1
|
Sun R, Wang Y, Shi W, Zhang H, Liu J, He W. Acidity-Triggered "Sticky Spotlight": CCK2R-Targeted TME-Sensitive NIR Fluorescent Probes for Tumor Imaging In Vivo. Bioconjug Chem 2024; 35:528-539. [PMID: 38514970 DOI: 10.1021/acs.bioconjchem.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Cancer which causes high mortality globally threatens public health seriously. There is an urgent need to develop tumor-specific near-infrared (NIR) imaging agents to achieve precise diagnosis and guide effective treatment. In recent years, imaging probes that respond to acidic environments such as endosomes, lysosomes, or acidic tumor microenvironments (TMEs) are being developed. However, because of their nonspecific internalization by both normal and tumor cells, resulting in a poor signal-to-noise ratio in diagnosis, these pH-sensitive probes fail to be applied to in vivo tumor imaging. To address this issue, a cholecystokinin-2 receptor (CCK2R)-targeted TME-sensitive NIR fluorescent probe R2SM was synthesized by coupling pH-sensitive heptamethine cyanine with a CCK2R ligand, minigastrin analogue 11 (MG11) for in vivo imaging, in which MG11 would target overexpressed CCK2Rs in gastrointestinal stromal tumors (GISTs). Cell uptake assay demonstrated that R2SM exhibited a high affinity for CCK2R, leading to receptor-mediated internalization and making probes finally accumulated in the lysosomes of tumor cells, which suggested in the tumor tissues, the probes were distributed in the extracellular acidic TME and intracellular lysosomes. With a pKa of 6.83, R2SM can be activated at the acidic TME (pH = 6.5-6.8) and lysosomes (pH = 4.5-5.0), exhibiting an apparent pH-dependent behavior and generating more intense fluorescence in these acidic environments. In vivo imaging showed that coupling of MG11 with a pH-sensitive NIR probe facilitated the accumulation of probe and enhanced the fluorescence in CCK2R-overexpressed HT-29 tumor cells. A high signal was observed in the tumor region within 0.5 h postinjection, indicating its potential application in intraoperative imaging. Fluorescence imaging of R2SM exhibited higher tumor-to-liver and tumor-to-kidney ratios (2.1:1 and 2.3:1, respectively), compared separately with the probes that are lipophilic, pH-insensitive, or MG11-free. In vitro and in vivo studies demonstrated that the synergistic effect of tumor targeting with pH sensitivity plays a vital role in the high signal-to-noise ratio of the NIR imaging probe. Moreover, different kinds of tumor-targeting vectors could be conjugated simultaneously with the NIR dye, which would further improve the receptor affinity and targeting efficiency.
Collapse
Affiliation(s)
- Ruiqi Sun
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxin Wang
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenhui Shi
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongfu Zhang
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianhua Liu
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weina He
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
3
|
Günther T, Holzleitner N, Viering O, Beck R, Wienand G, Dierks A, Pfob CH, Bundschuh RA, Kircher M, Lapa C, Wester HJ. Preclinical Evaluation of Minigastrin Analogs and Proof-of-Concept [ 68Ga]Ga-DOTA-CCK-66 PET/CT in 2 Patients with Medullary Thyroid Cancer. J Nucl Med 2024; 65:33-39. [PMID: 37945383 PMCID: PMC10755518 DOI: 10.2967/jnumed.123.266537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Because of the need for radiolabeled theranostics for the detection and treatment of medullary thyroid cancer (MTC), and the yet unresolved stability issues of minigastrin analogs targeting the cholecystokinin-2 receptor (CCK-2R), our aim was to address in vivo stability, our motivation being to develop and evaluate DOTA-CCK-66 (DOTA-γ-glu-PEG3-Trp-(N-Me)Nle-Asp-1-Nal-NH2, PEG: polyethylene glycol) and DOTA-CCK-66.2 (DOTA-glu-PEG3-Trp-(N-Me)Nle-Asp-1-Nal-NH2), both derived from DOTA-MGS5 (DOTA-glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH2), and clinically translate [68Ga]Ga-DOTA-CCK-66. Methods: 64Cu and 67Ga labeling of DOTA-CCK-66, DOTA-CCK-66.2, and DOTA-MGS5 was performed at 90°C within 15 min (1.0 M NaOAc buffer, pH 5.5, and 2.5 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, respectively). 177Lu labeling of these 3 compounds was performed at 90°C within 15 min (1.0 M NaOAc buffer, pH 5.5, 0.1 M sodium ascorbate). CCK-2R affinity of natGa/natCu/natLu-labeled DOTA-CCK-66, DOTA-CCK-66.2, and DOTA-MGS5 was examined on AR42J cells. The in vivo stability of 177Lu-labeled DOTA-CCK-66 and DOTA-MGS5 was examined at 30 min after injection in CB17-SCID mice. Biodistribution studies at 1 h ([67Ga]Ga-DOTA-CCK-66) and 24 h ([177Lu]Lu-DOTA-CCK-66/DOTA-MGS5) after injection were performed on AR42J tumor-bearing CB17-SCID mice. In a translation to the human setting, [68Ga]Ga-DOTA-CCK-66 was administered and whole-body PET/CT was acquired at 120 min after injection in 2 MTC patients. Results: Irrespective of the metal or radiometal used (copper, gallium, lutetium), high CCK-2R affinity (half-maximal inhibitory concentration, 3.6-6.0 nM) and favorable lipophilicity were determined. In vivo, increased numbers of intact peptide were found for [177Lu]Lu-DOTA-CCK-66 compared with [177Lu]Lu-DOTA-MGS5 in murine urine (23.7% ± 9.2% vs. 77.8% ± 2.3%). Overall tumor-to-background ratios were similar for both 177Lu-labeled analogs. [67Ga]Ga-DOTA-CCK-66 exhibited accumulation (percentage injected dose per gram) that was high in tumor (19.4 ± 3.5) and low in off-target areas (blood, 0.61 ± 0.07; liver, 0.31 ± 0.02; pancreas, 0.23 ± 0.07; stomach, 1.81 ± 0.19; kidney, 2.51 ± 0.49) at 1 h after injection. PET/CT examination in 2 MTC patients applying [68Ga]Ga-DOTA-CCK-66 confirmed multiple metastases. Conclusion: Because of the high in vivo stability and favorable overall preclinical performance of [nat/67Ga]Ga-/[nat/177Lu]Lu-DOTA-CCK-66, a proof-of-concept clinical investigation of [68Ga]Ga-DOTA-CCK-66 was completed. As several lesions could be identified and excellent biodistribution patterns were observed, further patient studies applying [68Ga]Ga- and [177Lu]Lu-DOTA-CCK-66 are warranted.
Collapse
Affiliation(s)
- Thomas Günther
- Department of Chemistry, Chair of Pharmaceutical Radiochemistry, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany; and
| | - Nadine Holzleitner
- Department of Chemistry, Chair of Pharmaceutical Radiochemistry, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany; and
| | - Oliver Viering
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Roswitha Beck
- Department of Chemistry, Chair of Pharmaceutical Radiochemistry, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany; and
| | - Georgine Wienand
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christian H Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ralph A Bundschuh
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Hans-Jürgen Wester
- Department of Chemistry, Chair of Pharmaceutical Radiochemistry, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany; and
| |
Collapse
|
4
|
Corlett A, Pinson JA, Rahimi MN, Zuylekom JV, Cullinane C, Blyth B, Thompson PE, Hutton CA, Roselt PD, Haskali MB. Development of Highly Potent Clinical Candidates for Theranostic Applications against Cholecystokinin-2 Receptor Positive Cancers. J Med Chem 2023; 66:10289-10303. [PMID: 37493526 DOI: 10.1021/acs.jmedchem.3c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Peptide receptor radionuclide therapy (PRRT) is a promising form of systemic radiation therapy designed to eradicate cancer. Cholecystokinin-2 receptor (CCK2R) is an important molecular target that is highly expressed in a range of cancers. This study describes the synthesis and in vivo characterization of a novel series of 177Lu-labeled peptides ([177Lu]Lu-2b-4b) in comparison with the reference CCK2R-targeting peptide CP04 ([177Lu]Lu-1b). [177Lu]Lu-1b-4b showed high chemical purity (HPLC ≥ 94%), low Log D7.4 (-4.09 to -4.55) with strong binding affinity to CCK2R (KD 0.097-1.61 nM), and relatively high protein binding (55.6-80.2%) and internalization (40-67%). Biodistribution studies of the novel 177Lu-labeled peptides in tumors (AR42J and A431-CCK2R) showed uptake one- to eight-fold greater than the reference compound CP04 at 1, 24, and 48 h. Rapid clearance and high tumor uptake and retention were established for [177Lu]Lu-2b-4b, making these compounds excellent candidates for theranostic applications against CCK2R-expressing tumors.
Collapse
Affiliation(s)
- Alicia Corlett
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Parkville, Victoria, 3000, Australia
| | - Jo-Anne Pinson
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marwa N Rahimi
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jessica Van Zuylekom
- Models of Cancer Translational Research Centre, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Carleen Cullinane
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Benjamin Blyth
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Models of Cancer Translational Research Centre, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Peter D Roselt
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Mohammad B Haskali
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Holzleitner N, Günther T, Daoud-Gadieh A, Lapa C, Wester HJ. Investigation of the structure-activity relationship at the N-terminal part of minigastrin analogs. EJNMMI Res 2023; 13:65. [PMID: 37421545 DOI: 10.1186/s13550-023-01016-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Over the last years, several strategies have been reported to improve the metabolic stability of minigastrin analogs. However, currently applied compounds still reveal limited in vitro and in vivo stability. We thus performed a glycine scan at the N-terminus of DOTA-MGS5 (DOTA-D-Glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal) to systematically analyze the peptide structure. We substituted N-terminal amino acids by simple PEG spacers and investigated in vitro stability in human serum. Furthermore, we evaluated different modifications on its tetrapeptide binding sequence (H-Trp-(N-Me)Nle-Asp-1-Nal-NH2). RESULTS Affinity data of all glycine scan peptides were found to be in a low nanomolar range (4.2-8.5 nM). However, a truncated compound lacking the D-γ-Glu-Ala-Tyr sequence revealed a significant loss in CCK-2R affinity. Substitution of the D-γ-Glu-Ala-Tyr-Gly sequence of DOTA-γ-MGS5 (DOTA- D-γ-Glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH2) by polyethylene glycol (PEG) spacers of different length exhibited only a minor influence on CCK-2R affinity and lipophilicity. However, in vitro stability of the PEG-containing compounds was significantly decreased. In addition, we confirmed that the tetrapeptide sequence H-Trp-Asp-(N-Me)Nle-1-Nal-NH2 is indeed sufficient for high CCK-2R affinity. CONCLUSION We could demonstrate that a substitution of D-γ-Glu-Ala-Tyr-Gly by PEG spacers simplified the peptide structure of DOTA-MGS5 while high CCK-2R affinity and favorable lipophilicity were maintained. Nevertheless, further optimization with regard to metabolic stability must be carried out for these minigastrin analogs.
Collapse
Affiliation(s)
- Nadine Holzleitner
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Thomas Günther
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| | - Amira Daoud-Gadieh
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Constantin Lapa
- Nuclear Medicine, University Hospital Augsburg, 86156, Augsburg, Germany
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
6
|
Development of the First 18F-Labeled Radiohybrid-Based Minigastrin Derivative with High Target Affinity and Tumor Accumulation by Substitution of the Chelating Moiety. Pharmaceutics 2023; 15:pharmaceutics15030826. [PMID: 36986687 PMCID: PMC10054553 DOI: 10.3390/pharmaceutics15030826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice. Both DOTA-containing minigastrin analogs exhibited 3- to 5-fold better IC50 values than their (R)-DOTAGA-counterparts. natLu-labeled peptides revealed higher CCK-2R affinity than their natGa-labeled analogs. In vivo, tumor uptake at 24 h p.i. of the most affine compound, [19F]F-[177Lu]Lu-DOTA-rhCCK-18, was 1.5- and 13-fold higher compared to its (R)-DOTAGA derivative and the reference compound, [177Lu]Lu-DOTA-PP-F11N, respectively. However, activity levels in the kidneys were elevated as well. At 1 h p.i., tumor and kidney accumulation of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 and [18F]F-[natLu]Lu-DOTA-rhCCK-18 was high. We could demonstrate that the choice of chelators and radiometals has a significant impact on CCK-2R affinity and thus tumor uptake of minigastrin analogs. While elevated kidney retention of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 has to be further addressed with regard to radioligand therapy, its radiohybrid analog, [18F]F-[natLu]Lu-DOTA-rhCCK-18, might be ideal for positron emission tomography (PET) imaging due to its high tumor accumulation at 1 h p.i. and the attractive physical properties of fluorine-18.
Collapse
|
7
|
Hörmann AA, Klingler M, Rangger C, Mair C, Joosten L, Franssen GM, Laverman P, von Guggenberg E. Effect of N-Terminal Peptide Modifications on In Vitro and In Vivo Properties of 177Lu-Labeled Peptide Analogs Targeting CCK2R. Pharmaceutics 2023; 15:pharmaceutics15030796. [PMID: 36986657 PMCID: PMC10058949 DOI: 10.3390/pharmaceutics15030796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The therapeutic potential of minigastrin (MG) analogs for the treatment of cholecystokinin-2 receptor (CCK2R)-expressing cancers is limited by poor in vivo stability or unfavorable accumulation in non-target tissues. Increased stability against metabolic degradation was achieved by modifying the C-terminal receptor-specific region. This modification led to significantly improved tumor targeting properties. In this study, further N-terminal peptide modifications were investigated. Two novel MG analogs were designed starting from the amino acid sequence of DOTA-MGS5 (DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2). Introduction of a penta-DGlu moiety and replacement of the four N-terminal amino acids by a non-charged hydrophilic linker was investigated. Retained receptor binding was confirmed using two CCK2R-expressing cell lines. The effect on metabolic degradation of the new 177Lu-labeled peptides was studied in human serum in vitro, as well as in BALB/c mice in vivo. The tumor targeting properties of the radiolabeled peptides were assessed using BALB/c nude mice bearing receptor-positive and receptor-negative tumor xenografts. Both novel MG analogs were found to have strong receptor binding, enhanced stability, and high tumor uptake. Replacement of the four N-terminal amino acids by a non-charged hydrophilic linker lowered the absorption in the dose-limiting organs, whereas introduction of the penta-DGlu moiety increased uptake in renal tissue.
Collapse
Affiliation(s)
- Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Mair
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gerben M. Franssen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter Laverman
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-512-504-80960
| |
Collapse
|
8
|
Wang Y, Lin Q, Shi H, Cheng D. Fluorine-18: Radiochemistry and Target-Specific PET Molecular Probes Design. Front Chem 2022; 10:884517. [PMID: 35844642 PMCID: PMC9277085 DOI: 10.3389/fchem.2022.884517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
The positron emission tomography (PET) molecular imaging technology has gained universal value as a critical tool for assessing biological and biochemical processes in living subjects. The favorable chemical, physical, and nuclear characteristics of fluorine-18 (97% β+ decay, 109.8 min half-life, 635 keV positron energy) make it an attractive nuclide for labeling and molecular imaging. It stands that 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) is the most popular PET tracer. Besides that, a significantly abundant proportion of PET probes in clinical use or under development contain a fluorine or fluoroalkyl substituent group. For the reasons given above, 18F-labeled radiotracer design has become a hot topic in radiochemistry and radiopharmaceutics. Over the past decades, we have witnessed a rapid growth in 18F-labeling methods owing to the development of new reagents and catalysts. This review aims to provide an overview of strategies in radiosynthesis of [18F]fluorine-containing moieties with nucleophilic [18F]fluorides since 2015.
Collapse
Affiliation(s)
- Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
9
|
Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14050917. [PMID: 35631503 PMCID: PMC9144228 DOI: 10.3390/pharmaceutics14050917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Image-guided nanotheranostics have the potential to represent a new paradigm in the treatment of cancer. Recent developments in modern imaging and nanoparticle design offer an answer to many of the issues associated with conventional chemotherapy, including their indiscriminate side effects and susceptibility to drug resistance. Imaging is one of the tools best poised to enable tailoring of cancer therapies. The field of image-guided nanotheranostics has the potential to harness the precision of modern imaging techniques and use this to direct, dictate, and follow site-specific drug delivery, all of which can be used to further tailor cancer therapies on both the individual and population level. The use of image-guided drug delivery has exploded in preclinical and clinical trials although the clinical translation is incipient. This review will focus on traditional mechanisms of targeted drug delivery in cancer, including the use of molecular targeting, as well as the foundations of designing nanotheranostics, with a focus on current clinical applications of nanotheranostics in cancer. A variety of specially engineered and targeted drug carriers, along with strategies of labeling nanoparticles to endow detectability in different imaging modalities will be reviewed. It will also introduce newer concepts of image-guided drug delivery, which may circumvent many of the issues seen with other techniques. Finally, we will review the current barriers to clinical translation of image-guided nanotheranostics and how these may be overcome.
Collapse
|
10
|
Maina T, Nock BA. Gamma camera imaging by radiolabeled gastrin/cholecystokinin analogs. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
von Guggenberg E, Kolenc P, Rottenburger C, Mikołajczak R, Hubalewska-Dydejczyk A. Update on Preclinical Development and Clinical Translation of Cholecystokinin-2 Receptor Targeting Radiopharmaceuticals. Cancers (Basel) 2021; 13:5776. [PMID: 34830930 PMCID: PMC8616406 DOI: 10.3390/cancers13225776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The cholecystokinin-2 receptor (CCK2R) has been a target of interest for molecular imaging and targeted radionuclide therapy for two decades. However, so far CCK2R targeted imaging and therapy has not been introduced in clinical practice. Within this review the recent radiopharmaceutical development of CCK2R targeting compounds and the ongoing clinical trials are presented. Currently, new gastrin derivatives as well as nonpeptidic substances are being developed to improve the properties for clinical use. A team of specialists from the field of radiopharmacy and nuclear medicine reviewed the available literature and summarized their own experiences in the development and clinical testing of CCK2R targeting radiopharmaceuticals. The recent clinical trials with novel radiolabeled minigastrin analogs demonstrate the potential for both applications, imaging as well as targeted radiotherapy, and reinforce the clinical applicability within a theranostic concept. The intense efforts in optimizing CCK2R targeting radiopharmaceuticals has led to new substances for clinical use, as shown in first imaging studies in patients with advanced medullary thyroid cancer. The first clinical results suggest that the wider clinical implication of CCK2R-targeted radiopharmaceuticals is reasonable.
Collapse
Affiliation(s)
| | - Petra Kolenc
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock-Świerk, Poland;
| | | |
Collapse
|
12
|
Preliminary Study of a 1,5-Benzodiazepine-Derivative Labelled with Indium-111 for CCK-2 Receptor Targeting. Molecules 2021; 26:molecules26040918. [PMID: 33572353 PMCID: PMC7916174 DOI: 10.3390/molecules26040918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
The cholecystokinin-2 receptor (CCK-2R) is overexpressed in several human cancers but displays limited expression in normal tissues. For this reason, it is a suitable target for developing specific radiotracers. In this study, a nastorazepide-based ligand functionalized with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator (IP-001) was synthesized and labelled with indium-111. The radiolabeling process yielded >95% with a molar activity of 10 MBq/nmol and a radiochemical purity of >98%. Stability studies have shown a remarkable resistance to degradation (>93%) within 120 h of incubation in human blood. The in vitro uptake of [111In]In-IP-001 was assessed for up to 24 h on a high CCK-2R-expressing tumor cell line (A549) showing maximal accumulation after 4 h of incubation. Biodistribution and single photon emission tomography (SPECT)/CT imaging were evaluated on BALB/c nude mice bearing A549 xenograft tumors. Implanted tumors could be clearly visualized after only 4 h post injection (2.36 ± 0.26% ID/cc), although a high amount of radiotracer was also found in the liver, kidneys, and spleen (8.25 ± 2.21%, 6.99 ± 0.97%, and 3.88 ± 0.36% ID/cc, respectively). Clearance was slow by both hepatobiliary and renal excretion. Tumor retention persisted for up to 24 h, with the tumor to organs ratio increasing over-time and ending with a tumor uptake (1.52 ± 0.71% ID/cc) comparable to liver and kidneys.
Collapse
|
13
|
Ma G, McDaniel JW, Murphy JM. One-Step Synthesis of [ 18F]Fluoro-4-(vinylsulfonyl)benzene: A Thiol Reactive Synthon for Selective Radiofluorination of Peptides. Org Lett 2021; 23:530-534. [PMID: 33373261 DOI: 10.1021/acs.orglett.0c04054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radiolabeled peptide-based molecular imaging probes exploit the advantages of large biologics and small molecules, providing both exquisite selectivity and favorable pharmacokinetic properties. Here, we report an operationally simple and broadly applicable approach for the 18F-fluorination of unprotected peptides via a new radiosynthon, [18F]fluoro-4-(vinylsulfonyl)benzene. This reagent demonstrates excellent chemoselectivity at the cysteine residue and rapid 18F-labeling of a diverse scope of peptides to generate stable thioether constructs.
Collapse
Affiliation(s)
- Gaoyuan Ma
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - James W McDaniel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Klingler M, Hörmann AA, Rangger C, Desrues L, Castel H, Gandolfo P, von Guggenberg E. Stabilization Strategies for Linear Minigastrin Analogues: Further Improvements via the Inclusion of Proline into the Peptide Sequence. J Med Chem 2020; 63:14668-14679. [PMID: 33226806 PMCID: PMC7734625 DOI: 10.1021/acs.jmedchem.0c01233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Minigastrin (MG) analogues, known for their high potential to target cholecystokinin-2 receptor (CCK2R) expressing tumors, have limited clinical applicability due to low enzymatic stability. By introducing site-specific substitutions within the C-terminal receptor-binding sequence, reduced metabolization and improved tumor targeting can be achieved. In this work, the influence of additional modification within the N-terminal sequence has been explored. Three novel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R ligands with proline substitution at different positions were synthesized. Substitution did not affect CCK2R affinity, and the conjugates labeled with indium-111 and lutetium-177 showed a high enzymatic stability in different incubation media as well as in vivo (57-79% intact radiopeptide in blood of BALB/c mice at 1 h p.i.) combined with enhanced tumor uptake (29-46% IA/g at 4 h in xenografted BALB/c nude mice). The inclusion of Pro contributes significantly to the development of CCK2R ligands with optimal targeting properties for application in targeted radiotherapy.
Collapse
Affiliation(s)
- Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anton A Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Laurence Desrues
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Hélène Castel
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Pierrick Gandolfo
- INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, 76000 Rouen, France
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Abbasi Gharibkandi N, Conlon JM, Hosseinimehr SJ. Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides 2020; 133:170385. [PMID: 32822772 DOI: 10.1016/j.peptides.2020.170385] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Tumor cells overexpress a variety of receptors that are emerging targets in cancer chemotherapy. Radiolabeled peptides with high affinity and selectivity for these overexpressed receptors have been designed for both imaging and therapy purposes. Such peptides display advantages such as high selectivity for tumor cells, rapid tumor tissue penetration, and rapid clearance from non-target tissues and the circulation. However, the very short in vivo half-life of radiolabeled peptides, arising from enzymatic degradation and/or efficient clearance by the kidney, limits their accumulation in tumors. This review presents various strategies that have been applied to extend the half-life extension and improve the pharmacokinetic characteristics of radiolabeled peptides. These include amino acid substitution, modification of the peptide termini, dimerization and multimerization of the peptide, cyclization, conjugation with polymers, sugars and albumin and use of peptidase inhibitors.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
16
|
Hörmann AA, Klingler M, Rezaeianpour M, Hörmann N, Gust R, Shahhosseini S, von Guggenberg E. Initial In Vitro and In Vivo Evaluation of a Novel CCK2R Targeting Peptide Analog Labeled with Lutetium-177. Molecules 2020; 25:molecules25194585. [PMID: 33049999 PMCID: PMC7583830 DOI: 10.3390/molecules25194585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting of cholecystokinin-2 receptor (CCK2R) expressing tumors using radiolabeled minigastrin (MG) analogs is hampered by rapid digestion of the linear peptide in vivo. In this study, a new MG analog stabilized against enzymatic degradation was investigated in preclinical studies to characterize the metabolites formed in vivo. The new MG analog DOTA-DGlu-Pro-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2 comprising site-specific amino acid substitutions in position 2, 6 and 8 and different possible metabolites thereof were synthesized. The receptor interaction of the peptide and selected metabolites was evaluated in a CCK2R-expressing cell line. The enzymatic stability of the 177Lu-labeled peptide analog was evaluated in vitro in different media as well as in BALB/c mice up to 1 h after injection and the metabolites were identified based on radio-HPLC analysis. The new radiopeptide showed a highly increased stability in vivo with >56% intact radiopeptide in the blood of BALB/c mice 1 h after injection. High CCK2R affinity and cell uptake was confirmed only for the intact peptide, whereas enzymatic cleavage within the receptor specific C-terminal amino acid sequence resulted in complete loss of affinity and cell uptake. A favorable biodistribution profile was observed in BALB/c mice with low background activity, preferential renal excretion and prolonged uptake in CCK2R-expressing tissues. The novel stabilized MG analog shows high potential for diagnostic and therapeutic use. The radiometabolites characterized give new insights into the enzymatic degradation in vivo.
Collapse
Affiliation(s)
- Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.A.H.); (M.K.); (M.R.)
| | - Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.A.H.); (M.K.); (M.R.)
| | - Maliheh Rezaeianpour
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.A.H.); (M.K.); (M.R.)
- Pharmaceutical Chemistry and Radiopharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1991953381 Tehran, Iran;
| | - Nikolas Hörmann
- Department of Pharmaceutical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria; (N.H.); (R.G.)
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria; (N.H.); (R.G.)
| | - Soraya Shahhosseini
- Pharmaceutical Chemistry and Radiopharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1991953381 Tehran, Iran;
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.A.H.); (M.K.); (M.R.)
- Correspondence: ; Tel.: +43-512-504-80960
| |
Collapse
|
17
|
Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging. Bioorg Chem 2020; 99:103802. [DOI: 10.1016/j.bioorg.2020.103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
18
|
Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals. Molecules 2020; 25:molecules25102314. [PMID: 32423178 PMCID: PMC7287708 DOI: 10.3390/molecules25102314] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022] Open
Abstract
The high affinity and specificity of peptides towards biological targets, in addition to their favorable pharmacological properties, has encouraged the development of many peptide-based pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals. However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge that must be overcome, as it can result in an impractically short in vivo biological half-life and a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently, many biologically and pharmacologically interesting peptide-based drugs may never see application. A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore of a native peptide while also containing unnatural modifications that act to maintain or improve the pharmacological properties. This review explores strategies that have been developed to increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Brendan J. Evans
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew T. King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
| | - Lidia Matesic
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia;
| | - Joanne F. Jamie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
- Correspondence: ; Tel.: +61-2-9850-8283
| |
Collapse
|
19
|
Worm DJ, Els‐Heindl S, Beck‐Sickinger AG. Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dennis J. Worm
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | - Sylvia Els‐Heindl
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | | |
Collapse
|
20
|
Wängler B, Schirrmacher R, Wängler C. Aiming at the tumor-specific accumulation of MGMT-inhibitors: First description of a synthetic strategy towards inhibitor-peptide conjugates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Grob NM, Häussinger D, Deupi X, Schibli R, Behe M, Mindt TL. Triazolo-Peptidomimetics: Novel Radiolabeled Minigastrin Analogs for Improved Tumor Targeting. J Med Chem 2020; 63:4484-4495. [PMID: 32302139 DOI: 10.1021/acs.jmedchem.9b01936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MG11 is a truncated analog of minigastrin, a peptide with high affinity and specificity toward the cholecystokinin-2 receptor (CCK2R), which is overexpressed by different tumors. Thus, radiolabeled MG11 derivatives have great potential for use in cancer diagnosis and therapy. A drawback of MG11 is its fast degradation by proteases, leading to moderate tumor uptake in vivo. We introduced 1,4-disubstituted 1,2,3-triazoles as metabolically stable bioisosteres to replace labile amide bonds of the peptide. The "triazole scan" yielded peptidomimetics with improved resistance to enzymatic degradation and/or enhanced affinity toward the CCK2R. Remarkably, our lead compound achieved a 10-fold increase in receptor affinity, resulting in a 2.6-fold improved tumor uptake in vivo. Modeling of the ligand-CCK2R complex suggests that an additional cation-π interaction of the aromatic triazole moiety with the Arg356 residue of the receptor is accountable for these observations. We show for the first time that the amide-to-triazole substitution strategy offers new opportunities in drug development that go beyond the metabolic stabilization of bioactive peptides.
Collapse
Affiliation(s)
- Nathalie M Grob
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Xavier Deupi
- Condensed Matter Theory Group, Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, 5232 Villigen, Switzerland.,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland.,Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria.,Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
22
|
Klingler M, Hörmann AA, Guggenberg EV. Cholecystokinin-2 Receptor Targeting with Radiolabeled Peptides: Current Status and Future Directions. Curr Med Chem 2020; 27:7112-7132. [PMID: 32586246 PMCID: PMC7116483 DOI: 10.2174/0929867327666200625143035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
A wide variety of radiolabeled peptide analogs for specific targeting of cholecystokinin- 2 receptors (CCK2R) has been developed in the last decades. Peptide probes based on the natural ligands Minigastrin (MG) and Cholecystokinin (CCK) have a high potential for molecular imaging and targeted radiotherapy of different human tumors, such as Medullary Thyroid Carcinoma (MTC) and Small Cell Lung Cancer (SCLC). MG analogs with high persistent uptake in CCK2R expressing tumors have been preferably used for the development of radiolabeled peptide analogs. The clinical translation of CCK2R targeting has been prevented due to high kidney uptake or low metabolic stability of the different radiopeptides developed. Great efforts in radiopharmaceutical development have been undertaken to overcome these limitations. Various modifications in the linear peptide sequence of MG have been introduced mainly with the aim to reduce kidney retention. Furthermore, improved tumor uptake could be obtained by in situ stabilization of the radiopeptide against enzymatic degradation through coinjection of peptidase inhibitors. Recent developments focusing on the stabilization of the Cterminal receptor binding sequence (Trp-Met-Asp-Phe-NH2) have led to new radiolabeled MG analogs with highly improved tumor uptake and tumor-to-kidney ratio. In this review, all the different aspects in the radiopharmaceutical development of CCK2R targeting peptide probes are covered, giving also an overview on the clinical investigations performed so far. The recent development of radiolabeled MG analogs, which are highly stabilized against enzymatic degradation in vivo, promises to have a high impact on the clinical management of patients with CCK2R expressing tumors in the near future.
Collapse
Affiliation(s)
- Maximilian Klingler
- Department of Nuclear Medicine, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
23
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
|
24
|
De K, Mukherjee D, Sinha S, Ganguly S. HYNIC and DOMA conjugated radiolabeled bombesin analogs as receptor-targeted probes for scintigraphic detection of breast tumor. EJNMMI Res 2019; 9:25. [PMID: 30887136 PMCID: PMC6423188 DOI: 10.1186/s13550-019-0493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Background Among the many peptide receptor systems, gastrin-releasing-peptide (GRP) receptors, the mammalian equivalent of bombesin (BN) receptors, are potential targets for diagnosis and therapy of breast tumors due to their overexpression in various frequently occurring human cancers. The aim of this study was to synthesize and comparative evaluation of 99mTc-labeled new BN peptide analogs. Four new BN analogs, HYNIC-Asp[PheNle]BN(7-14)NH2, BN1; HYNIC-Pro-Asp[TyrMet]BN(7-14)NH2, BN2; HYNIC-Asp-Asn[Lys-CHAla-Nle]BN(7-14)NH2, BN3; and DOMA-GABA[Pro-Tyr-Nle]BN(7-14)NH2, BN4 were synthesized and biologically evaluated for targeted imaging of GRP receptor-positive breast-tumors. Methods Solid-phase synthesis using Fmoc-chemistry was adopted for the synthesis of peptides. BN1–BN4 analogs were better over the standard Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 (BNS). Lipophilicity, serum stability, internalization, and binding affinity studies were carried out using 99mTc-labeled analogs. Biodistribution and imaging analyses were performed on MDA-MB-231 cell-induced tumor-bearing mice. BN-analogs induced angiogenesis; tumor formation and GRP-receptor-expression were confirmed by histology and immunohistochemistry analyses of tumor sections and important tissue sections. Results All the analogs displayed ≥ 97% purity after the HPLC purification. BN-peptide-conjugates exhibited high serum stability and significant binding affinity to GRP-positive tumor; rapid internalization/externalization in/from MDA-MB-231 cells were noticed for the BN analogs. BN4 and BN3 exhibited higher binding affinity, stability than BN1 and BN2. Highly specific in vivo uptakes to the tumor were clearly visualized by scintigraphy; rapid excretion from non-target tissues via kidneys suggests a higher tumor-to-background ratio. BN4, among all the analogs, stimulates the expression of angiogenic markers to a maximum. Conclusion Considering its most improved pharmacological characteristics, BN4 is thus considered as most promising probes for early non-invasive diagnosis of GRP receptor-positive breast tumors. Electronic supplementary material The online version of this article (10.1186/s13550-019-0493-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, West Bengal, 700032, India.
| | - Dibyanti Mukherjee
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, West Bengal, 700032, India
| | - Samarendu Sinha
- Regional Radiation Medicine Center, Thakurpukur Cancer Research Center and Welfare Home Campus, Kolkata, West Bengal, 700 060, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Research Center and Welfare Home Campus, Kolkata, West Bengal, 700 060, India
| |
Collapse
|
25
|
Ritler A, Shoshan MS, Deupi X, Wilhelm P, Schibli R, Wennemers H, Béhé M. Elucidating the Structure-Activity Relationship of the Pentaglutamic Acid Sequence of Minigastrin with Cholecystokinin Receptor Subtype 2. Bioconjug Chem 2019; 30:657-666. [PMID: 30608664 DOI: 10.1021/acs.bioconjchem.8b00849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Derivatized minigastrin analogues make up a promising class of candidates for targeting cholecystokinin receptor subtype 2 (CCK2R), which is overexpressed on cancer cells of various neuroendocrine tumors. The pentaglutamic acid sequence of minigastrin influences its biological properties. In particular, it plays a crucial role in the kidney reuptake mechanism. However, the importance of the binding affinity and interaction of this region with the receptor on a molecular level remains unclear. To elucidate its structure-activity relationship with CCK2R, we replaced this sequence with various linkers differing in their amount of anionic charge, structural characteristics, and flexibility. Specifically, a flexible aliphatic linker, a linker with only three d-Glu residues, and a structured linker with four adjacent β3-glutamic acid residues were evaluated and compared to the lead compound PP-F11N (DOTA-[d-Glu1-6,Nle11]gastrin-13). 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the minigastrin derivatives, which allowed radiolabeling with Lutetium-177. The levels of In vitro internalization into MZ-CRC1 cells and in vivo tumor uptake as well as human blood plasma stability increased in the following order: aliphatic linker < three d-Glu < (β3-Glu)4 < (d-Glu)6. The in vitro and in vivo behavior was therefore significantly improved with anionic charges. Computational modeling of a CCK2 receptor-ligand complex revealed ionic interactions between cationic residues (Arg and His) of the receptor and anionic residues of the ligand in the linker.
Collapse
Affiliation(s)
- Andreas Ritler
- Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Organic Chemistry (LOC) , ETH , CH-8093 Zurich , Switzerland.,Department of Chemistry and Applied Biosciences (D-CHAB), Institute of Pharmaceutical Sciences (IPW) , ETH , CH-8093 Zurich , Switzerland.,Research Department of Biology and Chemistry, Center for Radiopharmaceutical Sciences (CRS) , Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | - Michal S Shoshan
- Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Organic Chemistry (LOC) , ETH , CH-8093 Zurich , Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group , Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | - Patrick Wilhelm
- Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Organic Chemistry (LOC) , ETH , CH-8093 Zurich , Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute of Pharmaceutical Sciences (IPW) , ETH , CH-8093 Zurich , Switzerland.,Research Department of Biology and Chemistry, Center for Radiopharmaceutical Sciences (CRS) , Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| | - Helma Wennemers
- Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Organic Chemistry (LOC) , ETH , CH-8093 Zurich , Switzerland
| | - Martin Béhé
- Research Department of Biology and Chemistry, Center for Radiopharmaceutical Sciences (CRS) , Paul Scherrer Institute , CH-5232 Villigen , Switzerland
| |
Collapse
|
26
|
Rickmeier J, Ritter T. Site-Specific Deoxyfluorination of Small Peptides with [18
F]Fluoride. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jens Rickmeier
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
27
|
Rickmeier J, Ritter T. Site-Specific Deoxyfluorination of Small Peptides with [ 18 F]Fluoride. Angew Chem Int Ed Engl 2018; 57:14207-14211. [PMID: 30187598 DOI: 10.1002/anie.201807983] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Radiolabeled receptor-binding peptides are an important class of positron emission tomography tracers owing to achievable high binding affinities and their rapid blood clearance. Herein, a method to introduce a 4-[18 F]fluoro-phenylalanine residue into peptide sequences is reported, by chemoselective radio-deoxyfluorination of a tyrosine residue using a traceless activating group. The replacement of only one hydrogen atom with [18 F]fluoride results in minimal structural perturbation of the peptide, which is desirable in the labeling of tracer candidates.
Collapse
Affiliation(s)
- Jens Rickmeier
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Sauter AW, Mansi R, Hassiepen U, Muller L, Panigada T, Wiehr S, Wild AM, Geistlich S, Béhé M, Rottenburger C, Wild D, Fani M. Targeting of the Cholecystokinin-2 Receptor with the Minigastrin Analog 177Lu-DOTA-PP-F11N: Does the Use of Protease Inhibitors Further Improve In Vivo Distribution? J Nucl Med 2018; 60:393-399. [PMID: 30002107 DOI: 10.2967/jnumed.118.207845] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Patients with metastatic medullary thyroid cancer (MTC) have limited systemic treatment options. The use of radiolabeled gastrin analogs targeting the cholecystokinin-2 receptor (CCK2R) is an attractive approach. However, their therapeutic efficacy is presumably decreased by their enzymatic degradation in vivo. We aimed to investigate whether the chemically stabilized analog 177Lu-DOTA-PP-F11N (177Lu-DOTA-(dGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2) performs better than reference analogs with varying in vivo stability, namely 177Lu-DOTA-MG11 (177Lu-DOTA-dGlu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2) and 177Lu-DOTA-PP-F11 (177Lu-DOTA-(dGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2), and whether the use of protease inhibitors further improves CCKR2 targeting. First human data on 177Lu-DOTA-PP-F11N are also reported. Methods: In vitro stability of all analogs was assessed against a panel of extra- and intracellular endoproteases, whereas their in vitro evaluation was performed using the human MTC MZ-CRC-1 and the transfected A431-CCK2R(+) cell lines. Biodistribution without and with the protease inhibitors phosphoramidon and thiorphan was assessed 4 h after injection in MZ-CRC-1 and A431-CCK2R(+) dual xenografts. Autoradiography of 177Lu-DOTA-PP-F11N (without and with phosphoramidon) and NanoSPECT/CT were performed. SPECT/CT images of 177Lu-DOTA-PP-F11N in a metastatic MTC patient were also acquired. Results: natLu-DOTA-PP-F11N is less of a substrate for neprilysins than the other analogs, whereas intracellular cysteine proteases, such as cathepsin-L, might be involved in the degradation of gastrin analogs. The uptake of all radiotracers was higher in MZ-CRC-1 tumors than in A431-CCK2R(+), apparently because of the higher number of binding sites on MZ-CRC-1 cells. 177Lu-DOTA-PP-F11N had the same biodistribution as 177Lu-DOTA-PP-F11; however, uptake in the MZ-CRC-1 tumors was almost double (20.7 ± 1.71 vs. 11.2 ± 2.94 %IA [percentage injected activity]/g, P = 0.0002). Coadministration of phosphoramidon or thiorphan increases 177Lu-DOTA-MG11 uptake significantly in the CCK2R(+) tumors and stomach. Less profound was the effect on 177Lu-DOTA-PP-F11, whereas no influence or even reduction was observed for 177Lu-DOTA-PP-F11N (20.7 ± 1.71 vs. 15.6 ± 3.80 [with phosphoramidon] %IA/g, P < 0.05 in MZ-CRC-1 tumors). The first clinical data show high 177Lu-DOTA-PP-F11N accumulation in tumors, stomach, kidneys, and colon. Conclusion: The performance of 177Lu-DOTA-PP-F11N without protease inhibitors is as good as the performance of 177Lu-DOTA-MG11 in the presence of inhibitors. The human application of single compounds without unessential additives is preferable. Preliminary clinical data spotlight the stomach as a potential dose-limiting organ besides the kidneys.
Collapse
Affiliation(s)
- Alexander W Sauter
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland.,Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Ulrich Hassiepen
- Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland; and
| | - Lionel Muller
- Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland; and
| | - Tania Panigada
- Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland; and
| | - Stefan Wiehr
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Anna-Maria Wild
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Susanne Geistlich
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
29
|
Klingler M, Decristoforo C, Rangger C, Summer D, Foster J, Sosabowski JK, von Guggenberg E. Site-specific stabilization of minigastrin analogs against enzymatic degradation for enhanced cholecystokinin-2 receptor targeting. Am J Cancer Res 2018; 8:2896-2908. [PMID: 29896292 PMCID: PMC5996369 DOI: 10.7150/thno.24378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Minigastrin (MG) analogs show high affinity to the cholecystokinin-2 receptor (CCK2R) and have therefore been intensively studied to find a suitable analog for imaging and treatment of CCK2R-expressing tumors. The clinical translation of the radioligands developed thus far has been hampered by high kidney uptake or low enzymatic stability. In this study, we aimed to develop new MG analogs with improved targeting properties stabilized against degradation through site-specific amino acid modifications. Method: Based on the lead structure of a truncated MG analog, four new MG derivatives with substitutions in the C-terminal part of the peptide (Trp-Met-Asp-Phe-NH2) were synthesized and derivatized with DOTA at the N-terminus for radiolabeling with trivalent radiometals. The in vitro properties of the new analogs were characterized by analyzing the lipophilicity, the protein binding, and the stability of the Indium-111 (111In)-labeled analogs in different media. Two different cell lines, AR42J cells physiologically expressing the rat CCK2R and A431 cells transfected with human CCK2R (A431-CCK2R), were used to study the receptor affinity and cell uptake. For the two most promising MG analogs, metabolic studies in normal BALB/c mice were carried out as well as biodistribution and imaging studies in tumor xenografted athymic BALB/c nude mice. Results: Two out of four synthesized peptide analogs (DOTA-MGS1 and DOTA-MGS4) showed retained receptor affinity and cell uptake when radiolabeled with 111In. These two peptide analogs, however, showed a different stability against enzymatic degradation in vitro and in vivo. When injected to normal BALB/c mice, for 111In-DOTA-MGS1 at 10 min post injection (p.i.) no intact radiopeptide was found in the blood, whereas for 111In-DOTA-MGS4 more than 75% was still intact. 111In-DOTA-MGS4 showed a clear increase in injected activity per gram tissue (IA/g) for A431-CCK2R xenografts (10.40±2.21% IA/g 4 h p.i.) when compared to 111In-DOTA-MGS1 (1.23±0.15% IA/g 4 h p.i.). The tumor uptake of 111In-DOTA-MGS4 was also combined with a low uptake in stomach and kidney leading to high-contrast NanoSPECT/CT images. Conclusion: Of the four new MG analogs developed, the best results in terms of enzymatic stability and increased tumor targeting were obtained with 111In-DOTA-MGS4 showing two substitutions with N-methylated amino acids. 111In-DOTA-MGS4 was also superior to other MG analogs reported thus far and seems therefore an extremely promising targeting molecule for theranostic use with alternative radiometals.
Collapse
|
30
|
Lipiński PFJ, Garnuszek P, Maurin M, Stoll R, Metzler-Nolte N, Wodyński A, Dobrowolski JC, Dudek MK, Orzełowska M, Mikołajczak R. Structural studies on radiopharmaceutical DOTA-minigastrin analogue (CP04) complexes and their interaction with CCK2 receptor. EJNMMI Res 2018; 8:33. [PMID: 29663167 PMCID: PMC5902437 DOI: 10.1186/s13550-018-0387-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Background The cholecystokinin receptor subtype 2 (CCK-2R) is an important target for diagnostic imaging and targeted radionuclide therapy (TRNT) due to its overexpression in certain cancers (e.g., medullary thyroid carcinoma (MTC)), thus matching with a theranostic principle. Several peptide conjugates suitable for the TRNT of MTC have been synthesized, including a very promising minigastrin analogue DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 (CP04). In this contribution, we wanted to see whether CP04 binding affinity for CCK-2R is sensitive to the type of the complexed radiometal, as well as to get insights into the structure of CP04-CCK2R complex by molecular modeling. Results In vitro studies demonstrated that there is no significant difference in CCK-2R binding affinity and specific cellular uptake between the CP04 conjugates complexed with [68Ga]Ga3+ or [177Lu]Lu3+. In order to investigate the background of this observation, we proposed a binding model of CP04 with CCK-2R based on homology modeling and molecular docking. In this model, the C-terminal part of the molecule enters the cavity formed between the receptor helices, while the N-terminus (including DOTA and the metal) is located at the binding site outlet, exposed in large extent to the solvent. The radiometals do not influence the conformation of the molecule except for the direct neighborhood of the chelating moiety. Conclusions The model seems to be in agreement with much of structure-activity relationship (SAR) studies reported for cholecystokinin and for CCK-2R-targeting radiopharmaceuticals. It also explains relative insensitivity of CCK-2R affinity for the change of the metal. The proposed model partially fits the reported site-directed mutagenesis data.
Collapse
Affiliation(s)
- Piotr F J Lipiński
- Neuropeptides Department, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 Str., 02-106, Warszawa, Poland.
| | - Piotr Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Michał Maurin
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Artur Wodyński
- Świerk Computing Centre, National Centre for Nuclear Research, A. Sołtana 7 Str., 05-400, Otwock, Poland.,Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Jan Cz Dobrowolski
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Street, 03-195, Warszawa, Poland.,National Medicines Institute, Chełmska 30/34 Str., 00-725, Warszawa, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Monika Orzełowska
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| | - Renata Mikołajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, A. Sołtana 7 Str, 05-400, Otwock, Poland
| |
Collapse
|
31
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
32
|
Fani M, Peitl PK, Velikyan I. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms. Pharmaceuticals (Basel) 2017; 10:E30. [PMID: 28295000 PMCID: PMC5374434 DOI: 10.3390/ph10010030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.
Collapse
Affiliation(s)
- Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital of Basel, 4031 Basel, Switzerland.
| | - Petra Kolenc Peitl
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
| | - Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| |
Collapse
|
33
|
Grob NM, Behe M, von Guggenberg E, Schibli R, Mindt TL. Methoxinine - an alternative stable amino acid substitute for oxidation-sensitive methionine in radiolabelled peptide conjugates. J Pept Sci 2017; 23:38-44. [PMID: 28054429 DOI: 10.1002/psc.2948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/29/2023]
Abstract
Radiolabelled peptides with high specificity and affinity towards receptors that are overexpressed by tumour cells are used in nuclear medicine for the diagnosis (imaging) and therapy of cancer. In some cases, the sequences of peptides under investigations contain methionine (Met), an amino acid prone to oxidation during radiolabelling procedures. The formation of oxidative side products can affect the purity of the final radiopharmaceutical product and/or impair its specificity and affinity towards the corresponding receptor. The replacement of Met with oxidation resistant amino acid analogues, for example, norleucine (Nle), can provide a solution. While this approach has been applied successfully to different radiolabelled peptides, a Met → Nle switch only preserves the length of the amino acid side chain important for hydrophobic interactions but not its hydrogen-bonding properties. We report here the use of methoxinine (Mox), a non-canonical amino acid that resembles more closely the electronic properties of Met in comparison to Nle. Specifically, we replaced Met15 by Mox15 and Nle15 in the binding sequence of a radiometal-labelled human gastrin derivative [d-Glu10 ]HG(10-17), named MG11 (d-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ). A comparison of the physicochemical properties of 177 Lu-DOTA[X15 ]MG11 (X = Met, Nle, Mox) in vitro (cell internalization/externalization properties, receptor affinity (IC50 ), blood plasma stability and logD) showed that Mox indeed represents a suitable, oxidation-stable amino acid substitute of Met in radiolabelled peptide conjugates. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nathalie M Grob
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog Weg 4, CH-8093, Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | | | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog Weg 4, CH-8093, Zurich, Switzerland.,Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Thomas L Mindt
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog Weg 4, CH-8093, Zurich, Switzerland.,Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
34
|
Kaloudi A, Nock BA, Lymperis E, Krenning EP, de Jong M, Maina T. Improving the In Vivo Profile of Minigastrin Radiotracers: A Comparative Study Involving the Neutral Endopeptidase Inhibitor Phosphoramidon. Cancer Biother Radiopharm 2016; 31:20-8. [PMID: 26844849 DOI: 10.1089/cbr.2015.1935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Minigastrin radiotracers, such as [(111)In-DOTA]MG0 ([(111)In-DOTA-DGlu(1)]minigastrin), have been considered for diagnostic imaging and radionuclide therapy of CCK2R-positive human tumors, such as medullary thyroid carcinoma. However, the high kidney retention assigned to the pentaGlu(2-6) repeat in the peptide sequence has compromised their clinical applicability. On the other hand, truncated des(Glu)(2-6)-analogs, such as [(111)In-DOTA]MG11 ([(111)In-DOTA-DGlu(10),desGlu(2-6)]minigastrin), despite their low renal uptake, show poor bioavailability and tumor targeting. [(111)In]CP04 ([(111)In-DOTA-DGlu(1-6)]minigastrin) acquired by Glu(2-6)/DGlu(2-6) substitution showed promising tumor-to-kidney ratios in rodents. In the present study, we compare the biological profiles of [(111)In]CP04, [(111)In-DOTA]MG11, and [(111)In-DOTA]MG0 during in situ neutral endopeptidase (NEP) inhibition, recently shown to improve the bioavailability of several peptide radiotracers. After coinjection of the NEP inhibitor, phosphoramidon (PA), the stability of [(111)In]CP04 and [(111)In-DOTA]MG0 in peripheral mouse blood increased, with an exceptional >14-fold improvement monitored for [(111)In-DOTA]MG11. In line with these findings, PA treatment increased the uptake of [(111)In]CP04 (8.5 ± 0.4%ID/g to 16.0 ± 2.3%ID/g) and [(111)In-DOTA]MG0 (11.9 ± 2.2%ID/g to 17.2 ± 0.9%ID/g) in A431-CCK2R(+) tumors at 4 hours postinjection, whereas the respective increase for [(111)In-DOTA]MG11 was >6-fold (2.5 ± 0.9%ID/g to 15.1 ± 1.7%ID/g). Interestingly, kidney uptake remained lowest for [(111)In-DOTA]MG11, but unfavorably increased by PA treatment for [(111)In-DOTA]MG0. Thus, overall, the most favorable in vivo profile was displayed by [(111)In-DOTA]MG11 during NEP inhibition, highlighting the need to validate this promising concept in the clinic.
Collapse
Affiliation(s)
- Aikaterini Kaloudi
- 1 Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos ," Athens, Greece
| | - Berthold A Nock
- 1 Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos ," Athens, Greece
| | - Emmanouil Lymperis
- 1 Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos ," Athens, Greece
| | - Eric P Krenning
- 2 Department of Nuclear Medicine, Erasmus MC , Rotterdam, The Netherlands
| | - Marion de Jong
- 2 Department of Nuclear Medicine, Erasmus MC , Rotterdam, The Netherlands .,3 Department of Radiology, Erasmus MC , Rotterdam, The Netherlands
| | - Theodosia Maina
- 1 Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos ," Athens, Greece
| |
Collapse
|
35
|
Maina T, Konijnenberg MW, KolencPeitl P, Garnuszek P, Nock BA, Kaloudi A, Kroselj M, Zaletel K, Maecke H, Mansi R, Erba P, von Guggenberg E, Hubalewska-Dydejczyk A, Mikolajczak R, Decristoforo C. Preclinical pharmacokinetics, biodistribution, radiation dosimetry and toxicity studies required for regulatory approval of a phase I clinical trial with (111)In-CP04 in medullary thyroid carcinoma patients. Eur J Pharm Sci 2016; 91:236-42. [PMID: 27185299 PMCID: PMC4948680 DOI: 10.1016/j.ejps.2016.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 01/23/2023]
Abstract
Introduction From a series of radiolabelled cholecystokinin (CCK) and gastrin analogues, 111In-CP04 (111In-DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2) was selected for further translation as a diagnostic radiopharmaceutical towards a first-in-man study in patients with medullary thyroid carcinoma (MTC). A freeze-dried kit formulation for multicentre application has been developed. We herein report on biosafety, in vivo stability, biodistribution and dosimetry aspects of 111In-CP04 in animal models, essential for the regulatory approval of the clinical trial. Materials and methods Acute and extended single dose toxicity of CP04 was tested in rodents, while the in vivo stability of 111In-CP04 was assessed by HPLC analysis of mouse blood samples. The biodistribution of 111In-CP04 prepared from a freeze-dried kit was studied in SCID mice bearing double A431-CCK2R(±) xenografts at 1, 4 and 24 h pi. Further 4-h animal groups were either additionally treated with the plasma expander gelofusine or injected with 111In-CP04 prepared by wet-labelling. Pharmacokinetics in healthy mice included the 30 min, 1, 4, 24, 48 and 72 h time points pi. Dosimetric calculations were based on extrapolation of mice data to humans adopting two scaling models. Results CP04 was well-tolerated by both mice and rats, with an LD50 > 178.5 μg/kg body weight for mice and a NOAEL (no-observed-adverse-effect-level) of 89 μg/kg body weight for rats. After labelling, 111In-CP04 remained >70% intact in peripheral mouse blood at 5 min pi. The uptake of 111In-CP04 prepared from the freeze-dried kit and by wet-labelling were comparable in the A431-CCK2R(+)-xenografts (9.24 ± 1.35%ID/g and 8.49 ± 0.39%ID/g, respectively; P > 0.05). Gelofusine-treated mice exhibited significantly reduced kidneys values (1.69 ± 0.15%ID/g vs. 5.55 ± 0.94%ID/g in controls, P < 0.001). Dosimetry data revealed very comparable effective tumour doses for the two scaling models applied, of 0.045 and 0.044 mSv/MBq. Conclusion The present study has provided convincing toxicology, biodistribution and dosimetry data for prompt implementation of the freeze-dried kit formulation without or with gelofusine administration in a multicentre clinical trial in MTC patients.
Collapse
Affiliation(s)
- Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Athens, Greece
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Petra KolencPeitl
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Slovenia
| | - Piotr Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Athens, Greece
| | | | - Marko Kroselj
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Slovenia
| | - Katja Zaletel
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Slovenia
| | - Helmut Maecke
- Department of Nuclear Medicine, University Hospital Freiburg, Germany
| | - Rosalba Mansi
- Department of Nuclear Medicine, University Hospital Freiburg, Germany
| | - Paola Erba
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | | | - Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | | |
Collapse
|
36
|
Valverde IE, Vomstein S, Mindt TL. Toward the Optimization of Bombesin-Based Radiotracers for Tumor Targeting. J Med Chem 2016; 59:3867-77. [PMID: 27054526 DOI: 10.1021/acs.jmedchem.6b00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The peptide bombesin (BBN) is a peptide with high affinity for the gastrin-releasing peptide receptor (GRPr), a receptor that is overexpressed by, for example, breast and prostate cancers. Thus, GRPr agonists can be used as cancer-targeting vectors to shuttle diagnostic and therapeutic agents into tumor cells. With the aim of optimizing the tumor targeting properties of a radiolabeled [Nle(14)]BBN(7-14) moiety, novel BBN(7-14)- and BBN(6-14)-based radioconjugates were synthesized, labeled with Lu-177, and fully evaluated in vitro and in vivo. The effect of residue and backbone modification on several parameters such as the internalization of the radiolabeled peptides into PC3 and AR42J tumor cells, their affinity toward the human GRPr, metabolic stability in blood plasma, and biodistribution in mice bearing GRPr-expressing PC3 xenografts was studied. As a result of our investigations, a novel radiolabeled GRPr agonist with a high tumor uptake and a high tumor-to-kidney ratio was identified.
Collapse
Affiliation(s)
- Ibai E Valverde
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital , Petersgraben 4, 4031 Basel, Switzerland
| | - Sandra Vomstein
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital , Petersgraben 4, 4031 Basel, Switzerland
| | - Thomas L Mindt
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital , Petersgraben 4, 4031 Basel, Switzerland.,Ludwig Boltzmann Institute for Applied Diagnostics, General Hospital of Vienna , Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
37
|
(99m)Tc-labeled gastrins of varying peptide chain length: Distinct impact of NEP/ACE-inhibition on stability and tumor uptake in mice. Nucl Med Biol 2016; 43:347-54. [PMID: 27260775 DOI: 10.1016/j.nucmedbio.2016.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 01/24/2023]
Abstract
INTRODUCTION In situ inhibition of neutral endopeptidase (NEP) has been recently shown to impressively increase the bioavailability and tumor uptake of biodegradable gastrin radioligands. Furthermore, angiotensin converting enzyme (ACE) has been previously shown to cleave gastrin analogs in vitro. In the present study, we have assessed the effects induced by single or dual NEP/ACE-inhibition on the pharmacokinetic profile of three (99m)Tc-labeled gastrins of varying peptide chain length: [(99m)Tc]SG6 ([(99m)Tc-N4-Gln(1)]gastrin(1-17)), [(99m)Tc]DG2 ([(99m)Tc-N4-Gly(4),DGlu(5)]gastrin(4-17)) and [(99m)Tc]DG4 ([(99m)Tc-N4-DGlu(10)]gastrin(10-17)). METHODS Mouse blood samples were collected 5min after injection of each of [(99m)Tc]SG6/DG2/DG4 together with: a) vehicle, b) the NEP-inhibitor phosphoramidon (PA), c) the ACE-inhibitor lisinopril (Lis), or d) PA plus Lis and were analyzed by RP-HPLC for radiometabolite detection. Biodistribution was studied in SCID mice bearing A431-CCK2R(+/-) xenografts at 4h postinjection (pi). [(99m)Tc]SG6 or [(99m)Tc]DG4 was coinjected with either vehicle or the above described NEP/ACE-inhibitor regimens; for [(99m)Tc]DG2 control and PA animal groups were only included. RESULTS Treatment of mice with PA induced significant stabilization of (99m)Tc-radiotracers in peripheral blood, while treatment with Lis or Lis+PA affected the stability of des(Glu)5 [(99m)Tc]DG4 only. In line with these findings, PA coinjection led to notable amplification of tumor uptake of radiopeptides compared to controls (P<0.01). Only [(99m)Tc]DG4 profited by single Lis (2.06±0.39%ID/g vs 0.99±0.13%ID/g in controls) or combined Lis+PA coinjection (8.91±1.61%ID/g vs 4.89±1.33%ID/g in PA-group). Furthermore, kidney uptake remained favourably low and unaffected by PA and/or Lis coinjection only in the case of [(99m)Tc]DG4 (<1.9%ID/g) resulting in the most optimal tumor-to-kidney ratios. CONCLUSIONS In situ NEP/ACE-inhibition diversely affected the in vivo profile of (99m)Tc-radioligands based on different-length gastrins. Truncated [(99m)Tc]DG4 exhibited overall the most attractive profile during combined NEP/ACE-inhibition in mouse models, providing new opportunities for CCK2R-expressing tumor imaging in man with SPECT.
Collapse
|
38
|
Pawlak D, Rangger C, Kolenc Peitl P, Garnuszek P, Maurin M, Ihli L, Kroselj M, Maina T, Maecke H, Erba P, Kremser L, Hubalewska-Dydejczyk A, Mikołajczak R, Decristoforo C. From preclinical development to clinical application: Kit formulation for radiolabelling the minigastrin analogue CP04 with In-111 for a first-in-human clinical trial. Eur J Pharm Sci 2016; 85:1-9. [PMID: 26826279 PMCID: PMC4817208 DOI: 10.1016/j.ejps.2016.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/16/2016] [Accepted: 01/24/2016] [Indexed: 01/07/2023]
Abstract
Introduction A variety of radiolabelled minigastrin analogues targeting the cholecystokinin 2 (CCK2) receptor were developed and compared in a concerted preclinical testing to select the most promising radiotracer for diagnosis and treatment of medullary thyroid carcinoma (MTC). DOTA–DGlu–DGlu–DGlu–DGlu–DGlu–DGlu– Ala–Tyr–Gly–Trp–Met–Asp–Phe–NH2 (CP04) after labelling with 111In displayed excellent characteristics, such as high stability, receptor affinity, specific and persistent tumour uptake and low kidney retention in animal models. Therefore, it was selected for further clinical evaluation within the ERA-NET project GRAN-T-MTC. Here we report on the development of a pharmaceutical freeze-dried formulation of the precursor CP04 for a first multi-centre clinical trial with 111In-CP04 in MTC patients. Materials and methods The kit formulation was optimised by adjustment of buffer, additives and radiolabelling conditions. Three clinical grade batches of a final kit formulation with two different amounts of peptide (10 or 50 μg) were prepared and radiolabelled with 111In. Quality control and stability assays of both the kits and the resulting radiolabelled compound were performed by HPLC analysis. Results Use of ascorbic acid buffer (pH 4.5) allowed freeze-drying of the kit formulation with satisfactory pellet-formation. Addition of methionine and gentisic acid as well as careful selection of radiolabelling temperature was required to avoid extensive oxidation of the Met11-residue. Trace metal contamination, in particular Zn, was found to be a major challenge during the pharmaceutical filling process in particular for the 10 μg formulation. The final formulations contained 10 or 50 μg CP04, 25 mg ascorbic acid, 0.5 mg gentisic acid and 5 mg l-methionine. The radiolabelling performed by incubation of 200–250 MBq 111InCl3 at 90 °C for 15 min resulted in reproducible radiochemical purity (RCP) >94%. Kit-stability was proven for >6 months at +5 °C and at +25 °C. The radiolabelled product was stable for >4 h at +25 °C. Conclusion A kit formulation to prepare 111In-CP04 for clinical application was developed, showing high stability of the kit as well as high RCP of the final product.
Collapse
Affiliation(s)
- Dariusz Pawlak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | | | - Petra Kolenc Peitl
- Dept. of Nuclear Medicine, University Medical Centre Ljubljana, Slovenia
| | - Piotr Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | - Michał Maurin
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | - Laura Ihli
- Dept. of Nuclear Medicine, Medical University Innsbruck, Austria
| | - Marko Kroselj
- Dept. of Nuclear Medicine, University Medical Centre Ljubljana, Slovenia
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Athens, Greece
| | - Helmut Maecke
- Dept. of Nuclear Medicine, University Hospital Freiburg, Germany
| | - Paola Erba
- Dept. of Nuclear Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University Innsbruck, Austria
| | | | - Renata Mikołajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | | |
Collapse
|
39
|
Mascarin A, Valverde IE, Mindt TL. Radiolabeled analogs of neurotensin (8–13) containing multiple 1,2,3-triazoles as stable amide bond mimics in the backbone. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00208k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Substitution of multiple amide bonds by metabolically stable 1,2,3-triazoles yields novel tumour-targeting neurotensin-based peptidomimetics with interesting biological properties.
Collapse
Affiliation(s)
- Alba Mascarin
- Division of Radiopharmaceutical Chemistry
- University of Basel Hospital
- CH-4031 Basel
- Switzerland
| | - Ibai E. Valverde
- Division of Radiopharmaceutical Chemistry
- University of Basel Hospital
- CH-4031 Basel
- Switzerland
| | - Thomas L. Mindt
- Division of Radiopharmaceutical Chemistry
- University of Basel Hospital
- CH-4031 Basel
- Switzerland
- Ludwig Boltzmann Institute for Applied Diagnostics
| |
Collapse
|
40
|
Pfister J, Summer D, Rangger C, Petrik M, von Guggenberg E, Minazzi P, Giovenzana GB, Aloj L, Decristoforo C. Influence of a novel, versatile bifunctional chelator on theranostic properties of a minigastrin analogue. EJNMMI Res 2015; 5:74. [PMID: 26669693 PMCID: PMC4679714 DOI: 10.1186/s13550-015-0154-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 01/21/2023] Open
Abstract
Background 6-[Bis(carboxymethyl)amino]-1,4-bis(carboxymethyl)-6-methyl-1,4-diazepane (AAZTA ) is a promising chelator with potential advantages over 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for radiopharmaceutical applications. Its mesocyclic structure enables fast radiolabelling under mild conditions with trivalent metals including not only 68Ga for positron emission tomography (PET) but also 177Lu and 111In for single-photon emission computed tomography (SPECT) and radionuclide therapy. Here, we describe the evaluation of a bifunctional AAZTA derivative conjugated to a model minigastrin derivative as a potential theranostic agent. Methods An AAZTA derivative with an aliphatic C9 chain as linker was coupled to a minigastrin, namely [AAZTA0, D-Glu1, desGlu2–6]-minigastrin (AAZTA-MG), and labelled with 68Ga, 177Lu and 111In. The characterisation in vitro included stability studies in different media and determination of logD (octanol/PBS). Affinity determination (IC50) and cell uptake studies were performed in A431-CCK2R cells expressing the human CCK2 receptor. μPET/CT and ex vivo biodistribution studies were performed in CCK2 tumour xenograft-bearing nude mice and normal mice. Results AAZTA-MG showed high radiochemical yields for 68Ga (>95 %), 177Lu (>98 %) and 111In (>98 %). The logD value of −3.7 for both [68Ga]- and [177Lu]-AAZTA-MG indicates a highly hydrophilic character. Stability tests showed overall high stability in solution with some degradation in human plasma for [68Ga]- and transchelation towards DTPA for and [177Lu]-AAZTA-MG. An IC50 value of 10.0 nM was determined, which indicates a high affinity for the CCK2 receptor. Specific cell uptake after 60 min was >7.5 % for [68Ga]-AAZTA-MG and >9.5 % for [177Lu]-AAZTA-MG, comparable to other DOTA-MG-analogues. μPET/CT studies in CCK2 receptor tumour xenografted mice not only revealed high selective accumulation in A431-CCK2R positive tumours of 68Ga-labelled AAZTA-MG (1.5 % ID/g in 1 h post injection) but also higher blood levels as corresponding DOTA-analogues. The 111In-labelled peptide had a tumour uptake of 1.7 % ID/g. Biodistribution in normal mice with the [177Lu]-AAZTA-MG showed a considerable uptake in intestine (7.3 % ID/g) and liver (1.5 % ID/g). Conclusion Overall, AAZTA showed interesting properties as bifunctional chelator for peptides providing mild radiolabelling conditions for both 68Ga and trivalent metals having advantages over the currently used chelator DOTA. Studies are ongoing to further investigate in vivo targeting properties and stability issues and the influence of spacer length on biodistribution of AAZTA. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0154-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joachim Pfister
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Dominik Summer
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria
| | | | - Giovanni B Giovenzana
- CAGE Chemicals srl, Novara, Italy.,DSF, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Luigi Aloj
- Division of Nuclear Medicine, Istituto Nazionale Tumori, "Fondazione G. Pascale"-IRCCS, Napoli, Italy
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria.
| |
Collapse
|
41
|
Valverde IE, Vomstein S, Fischer CA, Mascarin A, Mindt TL. Probing the Backbone Function of Tumor Targeting Peptides by an Amide-to-Triazole Substitution Strategy. J Med Chem 2015; 58:7475-84. [DOI: 10.1021/acs.jmedchem.5b00994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ibai E. Valverde
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Sandra Vomstein
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Christiane A. Fischer
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Alba Mascarin
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Thomas L. Mindt
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| |
Collapse
|
42
|
Kaloudi A, Nock BA, Lymperis E, Sallegger W, Krenning EP, de Jong M, Maina T. In vivo inhibition of neutral endopeptidase enhances the diagnostic potential of truncated gastrin (111)In-radioligands. Nucl Med Biol 2015; 42:824-32. [PMID: 26300210 DOI: 10.1016/j.nucmedbio.2015.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/19/2015] [Accepted: 07/24/2015] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Radiolabeled gastrin analogs represent attractive candidates for diagnosis and therapy of cholecystokinin subtype-2 receptor (CCK2R)-expressing tumors. Radiolabeled des(Glu)5-gastrins show favorably low renal accumulation, but localize poorly in CCK2R-positive lesions. We introduce herein three truncated [DOTA-DGlu(10)]gastrin(10-17) analogs, with oxidation-susceptible Met(15) replaced by: (1), (2), or (3), and study the profile of [(111)In]1/2/3 during in vivo inhibition of neutral endopeptidase (NEP) in comparison to the non-truncated [ ([(111)In]4) reference. METHODS Blood samples collected from mice 5 min postinjection (pi) of [(111)In]1/2/3/4 without or with phosphoramidon (PA) coinjection were analyzed by RP-HPLC. Biodistribution was conducted in SCID mice bearing A431-CCK2R(+) or AR42J xenografts 4h after administration of [(111)In]1/2/3/4 without or with PA coinjection. RESULTS Firstly, we observed remarkable increases in the amount of radiopeptides detected intact in the blood of PA-treated mice at 5 min pi compared to controls. Secondly, we noted impressive enhancement of [(111)In]1/2/3 localization in AR42J and A431-CCK2R(+) tumors in mice after PA coinjection. Specifically, the uptake of [(111)In]1 at 4h pi increased from 2.6 ± 0.3%ID/g to 13.3 ± 3.5%ID/g in the AR42J tumors and from 4.3 ± 0.6%ID/g to 20.4 ± 3.6%ID/g in the A431-CCK2R(+) xenografts, with comparable improvements noted for [(111)In]2 and [(111)In]3 as well. Thirdly, renal uptake remained favorably low and unaffected by PA (<2.5%ID/g). Conversely, although the stability and tumor targeting of [(111)In]4 improved, its high renal uptake (>85%ID/g) increased even further by PA (>140%ID/g). CONCLUSIONS In situ inhibition of NEP represents a promising new tool to enhance the diagnostic efficacy of biodegradable gastrin radioligands in the visualization of CCK2R-positive lesions in man.
Collapse
Affiliation(s)
- Aikaterini Kaloudi
- Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos", GR-153 10, Athens, Greece
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos", GR-153 10, Athens, Greece
| | - Emmanouil Lymperis
- Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos", GR-153 10, Athens, Greece
| | | | - Eric P Krenning
- Department of Nuclear Medicine, Erasmus MC, 3015 CE, Rotterdam, The Netherlands
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, 3015 CE, Rotterdam, The Netherlands; Department of Radiology, Erasmus MC, 3015 CE, Rotterdam, The Netherlands
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos", GR-153 10, Athens, Greece.
| |
Collapse
|
43
|
Kolenc Peitl P, Tamma M, Kroselj M, Braun F, Waser B, Reubi JC, Sollner Dolenc M, Maecke HR, Mansi R. Stereochemistry of amino acid spacers determines the pharmacokinetics of (111)In-DOTA-minigastrin analogues for targeting the CCK2/gastrin receptor. Bioconjug Chem 2015; 26:1113-9. [PMID: 25971921 DOI: 10.1021/acs.bioconjchem.5b00187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The metabolic instability and high kidney retention of minigastrin (MG) analogues hamper their suitability for use in peptide-receptor radionuclide therapy of CCK2/gastrin receptor-expressing tumors. High kidney retention has been related to N-terminal glutamic acids and can be substantially reduced by coinjection of polyglutamic acids or gelofusine. The aim of the present study was to investigate the influence of the stereochemistry of the N-terminal amino acid spacer on the enzymatic stability and pharmacokinetics of (111)In-DOTA-(d-Glu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ((111)In-PP11-D) and (111)In-DOTA-(l-Glu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ((111)In-PP11-L). Using circular dichroism measurements, we demonstrate the important role of secondary structure on the pharmacokinetics of the two MG analogues. The higher in vitro serum stability together with the improved tumor-to-kidney ratio of the (d-Glu)6 congener indicates that this MG analogue might be a good candidate for further clinical study.
Collapse
Affiliation(s)
- Petra Kolenc Peitl
- †Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloska cesta 7, SI-1000 Ljubljana, Slovenia
| | - MariaLuisa Tamma
- ‡Division of Radiological Chemistry, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Marko Kroselj
- †Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloska cesta 7, SI-1000 Ljubljana, Slovenia
| | - Friederike Braun
- §Department of Nuclear Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Beatrice Waser
- ∥Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Murtenstrasse 31, CH-3010 Berne, Switzerland
| | - Jean Claude Reubi
- ∥Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Murtenstrasse 31, CH-3010 Berne, Switzerland
| | - Marija Sollner Dolenc
- ⊥Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Helmut R Maecke
- ‡Division of Radiological Chemistry, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.,§Department of Nuclear Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Rosalba Mansi
- ‡Division of Radiological Chemistry, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.,§Department of Nuclear Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| |
Collapse
|
44
|
Roosenburg S, Laverman P, Joosten L, Cooper MS, Kolenc-Peitl PK, Foster JM, Hudson C, Leyton J, Burnet J, Oyen WJG, Blower PJ, Mather SJ, Boerman OC, Sosabowski JK. PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with (64)Cu, (68)Ga, and (111)In. Mol Pharm 2014; 11:3930-7. [PMID: 24992368 DOI: 10.1021/mp500283k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cholecystokinin-2 (CCK-2) receptors, overexpressed in cancer types such as small cell lung cancers (SCLC) and medullary thyroid carcinomas (MTC), may serve as targets for peptide receptor radionuclide imaging. A variety of CCK and gastrin analogues has been developed, but a major drawback is metabolic instability or high kidney uptake. The minigastrin analogue PP-F11 has previously been shown to be a promising peptide for imaging of CCK-2 receptor positive tumors and was therefore further evaluated. The peptide was conjugated with one of the macrocyclic chelators DOTA, NOTA, or NODAGA. The peptide conjugates were then radiolabeled with either (68)Ga, (64)Cu, or (111)In. All (radio)labeled compounds were evaluated in vitro (IC50) and in vivo (biodistribution and PET/CT and SPECT/CT imaging). IC50 values were in the low nanomolar range for all compounds (0.79-1.51 nM). In the biodistribution studies, (68)Ga- and (111)In-labeled peptides showed higher tumor-to-background ratios than the (64)Cu-labeled compounds. All tested radiolabeled compounds clearly visualized the CCK2 receptor positive tumor in PET or SPECT imaging. The chelator did not seem to affect in vivo behavior of the peptide for (111)In- and (68)Ga-labeled peptides. In contrast, the biodistribution of the (64)Cu-labeled peptides showed high uptake in the liver and in other organs, most likely caused by high blood levels, probably due to dissociation of (64)Cu from the chelator and subsequent transchelation to proteins. Based on the present study, (68)Ga-DOTA-PP-F11 might be a promising radiopharmaceutical for PET/CT imaging of CCK2 receptor expressing tumors such as MTC and SCLC. Clinical studies are warranted to investigate the potential of this tracer.
Collapse
Affiliation(s)
- S Roosenburg
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affinity Maturation of an ERBB2-Targeted SPECT Imaging Peptide by In Vivo Phage Display. Mol Imaging Biol 2014; 16:449-58. [DOI: 10.1007/s11307-014-0724-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Nock BA, Maina T, Krenning EP, de Jong M. “To Serve and Protect”: Enzyme Inhibitors as Radiopeptide Escorts Promote Tumor Targeting. J Nucl Med 2013; 55:121-7. [DOI: 10.2967/jnumed.113.129411] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
47
|
Kossatz S, Mansi R, Béhé M, Czerney P, Hilger I. Influence of d-glutamine and d-glutamic acid sequences in optical peptide probes targeted against the cholecystokinin-2/gastrin-receptor on binding affinity, specificity and pharmacokinetic properties. EJNMMI Res 2013; 3:75. [PMID: 24238262 PMCID: PMC4176481 DOI: 10.1186/2191-219x-3-75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/31/2013] [Indexed: 01/23/2023] Open
Abstract
Background Image-based diagnosis of tumours can be advanced and improved by targeted strategies addressing malignant molecular structures. A promising molecular target is the cholecystokinin-2-receptor (CCK2R) which can be targeted by high-affinity peptides called minigastrins. Here we present how the imaging properties of minigastrins tagged with near-infrared fluorescence (NIRF) dyes can be modulated by the introduction of different spacer sequences. We identify interactions of different probe variants with regard to target affinity, specificity and pharmacokinetic properties to optimize early detection of CCK2R-expressing tumours under clinical conditions. Methods Two minigastrin probes with the same near-infrared hemicyanine fluorescence dye (DY-754) for signalling and the same CCK2R-binding peptide A-Y-G-W-M/Nle-N-F-amide but different spacers were designed as follows: ‘QE’ with three alternating d-glutamines and d-glutamic acids and ‘bivQ’ with two minigastrins, each preceded by three d-glutamines. They were tested for affinity and specificity in vitro on CCK2R-expressing and CCK2R-non-expressing cells. In vivo imaging was conducted with subcutaneous tumour-bearing nude mice after i.v. probe injection (54 to 108 nmol/kg) and under competitive conditions with non-fluorescent minigastrin (n = 5/group). We also assessed probe biodistribution as well as NIRF distribution in tumour sections. Results Both probes showed high affinity and specificity to CCK2R-expressing cells in vitro. In vivo tumour-to-background contrasts (tumour/background ratios (TBRs) of around 6) enabled identification of CCK2R-expressing tumours by both probes with low accumulation in CCK2R-negative tumours (TBR of around 2). Specificity of the in vivo accumulation, revealed by competition, was higher for QE. Besides renal retention, probe uptake into organs was very low. Conclusion The properties of optical minigastrin probes can be specifically modified by the introduction of spacer sequences. A spacer of six hydrophilic amino acids increases affinity. A mix of d-glutamic and d-glutamine acids increased target-to-background contrast. Multimerization could not increase affinity but supposedly lowered stability. The probe QE is a promising candidate for clinical evaluation in terms of diagnosis of CCK2R-expressing tumours.
Collapse
Affiliation(s)
- Susanne Kossatz
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital-Friedrich Schiller University Jena, Erlanger Allee 101, Jena, 07747, Germany.
| | | | | | | | | |
Collapse
|
48
|
Valverde IE, Bauman A, Kluba CA, Vomstein S, Walter MA, Mindt TL. 1,2,3-Triazole als Mimetika der Amid-Bindung: Ein Triazol-Scan führt zu Protease-resistenten Peptidmimetika für das Tumor-Targeting. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Valverde IE, Bauman A, Kluba CA, Vomstein S, Walter MA, Mindt TL. 1,2,3-Triazoles as Amide Bond Mimics: Triazole Scan Yields Protease-Resistant Peptidomimetics for Tumor Targeting. Angew Chem Int Ed Engl 2013; 52:8957-60. [DOI: 10.1002/anie.201303108] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/24/2013] [Indexed: 12/24/2022]
|
50
|
Carlucci G, Ananias HJK, Yu Z, Hoving HD, Helfrich W, Dierckx RAJO, Liu S, de Jong IJ, Elsinga PH. Preclinical evaluation of a novel ¹¹¹In-labeled bombesin homodimer for improved imaging of GRPR-positive prostate cancer. Mol Pharm 2013; 10:1716-24. [PMID: 23590837 DOI: 10.1021/mp3005462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rational-designed multimerization of targeting ligands can be used to improve kinetic and thermodynamic properties. Multimeric targeting ligands may be produced by tethering multiple identical or two or more monomeric ligands of different binding specificities. Consequently, multimeric ligands may simultaneously bind to multiple receptor molecules. Previously, multimerization has been successfully applied on radiolabeled RGD peptides, which resulted in an improved tumor targeting activity in animal models. Multimerization of peptide-based ligands may improve the binding characteristics by increasing local ligand concentration and by improving dissociation kinetics. Here, we present a preclinical study on a novel radiolabeled bombesin (BN) homodimer, designated (111)In-DOTA-[(Aca-BN(7-14)]2, that was designed for enhanced targeting of gastrin-releasing peptide receptor (GRPR)-positive prostate cancer cells. A BN homodimer was conjugated with DOTA-NHS and labeled with (111)In. After HPLC purification, the GRPR targeting ability of (111)In-DOTA-[Aca-BN(7-14)]2 was assessed by microSPECT imaging in SCID mice xenografted with the human prostate cancer cell line PC-3. (111)In labeling of DOTA-[(Aca-BN(7-14)]2 was achieved within 30 min at 85 °C with a labeling yield of >40%. High radiochemical purity (>95%) was achieved by HPLC purification. (111)InDOTA-[Aca-BN(7-14)]2 specifically bound to GRPR-positive PC-3 prostate cancer cells with favorable binding characteristics because uptake of 111In-DOTA-[Aca-BN(7-14)]2 in GRPR-positive PC-3 cells increased over time. A maximum peak with 30% radioactivity was observed after 2 h of incubation. The log D value was -1.8 ± 0.1. (111)In-DOTA-[Aca-BN(7-14)]2 was stable in vitro both in PBS and human serum for at least 4 days. In vivo biodistribution analysis and microSPECT/CT scans performed after 1, 4, and 24 h of injection showed favorable binding characteristics and tumor-to-normal tissue ratios. This study identifies (111)In-DOTA-[(Aca-BN(7-14)]2 as a promising radiotracer for nuclear imaging of GRPR in prostate cancer.
Collapse
Affiliation(s)
- G Carlucci
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|