recovery) on a 3-Tesla magnetic resonance scanner. Reference lambda values were calculated as the slope of the regression line of R1m versus R1b at dynamic equilibrium (multi-point regression method). The simplified pre-/post-enhancement two-acquisition method (two-point method) was used to calculate lambda by relating the change in R1m and R1b using different protocols according to the acquisition stage of the post-enhancement data point. The agreement with the referential method was tested by calculating Pearson's correlation coefficient and the intra-class correlation coefficient. Results The lambda values measured by the two-point method increased (from 0.479±0.041 to 0.534±0.043) over time from 6 to 45 minutes after contrast and exhibited good correlation with the reference at each time point (r≥0.875, p<0.05). The intra-class correlation coefficient on absolute agreement with the reference lambda was 0.946, 0.929 and 0.922 at the 6th, 7th and 8th minutes and dropped from 0.878 to 0.403 from the 9th minute on. Conclusions The time-efficient two-point method at 6–8 minutes after the Gd-DTPA bolus injection exhibited good agreement with the multi-point regression method and can be applied for accurate lambda measurement in normal myocardium.
Collapse
Affiliation(s)
- Shi-Jun Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jing Yuan
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiyang Jin
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Dehe Weng
- Siemens Shenzhen Magnetic Resonance, Shenzhen, China
| | | | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
23
|
Hsu B. PET tracers and techniques for measuring myocardial blood flow in patients with coronary artery disease. J Biomed Res 2013; 27:452-9. [PMID: 24285943 PMCID: PMC3841470 DOI: 10.7555/jbr.27.20130136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/18/2013] [Indexed: 01/05/2023] Open
Abstract
Assessment of the relative distribution of myocardial flow with myocardial perfusion imaging (MPI) is methodologically limited to predict the presence or absence of flow-limited coronary artery disease (CAD). This limitation may often occur, when obstructive lesions involve multiple epicardial coronary arteries or disease-related disturbances of the coronary circulation coexist at the microvascular level. Non-invasive assessment of myocardial blood flow in absolute units with position emission tomography (PET) has been positioned as the solution to improve CAD diagnosis and prediction of patient outcomes associated with risks for cardiac events. This article reviews technical and clinical aspects of myocardial blood flow quantitation with PET and discusses the practical consideration of this approach toward worldwide clinical utilization.
Collapse
Affiliation(s)
- Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MS 65211, USA
| |
Collapse
|
24
|
Anagnostopoulos C, Georgakopoulos A, Pianou N, Nekolla SG. Assessment of myocardial perfusion and viability by positron emission tomography. Int J Cardiol 2013; 167:1737-49. [PMID: 23313467 DOI: 10.1016/j.ijcard.2012.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/30/2012] [Accepted: 12/04/2012] [Indexed: 12/16/2022]
Abstract
An important evolution has taken place recently in the field of cardiovascular Positron Emission Tomography (PET) imaging. Being originally a highly versatile research tool that has contributed significantly to advance our understanding of cardiovascular physiology and pathophysiology, PET has gradually been incorporated into the clinical cardiac imaging portfolio contributing to diagnosis and management of patients investigated for coronary artery disease (CAD). PET myocardial perfusion imaging (MPI) has an average sensitivity and specificity around 90% for the detection of angiographically significant CAD and it is also a very accurate technique for prognostication of patients with suspected or known CAD. In clinical practice, Rubidium-82 ((82)Rb) is the most widely used radiopharmaceutical for MPI that affords also accurate and reproducible quantification in absolute terms (ml/min/g) comparable to that obtained by cyclotron produced tracers such as Nitrogen-13 ammonia ((13)N-ammonia) and Oxygen-15 labeled water ((15)O-water). Quantification increases sensitivity for detection of multivessel CAD and it may also be helpful for detection of early stages of atherosclerosis or microvascular dysfunction. PET imaging combining perfusion with myocardial metabolism using (18)F-Fluorodeoxyglucose ((18)F FDG), a glucose analog, is an accurate standard for assessment of myocardial hibernation and risk stratification of patients with left ventricular dysfunction of ischemic etiology. It is helpful for guiding management decisions regarding revascularization or medical treatment and predicting improvement of symptoms, exercise capacity and quality of life post-revascularization. The strengths of PET can be increased further with the introduction of hybrid scanners, which combine PET with computed tomography (PET/CT) or with magnetic resonance imaging (PET/MRI) offering integrated morphological, biological and physiological information and hence, comprehensive evaluation of the consequences of atherosclerosis in the coronary arteries and the myocardium.
Collapse
|
25
|
Zhang X, Schindler TH, Prior JO, Sayre J, Dahlbom M, Huang SC, Schelbert HR. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy. Eur J Nucl Med Mol Imaging 2013; 40:532-41. [PMID: 23287994 DOI: 10.1007/s00259-012-2311-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/21/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). METHODS Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25 ± 10 %) were studied with (13)N-ammonia and (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to (13)N-ammonia activity ratios. RESULTS Rest MBF was reduced in viable (0.42 ± 0.18 ml/min per g) and nonviable regions (0.32 ± 0.09 ml/min per g) relative to remote regions (0.68 ± 0.23 ml/min per g, p < 0.001) and to normals (0.63 ± 0.13 ml/min per g). Dipyridamole raised MBFs in controls, remote, viable, and nonviable regions. MBFs at rest (p < 0.05) and stress (p < 0.05) in viable regions were significantly higher than that in nonviable regions, while MFRs did not differ significantly (p > 0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39 ± 0.56 vs 1.70 ± 0.45, p > 0.05) but were significantly lower in nonviable regions (1.23 ± 0.43, p < 0.001). Moreover, the FDG and thus glucose extraction was higher in viable than in remote (1.40 ± 0.14 vs 0.90 ± 0.20, p < 0.001) and in nonviable regions (1.13 ± 0.21, p < 0.001). The extraction of FDG in viable regions was independent of rest MBF but correlated inversely with MFRs (r =-0.424, p < 0.05). No correlation between the FDG extraction and MFR was observed in nonviable regions. CONCLUSION As in the animal model, decreasing MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-6948, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Efseaff M, Klein R, Ziadi MC, Beanlands RS, deKemp RA. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. J Nucl Cardiol 2012; 19:997-1006. [PMID: 22826134 DOI: 10.1007/s12350-012-9600-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/05/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Rubidium-82 ((82)Rb) PET imaging has been proposed for routine myocardial blood flow (MBF) quantification. However, few studies have investigated the test-retest repeatability of this method. The aim of this study was to optimize same-day repeatability of rest MBF imaging with a highly automated analysis program (FlowQuant) using image-derived input functions and dual spillover corrections (SOC). METHODS Test-retest repeatability of resting left-ventricle (LV) MBF was measured in patients (n = 27) with suspected coronary artery disease (CAD) and healthy volunteers (n = 9). The effects of scan-time, reconstruction, and quantification methods were assessed with correlation and Bland-Altman repeatability coefficients. RESULTS Factors affecting rest MBF included gender, suspected CAD, and SOC (P < .001). Significant test-retest correlations were found using all analysis methods tested (r > 0.79). The best repeatability coefficient for same-day MBF was 0.20 mL/minute/g using a 6-minute scan-time, iterative reconstruction, SOC, resting rate-pressure-product (RPP) adjustment, and left atrium input function. This protocol was significantly less variable than standard protocols using filtered back-projection reconstruction, longer scan-time, no SOC, or LV input function. CONCLUSION Absolute MBF can be measured with good repeatability using FlowQuant analysis of (82)Rb PET scans with a 6-minute scan time, iterative reconstruction, dual SOC, RPP-adjustment, and an image-derived input function in the left atrium cavity.
Collapse
|
27
|
Uniformity and repeatability of normal resting myocardial blood flow in rats using [13N]-ammonia and small animal PET. Nucl Med Commun 2012; 33:917-25. [DOI: 10.1097/mnm.0b013e328355d8bc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Katoh C, Yoshinaga K, Klein R, Kasai K, Tomiyama Y, Manabe O, Naya M, Sakakibara M, Tsutsui H, deKemp RA, Tamaki N. Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. J Nucl Cardiol 2012; 19:763-74. [PMID: 22527800 DOI: 10.1007/s12350-012-9558-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Myocardial blood flow (MBF) estimation with (82)Rubidium ((82)Rb) positron emission tomography (PET) is technically difficult because of the high spillover between regions of interest, especially due to the long positron range. We sought to develop a new algorithm to reduce the spillover in image-derived blood activity curves, using non-uniform weighted least-squares fitting. METHODS Fourteen volunteers underwent imaging with both 3-dimensional (3D) (82)Rb and (15)O-water PET at rest and during pharmacological stress. Whole left ventricular (LV) (82)Rb MBF was estimated using a one-compartment model, including a myocardium-to-blood spillover correction to estimate the corresponding blood input function Ca(t)(whole). Regional K1 values were calculated using this uniform global input function, which simplifies equations and enables robust estimation of MBF. To assess the robustness of the modified algorithm, inter-operator repeatability of 3D (82)Rb MBF was compared with a previously established method. RESULTS Whole LV correlation of (82)Rb MBF with (15)O-water MBF was better (P < .01) with the modified spillover correction method (r = 0.92 vs r = 0.60). The modified method also yielded significantly improved inter-operator repeatability of regional MBF quantification (r = 0.89) versus the established method (r = 0.82) (P < .01). CONCLUSION A uniform global input function can suppress LV spillover into the image-derived blood input function, resulting in improved precision for MBF quantification with 3D (82)Rb PET.
Collapse
Affiliation(s)
- Chietsugu Katoh
- Department of Health Sciences, Hokkaido University Graduate School of Medicine, Kita12 Nishi5, Kita-Ku, Sapporo, Hokkaido 060-0812, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kurata A, Higashino H, Mochizuki T. Coronary endothelial dysfunction and non-contrast multidetector computed tomography. Circ J 2011; 76:45-6. [PMID: 22156315 DOI: 10.1253/circj.cj-11-1342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Dunet V, Qanadli SD, Allenbach G, Dabiri A, Mazzolai L, Waeber B, Feihl F, Prior JO. Assessment of coronary vasoreactivity by multidetector computed tomography: feasibility study with rubidium-82 cardiac positron emission tomography. Circ J 2011; 76:160-7. [PMID: 22033346 DOI: 10.1253/circj.cj-11-0587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Positron emission tomography (PET) during the cold pressor test (CPT) has been used to assess endothelium-dependent coronary vasoreactivity, a surrogate marker of cardiovascular events. However, its use remains limited by cardiac PET availability. As multidetector computed tomography (MDCT) is more widely available, we aimed to develop a measurement of endothelium-dependent coronary vasoreactivity with MDCT and similar radiation burden as with PET. METHODS AND RESULTS A study group of 18 participants without known cardiovascular risk factor (9F/9M; age 60±6 years) underwent cardiac PET with (82)Rb and unenhanced ECG-gated MDCT within 4h, each time at rest and during CPT. The relation between absolute myocardial blood flow (MBF) response to CPT by PET (ml·min(-1)·g(1)) and relative changes in MDCT-measured coronary artery surface were assessed using linear regression analysis and Spearman's correlation. MDCT and PET/CT were analyzed in all participants. Hemodynamic conditions during CPT at MDCT and PET were similar (P>0.3). Relative changes in coronary artery surface because of CPT (2.0-21.2%) correlated to changes in MBF (-0.10-0.52ml·min(-1)·g(1)) (ρ=0.68, P=0.02). Effective dose was 1.3±0.2mSv for MDCT and 3.1mSv for PET/CT. CONCLUSIONS Assessment of endothelium-dependent coronary vasoreactivity using MDCT CPT appears feasible. Because of its wider availability, shorter examination time and similar radiation burden, MDCT could be attractive in clinical research for coronary status assessment.
Collapse
Affiliation(s)
- Vincent Dunet
- Department of Nuclear Medicine, CHUV and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Quercioli A, Pataky Z, Vincenti G, Makoundou V, Di Marzo V, Montecucco F, Carballo S, Thomas A, Staub C, Steffens S, Seimbille Y, Golay A, Ratib O, Harsch E, Mach F, Schindler TH. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur Heart J 2011; 32:1369-78. [DOI: 10.1093/eurheartj/ehr029] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
32
|
Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 2010; 3:623-40. [PMID: 20541718 DOI: 10.1016/j.jcmg.2010.04.007] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/21/2010] [Accepted: 04/26/2010] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) myocardial perfusion imaging in concert with tracer-kinetic modeling affords the assessment of regional myocardial blood flow (MBF) of the left ventricle in absolute terms (milliliters per gram per minute). Assessment of MBF both at rest and during various forms of vasomotor stress provides insight into early and subclinical abnormalities in coronary arterial vascular function and/or structure, noninvasively. The noninvasive evaluation and quantification of MBF and myocardial flow reserve (MFR) extend the scope of conventional myocardial perfusion imaging from detection of end-stage, advanced, and flow-limiting, epicardial coronary artery disease (CAD) to early stages of atherosclerosis or microvascular dysfunction. Recent studies have shown that impaired hyperemic MBF or MFR with PET, with or without accompanying CAD, is predictive of increased relative risk of death or progression of heart failure. Quantitative approaches that measure MBF with PET identify multivessel CAD and offer the opportunity to monitor responses to lifestyle and/or risk factor modification and to therapeutic interventions. Whether improvement or normalization of hyperemic MBF and/or the MFR will translate to improvement in long-term cardiovascular outcome remains clinically untested. In the meantime, absolute measures of MBF with PET can be used as a surrogate marker for coronary vascular health, and to monitor therapeutic interventions. Although the assessment of myocardial perfusion with PET has become an indispensable tool in cardiac research, it remains underutilized in clinical practice. Individualized, image-guided cardiovascular therapy may likely change this paradigm in the near future.
Collapse
Affiliation(s)
- Thomas H Schindler
- Nuclear Cardiology and Cardiac Imaging, Division of Cardiology, Department of Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
33
|
Cicala S, Pellegrino T, Storto G, Caprio MG, Paladini R, Mainolfi C, de Leva F, Cuocolo A. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease. Eur J Nucl Med Mol Imaging 2010; 37:2249-55. [PMID: 20680267 DOI: 10.1007/s00259-010-1575-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/15/2010] [Indexed: 01/07/2023]
Abstract
PURPOSE The feasibility of coronary function estimation by single photon emission computed tomography (SPECT) has been recently demonstrated. The aim of this study was to apply SPECT imaging in patients with previous Kawasaki disease (KD) to assess the coronary functional status at long-term follow-up of the acute phase of the disease. METHODS Sixteen children with a history of KD underwent 99mTc-sestamibi imaging at rest and during the cold pressor test (CPT). Myocardial blood flow (MBF) was estimated by measuring first transit counts in the pulmonary artery and myocardial counts from SPECT images. Coronary endothelial function was expressed as the ratio of the CPT to rest MBF. RESULTS Six KD patients without coronary artery lesions served as controls and ten with coronary artery aneurysms during the acute phase of the disease were separated into two groups: group 1 (n=4) with regressed and group 2 (n=6) with persistent aneurysm at follow-up. The estimated coronary endothelial function was higher in controls compared to patients with coronary artery aneurysms (2.5±0.3 vs 1.7±0.7, p<0.05). A significant difference in coronary endothelial function among groups was found (F=5.21, p<0.02). Coronary endothelial function was higher in patients of group 1 than in those of group 2 (1.9±0.6 vs 1.4±0.7, p<0.02). CONCLUSION SPECT may be applied as a noninvasive method for assessing coronary vascular function in children with a history of KD, demonstrating an impaired response to the CPT, an endothelial-dependent vasodilator stimulus. These findings reinforce the concept that coronary endothelial dysfunction may represent a long-term sequela of KD.
Collapse
Affiliation(s)
- Silvana Cicala
- Division of Cardiology, Department of Paediatrics, Santobono-Pausilipon Children Medical Hospital, and Department of Biomorphological and Functional Sciences, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, deKemp RA. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol 2010; 17:600-16. [PMID: 20387135 DOI: 10.1007/s12350-010-9225-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/15/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Changes in myocardial blood flow between rest and stress states are commonly used to diagnose coronary artery disease. Relative myocardial perfusion imaging (MPI) is used routinely while myocardial blood flow quantification (MBF) may improve the sensitivity for detection of early disease. The ratio of flow at stress and rest (S/R) and their difference (S-R) have both been proposed as a means to detect regions with reduced myocardial flow reserve (MFR). In this study, we describe a highly automated method to calculate regional and global rest, stress, S/R, and S-R polar maps of the left ventricle myocardium. METHODS We measured the inter- and intra-operator variability using two randomized datasets (n = 30 each) for each of two operators (novice and expert) with correlation and Bland-Altman reproducibility coefficient (RPC%) analyses. RESULTS S-R MBF had less inter-operator dependent variability than S/R (RPC% = 5.0% vs 12.6%, P < .001). While there was no difference in intra-operator variability with S-R MBF (novice vs expert RPC% = 6.4% vs 5.9%, P = ns), variability was higher in the novice-operator for S/R (RPC% = 16.8% vs 8.5% respectively, P < .001), suggesting that S-R may be preferred for detecting small changes in MFR. The novice operator's intervention pattern became more similar to that of the expert in the later dataset, emphasizing the need for adequate training and quality assurance. CONCLUSION The proposed method results in low operator-dependent variability, suitable for routine use.
Collapse
Affiliation(s)
- Ran Klein
- University of Ottawa Heart Institute, National Cardiac PET Centre, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Burkhard N, Herzog BA, Husmann L, Pazhenkottil AP, Burger IA, Buechel RR, Valenta I, Wyss CA, Kaufmann PA. Coronary calcium score scans for attenuation correction of quantitative PET/CT 13N-ammonia myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2009; 37:517-21. [DOI: 10.1007/s00259-009-1271-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
|
36
|
Camici PG, Rimoldi OE. The Clinical Value of Myocardial Blood Flow Measurement. J Nucl Med 2009; 50:1076-87. [DOI: 10.2967/jnumed.108.054478] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
37
|
Abstract
Quantification of regional myocardial blood flow and of its responses to targeted physiologic and pharmacologic interventions, which is now available with positron emitting tracers of blood flow and positron emission tomography (PET), extends the diagnostic potential of standard myocardial perfusion imaging. These noninvasive flow measurements serve as tools for quantifying functional consequences of epicardial coronary artery disease, as well as of impairments in microcirculatory reactivity that escape detection by standard perfusion imaging. Flow measurements are clinically useful for more comprehensively assessing the extent and severity of coronary vascular disease or impairments in microcirculatory function in noncoronary cardiac disease. Flow estimates in these disorders contain independent or unique prognostic information about future major cardiac events. Flow measurements are also useful for assessing the coronary risk, for predicting long-term cardiovascular events, and for monitoring the effectiveness of risk reduction strategies.
Collapse
Affiliation(s)
- Heinrich R Schelbert
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-6948, USA.
| |
Collapse
|
38
|
Schindler TH, Campisi R, Dorsey D, Prior JO, Olschewski M, Sayre J, Schelbert HR. Effect of hormone replacement therapy on vasomotor function of the coronary microcirculation in post-menopausal women with medically treated cardiovascular risk factors. Eur Heart J 2009; 30:978-86. [PMID: 19251725 DOI: 10.1093/eurheartj/ehp013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS The aim of this study was to evaluate the effect of hormone replacement therapy (HRT) on coronary vasomotor function in post-menopausal women (PM) with medically treated cardiovascular risk factors (RFs) in a cross-sectional and a longitudinal follow-up (FU) study. METHODS AND RESULTS Myocardial blood flow (MBF) response to cold pressor testing (CPT) and during pharmacologically induced hyperaemia was measured with positron emission tomography in pre-menopausal women (CON), in PM with HRT and without HRT, and repeated in PM after a mean FU of 24 +/- 14 months. When compared with CON at baseline, the endothelium-related change in MBF (DeltaMBF) to CPT progressively declined in PM with HRT and without HRT (0.35 +/- 0.23 vs. 0.24 +/- 0.20 and 0.16 +/- 0.12 mL/g/min; P = 0.171 and P = 0.021). In PM without HRT and in those with HRT at baseline but with discontinuation of HRT during FU, the endothelium-related DeltaMBF to CPT was significantly less at FU than at baseline (0.05 +/- 0.19 vs. 0.16 +/- 0.12 and -0.03 +/- 0.14 vs. 0.25 +/- 0.18 mL/g/min; P = 0.023 and P = 0.001), whereas no significant change was observed in PM with HRT (0.19 +/- 0.22 vs. 0.23 +/- 0.22 mL/g/min; P = 0.453). Impaired hyperaemic MBFs when compared with CON were not significantly altered from those at baseline exam. CONCLUSION Long-term administration of oestrogen may contribute to maintain endothelium-dependent coronary function in PM with medically treated cardiovascular RFs.
Collapse
Affiliation(s)
- Thomas H Schindler
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, 10833 Le Conte Ave, 23-120 CHS, Box 173517, Los Angeles, CA 90095-1735, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Schelbert HR. Coronary Circulatory Function Abnormalities in Insulin Resistance. J Am Coll Cardiol 2009; 53:S3-8. [DOI: 10.1016/j.jacc.2008.09.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 09/16/2008] [Accepted: 09/29/2008] [Indexed: 11/28/2022]
|
40
|
Abstract
Extensive research has documented that rapid imaging during the first pass of a magnetic resonance imaging (MRI) contrast agent provides good sensitivity to detect myocardial blood flow deficits caused by coronary disease, cardiomyopathies, or microvascular dysfunction in patients without obstructive lesions in the coronary arteries. The autoregulatory mechanisms of the coronary circulation serve the purpose of maintaining sufficient blood flow at baseline in the presence of flow-obstructing coronary lesions. Stress testing is most commonly used in this setting to determine the hemodynamic effect of coronary lesions in the epicardial arteries when the small-vessel resistance has been minimized by vasodilation. The protocols for perfusion MRI combined with vasodilation have been successfully tested in large patient studies. Besides the absence of any ionizing radiation, MRI offers the advantages of relatively high spatial resolution to detect perfusion defects limited to the inner layer of the heart muscle. Furthermore, MRI can be used for noninvasive quantitative measurements of myocardial blood flow that compare well with invasive measurements with labeled microspheres. Additional useful markers, such as the dynamic distribution volume, the delay in the arrival of the contrast agent in a myocardial region relative to the enhancement in the arterial input, and the capillary permeability-surface area product, may, in the future, further enhance the capabilities to characterize with MRI coronary atherosclerosis, coronary vascular dysfunction, and adaptive mechanisms in the coronary circulation, such as arteriogenesis, that reduce ischemia.
Collapse
|
41
|
Variability of Myocardial Blood Flow Measurements by Magnetic Resonance Imaging in the Multi-Ethnic Study of Atherosclerosis. Invest Radiol 2008; 43:155-61. [DOI: 10.1097/rli.0b013e31815abebd] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Diagnostic value of PET-measured heterogeneity in myocardial blood flows during cold pressor testing for the identification of coronary vasomotor dysfunction. J Nucl Cardiol 2007; 14:688-97. [PMID: 17826322 DOI: 10.1016/j.nuclcard.2007.06.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 06/25/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND We aimed to evaluate the diagnostic value of a positron emission tomography (PET)-measured heterogeneity in longitudinal myocardial blood flow (MBF) during cold pressor testing (CPT) and global MBF response to CPT from rest (DeltaMBF) for identification of coronary vasomotor dysfunction. METHODS AND RESULTS In 35 patients CPT-induced alterations in epicardial luminal area were determined with quantitative angiography as the reference. MBF was assessed over the whole left ventricle as global MBF and regionally in the mid and mid-distal myocardium as MBF difference or MBF heterogeneity with nitrogen-13 ammonia and PET. The sensitivity and specificity of a longitudinal MBF difference during CPT in the identification of epicardial vasomotor dysfunction were significantly higher than the global DeltaMBF to CPT (88% vs 79% and 82% vs 64%, respectively; P < .05). Combining both parameters resulted in an optimal sensitivity of 100% at the expense of an intermediate specificity of 73%. The diagnostic accuracy was higher for the combined analysis than that for the MBF difference alone and global DeltaMBF alone (91% vs 86% and 74%, respectively; P < .05). CONCLUSIONS The combined evaluation of a CPT-induced heterogeneity in longitudinal MBF and the change in global MBF from rest may emerge as a new promising analytic approach to further optimize the identification and characterization of coronary vasomotor dysfunction.
Collapse
|
43
|
Schindler TH, Zhang XL, Vincenti G, Mhiri L, Lerch R, Schelbert HR. Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol 2007; 14:589-603. [PMID: 17679069 PMCID: PMC1995749 DOI: 10.1016/j.nuclcard.2007.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas H Schindler
- Nuclear Cardiology, Cardiovascular Center, University Hospital of Geneva, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|