1
|
Sun S, Yang Q, Jiang D, Zhang Y. Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment. J Nanobiotechnology 2024; 22:176. [PMID: 38609981 PMCID: PMC11015566 DOI: 10.1186/s12951-024-02432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent both a key driving force and therapeutic target of tumoral carcinogenesis, tumor evolution, progression, and recurrence. CSC-guided tumor diagnosis, treatment, and surveillance are strategically significant in improving cancer patients' overall survival. Due to the heterogeneity and plasticity of CSCs, high sensitivity, specificity, and outstanding targeting are demanded for CSC detection and targeting. Nanobiotechnologies, including biosensors, nano-probes, contrast enhancers, and drug delivery systems, share identical features required. Implementing these techniques may facilitate the overall performance of CSC detection and targeting. In this review, we focus on some of the most recent advances in how nanobiotechnologies leverage the characteristics of CSC to optimize cancer diagnosis and treatment in liquid biopsy, clinical imaging, and CSC-guided nano-treatment. Specifically, how nanobiotechnologies leverage the attributes of CSC to maximize the detection of circulating tumor DNA, circulating tumor cells, and exosomes, to improve positron emission computed tomography and magnetic resonance imaging, and to enhance the therapeutic effects of cytotoxic therapy, photodynamic therapy, immunotherapy therapy, and radioimmunotherapy are reviewed.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Lambidis E, Lumén D, Koskipahta E, Imlimthan S, Lopez BB, Sánchez AIF, Sarparanta M, Cheng RH, Airaksinen AJ. Synthesis and ex vivo biodistribution of two 68Ga-labeled tetrazine tracers: Comparison of pharmacokinetics. Nucl Med Biol 2022; 114-115:151-161. [PMID: 35680503 DOI: 10.1016/j.nucmedbio.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022]
Abstract
Pretargeted PET imaging allows the use of radiotracers labeled with short-living PET radionuclides for tracing drugs with slow pharmacokinetics. Recently, especially methods based on bioorthogonal chemistry have been under intensive investigation for pretargeted PET imaging. The pharmacokinetics of the radiotracer is one of the factors that determine the success of the pretargeted strategy. Here, we report synthesis and biological evaluation of two 68Ga-labeled tetrazine (Tz)-based radiotracers, [68Ga]Ga-HBED-CC-PEG4-Tz ([68Ga]4) and [68Ga]Ga-DOTA-PEG4-Tz ([68Ga]6), aiming for development of new tracer candidates for pretargeted PET imaging based on the inverse electron demand Diels-Alder (IEDDA) ligation between a tetrazine and a strained alkene, such as trans-cyclooctene (TCO). Excellent radiochemical yield (RCY) was obtained for [68Ga]4 (RCY > 96%) and slightly lower for [68Ga]6 (RCY > 88%). Radiolabeling of HBED-CC-Tz proved to be faster and more efficient under milder conditions compared to the DOTA analogue. The two tracers exhibited excellent radiolabel stability both in vitro and in vivo. Moreover, [68Ga]4 was successfully used for radiolabeling two different TCO-functionalized nanoparticles in vitro: Hepatitis E virus nanoparticles (HEVNPs) and porous silicon nanoparticles (PSiNPs).
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Dave Lumén
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Elina Koskipahta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Brianda B Lopez
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland; Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland.
| |
Collapse
|
3
|
Reusch U, Ellwanger K, Fucek I, Müller T, Schniegler-Mattox U, Koch J, Tesar M. Cryopreservation of Natural Killer Cells Pre-Complexed with Innate Cell Engagers. Antibodies (Basel) 2022; 11:antib11010012. [PMID: 35225870 PMCID: PMC8883965 DOI: 10.3390/antib11010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022] Open
Abstract
Innate cell engager (ICE®) constructs are bispecific tetravalent antibodies targeting specific tumor antigens and simultaneously engaging natural killer (NK) cell and macrophage receptors for the destruction of tumor cells. Pre-complexing of ICE® constructs with adoptive NK cells is a novel approach to enhance NK cell activity. The suitability of such complexes for cryopreservation, whilst retaining the biological activity and specificity, may enable the development of off-the-shelf NK cell products. This study investigates the binding affinity of ICE® constructs targeting EpCAM and NK cell receptors CD16A, NKG2D, or NKp46 to the corresponding antigens, the ICE® antitumor activity, and feasibility of cryopreservation. Cell surface retention assays using primary NK cells confirmed a substantially slower ICE® construct dissociation kinetics compared with control molecules, suggesting the formation of durable complexes independently of the CD16A polymorphism. The high-affinity NK cell and EpCAM/CD16A ICE® complexes were superior to those engaging NKG2D or NKp46 receptors when tested for the NK-cell-mediated elimination of EpCAM-expressing tumor cells. Moreover, the potency and efficacy of these complexes were unaffected after a single freeze–thaw cycle. CD16A-selective ICE® drug candidates complexed with NK cells hold promise as novel cryopreserved off-the-shelf NK cell products with chimeric antigen receptor-like NK cell properties, capable of effective depletion of tumor cells.
Collapse
|
4
|
Preclinical evaluation of [ 99mTc]Tc-labeled anti-EpCAM nanobody for EpCAM receptor expression imaging by immuno-SPECT/CT. Eur J Nucl Med Mol Imaging 2022; 49:1810-1821. [PMID: 35013776 DOI: 10.1007/s00259-021-05670-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Overexpression of epithelial cell adhesion molecule (EpCAM) plays essential roles in tumorigenesis and tumor progression in almost all epithelium-derived cancer. Monitoring EpCAM expression in tumors can be used for the diagnosis, staging, and prognosis of cancer patients, as well as guiding the individualized treatment of EpCAM-targeted drugs. In this study, we described the synthesis and evaluation of a site-specifically [99mTc]Tc-labeled EpCAM-targeted nanobody for the SPECT/CT imaging of EpCAM expression. METHODS We first prepared the [99mTc]Tc-HYNIC-G4K; then, it was site-specifically connected to EpCAM-targeted nanobody NB4. The in vitro characteristics of [99mTc]Tc-NB4 were investigated in HT-29 (EpCAM positive) and HL-60 (EpCAM negative) cells, while the in vivo studies were performed using small-animal SPECT/CT in the subcutaneous tumor models and the lymph node metastasis model to verify the specific targeting capacity as well as the potential applications of [99mTc]Tc-NB4. RESULTS [99mTc]Tc-NB4 displayed a high EpCAM specificity both in vitro and in vivo. SPECT/CT imaging revealed that [99mTc]Tc-NB4 was cleared rapidly from the blood and normal organs except for the kidneys, and HT-29 tumors were clearly visualized in contrast with HL-60 tumors. The uptake value of [99mTc]Tc-NB4 in HT-29 tumors was increased continuously from 3.77 ± 0.39%ID/g at 0.5 h to 5.53 ± 0.82%ID/g at 12 h after injection. Moreover, the [99mTc]Tc-NB4 SPECT/CT could clearly image tumor-draining lymph nodes. CONCLUSION [99mTc]Tc-NB4 is a broad-spectrum, specific, and sensitive SPECT radiotracer for the noninvasive imaging of EpCAM expression in the epithelium-derived cancer and revealed a great potential for the clinical translation.
Collapse
|
5
|
Effendi N, Mishiro K, Wakabayashi H, Gabryel-Skrodzka M, Shiba K, Taki J, Jastrząb R, Kinuya S, Ogawa K. Synthesis and evaluation of radiogallium-labeled long-chain fatty acid derivatives as myocardial metabolic imaging agents. PLoS One 2021; 16:e0261226. [PMID: 34910775 PMCID: PMC8673672 DOI: 10.1371/journal.pone.0261226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Since long-chain fatty acids work as the primary energy source for the myocardium, radiolabeled long-chain fatty acids play an important role as imaging agents to diagnose metabolic heart dysfunction and heart diseases. With the aim of developing radiogallium-labeled fatty acids, herein four fatty acid-based tracers, [67Ga]Ga-HBED-CC-PDA, [67Ga]Ga-HBED-CC-MHDA, [67Ga]Ga-DOTA-PDA, and [67Ga]Ga-DOTA-MHDA, which are [67Ga]Ga-HBED-CC and [67Ga]Ga-DOTA conjugated with pentadecanoic acid (PDA) and 3-methylhexadecanoic acid (MHDA), were synthesized, and their potential for myocardial metabolic imaging was evaluated. Those tracers were found to be chemically stable in 0.1 M phosphate buffered saline. Initial [67Ga]Ga-HBED-CC-PDA, [67Ga]Ga-HBED-CC-MHDA, [67Ga]Ga-DOTA-PDA, and [67Ga]Ga-DOTA-MHDA uptakes in the heart at 0.5 min postinjection were 5.01 ± 0.30%ID/g, 5.74 ± 1.02%ID/g, 5.67 ± 0.22%ID/g, and 5.29 ± 0.10%ID/g, respectively. These values were significantly lower than that of [123I]BMIPP (21.36 ± 2.73%ID/g). For their clinical application as myocardial metabolic imaging agents, further structural modifications are required to increase their uptake in the heart.
Collapse
Affiliation(s)
- Nurmaya Effendi
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- Faculty of Pharmacy, Universitas Muslim Indonesia, Makassar, South Sulawesi, Indonesia
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi, Kanazawa, Ishikawa, Japan
| | | | - Kazuhiro Shiba
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
6
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
7
|
Deyev SM, Vorobyeva A, Schulga A, Abouzayed A, Günther T, Garousi J, Konovalova E, Ding H, Gräslund T, Orlova A, Tolmachev V. Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1. Int J Biol Macromol 2019; 145:216-225. [PMID: 31863835 DOI: 10.1016/j.ijbiomac.2019.12.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Collapse
Affiliation(s)
- Sergey M Deyev
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Center of Biomedical Engineering, Sechenov University, Moscow, Russia
| | - Anzhelika Vorobyeva
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexey Schulga
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Tyran Günther
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Haozhong Ding
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Makarem A, Klika KD, Litau G, Remde Y, Kopka K. HBED-NN: A Bifunctional Chelator for Constructing Radiopharmaceuticals. J Org Chem 2019; 84:7501-7508. [DOI: 10.1021/acs.joc.9b00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ata Makarem
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 223, D-69120 Heidelberg, Germany
| | - Karel D. Klika
- German Cancer Research Center (DKFZ), Molecular Structure Analysis, INF 280, D-69120 Heidelberg, Germany
| | - German Litau
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 223, D-69120 Heidelberg, Germany
| | - Yvonne Remde
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 223, D-69120 Heidelberg, Germany
| | - Klaus Kopka
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 223, D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem 2018; 13:2466-2478. [PMID: 30246488 PMCID: PMC6587488 DOI: 10.1002/cmdc.201800624] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Antibodies have long been recognised as potent vectors for carrying diagnostic medical radionuclides, contrast agents and optical probes to diseased tissue for imaging. The area of ImmunoPET combines the use of positron emission tomography (PET) imaging with antibodies to improve the diagnosis, staging and monitoring of diseases. Recent developments in antibody engineering and PET radiochemistry have led to a new wave of experimental ImmunoPET imaging agents that are based on a range of antibody fragments and affibodies. In contrast to full antibodies, engineered affibody proteins and antibody fragments such as minibodies, diabodies, single-chain variable region fragments (scFvs), and nanobodies are much smaller but retain the essential specificities and affinities of full antibodies in addition to more desirable pharmacokinetics for imaging. Herein, recent key developments in the PET radiolabelling strategies of antibody fragments and related affibody molecules are highlighted, along with the main PET imaging applications of overexpressed antigen-associated tumours and immune cells.
Collapse
Affiliation(s)
- Ruisi Fu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Gokhan Yahioglu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Antikor Biopharma Ltd.StevenageSG1 2FXUK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Philip W. Miller
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
| |
Collapse
|
10
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
11
|
Tsai WTK, Wu AM. Aligning physics and physiology: Engineering antibodies for radionuclide delivery. J Labelled Comp Radiopharm 2018; 61:693-714. [PMID: 29537104 PMCID: PMC6105424 DOI: 10.1002/jlcr.3622] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
The exquisite specificity of antibodies and antibody fragments renders them excellent agents for targeted delivery of radionuclides. Radiolabeled antibodies and fragments have been successfully used for molecular imaging and radioimmunotherapy (RIT) of cell surface targets in oncology and immunology. Protein engineering has been used for antibody humanization essential for clinical applications, as well as optimization of important characteristics including pharmacokinetics, biodistribution, and clearance. Although intact antibodies have high potential as imaging and therapeutic agents, challenges include long circulation time in blood, which leads to later imaging time points post-injection and higher blood absorbed dose that may be disadvantageous for RIT. Using engineered fragments may address these challenges, as size reduction and removal of Fc function decreases serum half-life. Radiolabeled fragments and pretargeting strategies can result in high contrast images within hours to days, and a reduction of RIT toxicity in normal tissues. Additionally, fragments can be engineered to direct hepatic or renal clearance, which may be chosen based on the application and disease setting. This review discusses aligning the physical properties of radionuclides (positron, gamma, beta, alpha, and Auger emitters) with antibodies and fragments and highlights recent advances of engineered antibodies and fragments in preclinical and clinical development for imaging and therapy.
Collapse
Affiliation(s)
- Wen-Ting K Tsai
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
12
|
McKnight BN, Viola-Villegas NT. 89 Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Labelled Comp Radiopharm 2018; 61:727-738. [PMID: 29341222 PMCID: PMC6050145 DOI: 10.1002/jlcr.3605] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
Abstract
Therapeutic monoclonal antibodies have been used in cancer treatment for 30 years, with around 24 mAb and mAb:drug conjugates approved by the FDA to date. Despite their specificity, efficacy has remained limited, which, in part, derails nascent initiatives towards precision medicine. An image-guided approach to reinforce treatment decisions using immune positron emission tomography (immunoPET) companion diagnostic is warranted. This review provides a general overview of current translational research using Zr-89 immunoPET and opportunities for utilizing and harnessing this tool to its full potential. Patient case studies are cited to illustrate immunoPET probes as tools for profiling molecular signatures. Discussions on its utility in reinforcing clinical decisions as it relates to histopathological tumor assessment and standard diagnostic methods, and its potential as predictive biomarkers, are presented. We finally conclude with an overview of practical considerations to its utility in the clinic.
Collapse
Affiliation(s)
- Brooke N. McKnight
- Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
13
|
Ilovich O, Qutaish M, Hesterman JY, Orcutt K, Hoppin J, Polyak I, Seaman M, Abu-Yousif AO, Cvet D, Bradley DP. Dual-Isotope Cryoimaging Quantitative Autoradiography: Investigating Antibody–Drug Conjugate Distribution and Payload Delivery Through Imaging. J Nucl Med 2018; 59:1461-1466. [DOI: 10.2967/jnumed.118.207753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 12/24/2022] Open
|
14
|
Kim HY, Wang X, Kang R, Tang D, Boone BA, Zeh HJ, Lotze MT, Edwards WB. RAGE-specific single chain Fv for PET imaging of pancreatic cancer. PLoS One 2018. [PMID: 29529089 PMCID: PMC5846720 DOI: 10.1371/journal.pone.0192821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noninvasive detection of both early pancreatic neoplasia and metastases could enhance strategies to improve patient survival in this disease that is notorious for an extremely poor prognosis. There are almost no identifiable targets for non-invasive diagnosis by positron emission tomography (PET) for patients with pancreatic ductal adenocarcinoma (PDAC). Over-expression of the receptor for advanced glycation end products (RAGE) is found on the cell surface of both pre-neoplastic lesions and invasive PDAC. Here, a RAGE-specific single chain (scFv) was developed, specific for PET imaging in syngeneic mouse models of PDAC. An anti-RAGE scFv conjugated with a sulfo-Cy5 fluorescence molecule showed high affinity and selectivity for RAGE expressing pancreatic tumor cells and genetically engineered KRASG12D mouse models of PDAC. An in vivo biodistribution study was performed with the 64Cu-radiolabled scFv in a syngeneic murine pancreatic cancer model, demonstrating both the feasibility and potential of an anti-RAGE scFv for detection of PDAC. These studies hold great promise for translation into the clinic.
Collapse
Affiliation(s)
- Hye-Yeong Kim
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xiaolei Wang
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rui Kang
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Brian A. Boone
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Herbert J. Zeh
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - W. Barry Edwards
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhang X, Liu C, Hu F, Zhang Y, Wang J, Gao Y, Jiang Y, Zhang Y, Lan X. PET Imaging of VCAM-1 Expression and Monitoring Therapy Response in Tumor with a 68Ga-Labeled Single Chain Variable Fragment. Mol Pharm 2018; 15:609-618. [PMID: 29308904 DOI: 10.1021/acs.molpharmaceut.7b00961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) is a transmembrane glycoprotein closely related to tumorigenicity as well as tumor metastasis. It is also a well-known candidate for detecting tumors. LY2409881, an IKKβ inhibitor, could induce apoptosis of VCAM-1 positive cells. Our purpose is to prepare a novel tracer to evaluate its feasibility of detecting VCAM-1 expression and monitoring LY2409881 tumor curative effect. The tracer was prepared by conjugating the single chain variable fragment (scFv) of VCAM-1 and NOTA-NHS-ester and then labeled with 68Ga. 68Ga-NOTA-VCAM-1scFv was successfully prepared with high radiochemical yield. VCAM-1 overexpression and underexpression melanoma cell lines, B16F10 and A375m, were used in this study. The results of microPET/CT imaging in small animals indicated that the uptake of 68Ga-NOTA-VCAM-1scFv in B16F10 tumor was much higher than that of A375m, which was also confirmed by the biodistribution and autoradiography results. LY2409881 inhibits the growth of B16F10 melanoma in vivo by inducing dose- and time-dependent growth inhibition and apoptosis of the cells. The LY2409881 treated group and DMSO control group were established and imaged by microPET/CT. In the LY2409881 group, uptake of the tracer in tumor was decreased at the first week, and then gradually recovered to the initial level. In DMSO control, the uptake of the tracer remained at the same level during the whole time. The results suggested that LY2409881 inhibits the expression of VCAM-1 and suppresses tumor growth. 68Ga-NOTA-VCAM-1scFv, an easily synthesized probe, has a potential clinical application in the visual monitoring of IKKβ inhibitor intervention on VCAM-1 positive tumors.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Chunbao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Yingying Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University , Xi'an, 710032, China
| | - Yongheng Gao
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University , Xi'an, 710032, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| |
Collapse
|
16
|
Stern LA, Csizmar CM, Woldring DR, Wagner CR, Hackel BJ. Titratable Avidity Reduction Enhances Affinity Discrimination in Mammalian Cellular Selections of Yeast-Displayed Ligands. ACS COMBINATORIAL SCIENCE 2017; 19:315-323. [PMID: 28322543 DOI: 10.1021/acscombsci.6b00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yeast surface display selections against mammalian cell monolayers have proven effective in isolating proteins with novel binding activity. Recent advances in this technique allow for the recovery of clones with even micromolar binding affinities. However, no efficient method has been shown for affinity-based selection in this context. This study demonstrates the effectiveness of titratable avidity reduction using dithiothreitol to achieve this goal. A series of epidermal growth factor receptor binding fibronectin domains with a range of affinities are used to quantitatively identify the number of ligands per yeast cell that yield the strongest selectivity between strong, moderate, and weak affinities. Notably, reduction of ligand display to 3,000-6,000 ligands per yeast cell of a 2 nM binder yields 16-fold better selectivity than that to a 17 nM binder. These lessons are applied to affinity maturation of an EpCAM-binding fibronectin population, yielding an enriched pool of ligands with significantly stronger affinity than that of an analogous pool sorted by standard cellular selection methods. Collectively, this study offers a facile approach for affinity selection of yeast-displayed ligands against full-length cellular targets and demonstrates the effectiveness of this method by generating EpCAM-binding ligands that are promising for further applications.
Collapse
Affiliation(s)
- Lawrence A. Stern
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Clifford M. Csizmar
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Daniel R. Woldring
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Carston R. Wagner
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department
of Chemical Engineering and Materials Science and ‡Department of Medicinal Chemistry, University of Minnesota−Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
van Driel PBAA, Boonstra MC, Prevoo HAJM, van de Giessen M, Snoeks TJA, Tummers QRJG, Keereweer S, Cordfunke RA, Fish A, van Eendenburg JDH, Lelieveldt BPF, Dijkstra J, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Löwik CWGM, Sier CFM. EpCAM as multi-tumour target for near-infrared fluorescence guided surgery. BMC Cancer 2016; 16:884. [PMID: 27842504 PMCID: PMC5109830 DOI: 10.1186/s12885-016-2932-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023] Open
Abstract
Background Evaluation of resection margins during cancer surgery can be challenging, often resulting in incomplete tumour removal. Fluorescence-guided surgery (FGS) aims to aid the surgeon to visualize tumours and resection margins during surgery. FGS relies on a clinically applicable imaging system in combination with a specific tumour-targeting contrast agent. In this study EpCAM (epithelial cell adhesion molecule) is evaluated as target for FGS in combination with the novel Artemis imaging system. Methods The NIR fluorophore IRDye800CW was conjugated to the well-established EpCAM specific monoclonal antibody 323/A3 and an isotype IgG1 as control. The anti-EpCAM/800CW conjugate was stable in serum and showed preserved binding capacity as evaluated on EpCAM positive and negative cell lines, using flow cytometry and cell-based plate assays. Four clinically relevant orthotopic tumour models, i.e. colorectal cancer, breast cancer, head and neck cancer, and peritonitis carcinomatosa, were used to evaluate the performance of the anti-EpCAM agent with the clinically validated Artemis imaging system. The Pearl Impulse small animal imaging system was used as reference. The specificity of the NIRF signal was confirmed using bioluminescence imaging and green-fluorescent protein. Results All tumour types could clearly be delineated and resected 72 h after injection of the imaging agent. Using NIRF imaging millimetre sized tumour nodules were detected that were invisible for the naked eye. Fluorescence microscopy demonstrated the distribution and tumour specificity of the anti-EpCAM agent. Conclusions This study shows the potential of an EpCAM specific NIR-fluorescent agent in combination with a clinically validated intraoperative imaging system to visualize various tumours during surgery.
Collapse
Affiliation(s)
- P B A A van Driel
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands.,Percuros BV, Enschede, The Netherlands
| | - M C Boonstra
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - H A J M Prevoo
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - M van de Giessen
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - T J A Snoeks
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands
| | - Q R J G Tummers
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, Netherlands
| | - R A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - A Fish
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - B P F Lelieveldt
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - J Dijkstra
- Department of Radiology and Division of Image Processing, Leiden University Medical Centre, Leiden, Netherlands
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands.,Antibodies for Research Applications BV, Gouda, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C W G M Löwik
- Department of Radiology, Division of Molecular Imaging, Leiden University Medical Centre, Leiden, Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands. .,Antibodies for Research Applications BV, Gouda, The Netherlands.
| |
Collapse
|
18
|
Vágner A, D'Alessandria C, Gambino G, Schwaiger M, Aime S, Maiocchi A, Tóth I, Baranyai Z, Tei L. A rigidified AAZTA-like ligand as efficient chelator for68Ga radiopharmaceuticals. ChemistrySelect 2016. [DOI: 10.1002/slct.201500051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Adrienn Vágner
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen Egyetem tér 1. Hungary
| | - Calogero D'Alessandria
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar; Technische Universität München; Ismaningerstr. 22 81675 Munich Germany
| | - Giuseppe Gambino
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT); Università degli Studi del Piemonte Orientale “A. Avogadro”; Viale T. Michel 11 I-15121 Alessandria Italy
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar; Technische Universität München; Ismaningerstr. 22 81675 Munich Germany
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center, University of Torino; Via Nizza 52 I-10126 Torino Italy
| | - Alessandro Maiocchi
- Centro Ricerche Bracco, Bracco Imaging Spa; Via Ribes 5 I-10010 Colleretto Giacosa Italy
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen Egyetem tér 1. Hungary
| | - Zsolt Baranyai
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen Egyetem tér 1. Hungary
| | - Lorenzo Tei
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar; Technische Universität München; Ismaningerstr. 22 81675 Munich Germany
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT); Università degli Studi del Piemonte Orientale “A. Avogadro”; Viale T. Michel 11 I-15121 Alessandria Italy
| |
Collapse
|
19
|
Warnders FJ, Waaijer SJH, Pool M, Lub-de Hooge MN, Friedrich M, Terwisscha van Scheltinga AGT, Deegen P, Stienen SK, Pieslor PC, Cheung HK, Kosterink JGW, de Vries EGE. Biodistribution and PET Imaging of Labeled Bispecific T Cell-Engaging Antibody Targeting EpCAM. J Nucl Med 2016; 57:812-7. [PMID: 26848172 DOI: 10.2967/jnumed.115.168153] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED AMG 110, a bispecific T cell engager (BiTE) antibody construct, induces T cell-mediated cancer cell death by cross-linking epithelial cell adhesion molecule (EpCAM) on tumor cells with a cluster of differentiation 3 ε (CD3ε) on T cells. We labeled AMG 110 with (89)Zr or near-infrared fluorescent dye (IRDye) 800CW to study its tumor targeting and tissue distribution. METHODS Biodistribution and tumor uptake of (89)Zr-AMG 110 was studied up to 6 d after intravenous administration to nude BALB/c mice bearing high EpCAM-expressing HT-29 colorectal cancer xenografts. Tumor uptake of (89)Zr-AMG 110 was compared with uptake in head and neck squamous cell cancer FaDu (intermediate EpCAM) and promyelocytic leukemia HL60 (EpCAM-negative) xenografts. Intratumoral distribution in HT-29 tumors was studied using 800CW-AMG 110. RESULTS Tumor uptake of (89)Zr-AMG 110 can be clearly visualized using small-animal PET imaging up to 72 h after injection. The highest tumor uptake of (89)Zr-AMG 110 at the 40-μg dose level was observed at 6 and 24 h (respectively, 5.35 ± 0.22 and 5.30 ± 0.20 percentage injected dose per gram; n = 3 and 4). Tumor uptake of (89)Zr-AMG 110 was EpCAM-specific and correlated with EpCAM expression. 800CW-AMG 110 accumulated at the tumor cell surface in viable EpCAM-expressing tumor tissue. CONCLUSION PET and fluorescent imaging provided real-time information about AMG 110 distribution and tumor uptake in vivo. Our data support using (89)Zr and IRDye 800CW to evaluate tumor and tissue uptake kinetics of bispecific T cell engager antibody constructs in preclinical and clinical settings.
Collapse
Affiliation(s)
- Frank J Warnders
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stijn J H Waaijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pharmacy, Section of Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Subramanian N, Sreemanthula JB, Balaji B, Kanwar JR, Biswas J, Krishnakumar S. A strain-promoted alkyne-azide cycloaddition (SPAAC) reaction of a novel EpCAM aptamer-fluorescent conjugate for imaging of cancer cells. Chem Commun (Camb) 2015; 50:11810-3. [PMID: 25005751 DOI: 10.1039/c4cc02996h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
For the first time, a novel EpCAM aptamer (SYL3C)-DIBO-AF594 fluorescent conjugate was synthesised by bioorthogonal chemistry utilizing a strain promoted alkyne-azide cycloaddition (copper free click) reaction (SPAAC). The ligation efficiency of SPAAC was improved by freeze-thaw cycles. The obtained conjugate showed target specific binding and aided in the imaging of various EpCAM positive cancer cell lines like MCF7, MDAMB453, Weri-RB1 and PC3.
Collapse
Affiliation(s)
- Nithya Subramanian
- Department of Nanobiotechnology, Kamalnayan Bajaj Research Institute, Vision Research Foundation, Chennai, India.
| | | | | | | | | | | |
Collapse
|
21
|
Li K, Zettlitz KA, Lipianskaya J, Zhou Y, Marks JD, Mallick P, Reiter RE, Wu AM. A fully human scFv phage display library for rapid antibody fragment reformatting. Protein Eng Des Sel 2015; 28:307-16. [PMID: 25991864 DOI: 10.1093/protein/gzv024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022] Open
Abstract
Phage display libraries of human single-chain variable fragments (scFvs) are a reliable source of fully human antibodies for scientific and clinical applications. Frequently, scFvs form the basis of larger, bivalent formats to increase valency and avidity. A small and versatile bivalent antibody fragment is the diabody, a cross-paired scFv dimer (∼55 kDa). However, generation of diabodies from selected scFvs requires decreasing the length of the interdomain scFv linker, typically by overlap PCR. To simplify this process, we designed two scFv linkers with integrated restriction sites for easy linker length reduction (17-residue to 7-residue or 18-residue to 5-residue, respectively) and generated two fully human scFv phage display libraries. The larger library (9 × 10(9) functional members) was employed for selection against a model antigen, human N-cadherin, yielding novel scFv clones with low nanomolar monovalent affinities. ScFv clones from both libraries were reformatted into diabodies by restriction enzyme digestion and re-ligation. Size-exclusion chromatography analysis confirmed the proper dimerization of most of the diabodies. In conclusion, these specially designed scFv phage display libraries allow us to rapidly reformat the selected scFvs into diabodies, which can greatly accelerate early stage antibody development when bivalent fragments are needed for candidate screening.
Collapse
Affiliation(s)
- Keyu Li
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 570 Westwood Plaza, Box 951770, Los Angeles, CA 90095, USA
| | - Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 570 Westwood Plaza, Box 951770, Los Angeles, CA 90095, USA
| | - Julia Lipianskaya
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 570 Westwood Plaza, Box 951770, Los Angeles, CA 90095, USA
| | - Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, 1001 Potrero Ave, Rm 3C-38, San Francisco, CA 94110, USA
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, 1001 Potrero Ave, Rm 3C-38, San Francisco, CA 94110, USA
| | - Parag Mallick
- Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA 94304, USA
| | - Robert E Reiter
- Department of Urology, UCLA, Los Angeles, CA 90095, USA Molecular Biology Institute at UCLA, Los Angeles, CA 90095, USA Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA 90095, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 570 Westwood Plaza, Box 951770, Los Angeles, CA 90095, USA Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Eder M, Neels O, Müller M, Bauder-Wüst U, Remde Y, Schäfer M, Hennrich U, Eisenhut M, Afshar-Oromieh A, Haberkorn U, Kopka K. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals (Basel) 2014; 7:779-96. [PMID: 24983957 PMCID: PMC4113732 DOI: 10.3390/ph7070779] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
The detection of prostate cancer lesions by PET imaging of the prostate-specific membrane antigen (PSMA) has gained highest clinical impact during the last years. 68Ga-labelled Glu-urea-Lys(Ahx)-HBED-CC ([68Ga]Ga-PSMA-HBED-CC) represents a successful novel PSMA inhibitor radiotracer which has recently demonstrated its suitability in individual first-in-man studies. The radiometal chelator HBED-CC used in this molecule represents a rather rarely used acyclic complexing agent with chemical characteristics favourably influencing the biological functionality of the PSMA inhibitor. The simple replacement of HBED-CC by the prominent radiometal chelator DOTA was shown to dramatically reduce the in vivo imaging quality of the respective 68Ga-labelled PSMA-targeted tracer proving that HBED-CC contributes intrinsically to the PSMA binding of the Glu-urea-Lys(Ahx) pharmacophore. Owing to the obvious growing clinical impact, this work aims to reflect the properties of HBED-CC as acyclic radiometal chelator and presents novel preclinical data and relevant aspects of the radiopharmaceutical production process of [68Ga]Ga-PSMA-HBED-CC.
Collapse
Affiliation(s)
- Matthias Eder
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Oliver Neels
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Miriam Müller
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Ulrike Bauder-Wüst
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Yvonne Remde
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Martin Schäfer
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Ute Hennrich
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Michael Eisenhut
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany.
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany.
| | - Klaus Kopka
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
23
|
Wiehr S, Bühler P, Gierschner D, Wolf P, Rolle AM, Kesenheimer C, Pichler BJ, Elsässer-Beile U. Pharmacokinetics and PET imaging properties of two recombinant anti-PSMA antibody fragments in comparison to their parental antibody. Prostate 2014; 74:743-55. [PMID: 24610028 DOI: 10.1002/pros.22794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/31/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Radioimmunoimaging with disease-specific tracers can be advantageous compared to that with nonspecific tracers for the imaging of glucose metabolism and cell proliferation. Monoclonal antibodies (mAbs) or their fragments are excellent tools for immuno-positron emission tomography (PET). In this study, PSMA-specific mAb 3/F11 and its recombinant fragments were compared for the imaging of prostate cancer in xenografts. METHODS Recombinant anti-PSMA antibody fragments D7-Fc and D7-CH3 were constructed by genetically fusing the binding domains of mAb 3/F11 (D7) to the human IgG3 CH3 or CH2-CH3 (Fc) domain. The fragments and the mAb 3/F11 were DOTA conjugated, tested in vitro, and radiolabeled with (64) Cu. PSMA-positive C4-2 and PSMA-negative DU 145 prostate cancer xenografts were used for PET-MR imaging and for ex vivo biodistribution. RESULTS The constructs showed strong and specific binding to PSMA-positive C4-2 cells in vitro which did not decrease after DOTA conjugation. Both tested fragments showed stable accumulation in PSMA-positive C4-2 tumors at all measured time points but reduced uptake compared to the full-length antibody. Other organs and PSMA-negative tumors showed a very low tracer uptake only 3 hr after injection, with the exception of the kidneys, which demonstrated high radioactivity uptake due to rapid renal clearance of the mAb fragments. CONCLUSION Stable tumor uptake and fast serum clearance of the tested radiolabeled fragments was observed in this preclinical study compared to the full length mAb. Since the fragments show rapid and specific tumor uptake, the tested fragments might serve as tools for theranostic imaging with suitable isotopes for radioimmunotherapy.
Collapse
Affiliation(s)
- Stefan Wiehr
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sugiura G, Kühn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules 2014; 19:2135-65. [PMID: 24552984 PMCID: PMC6271853 DOI: 10.3390/molecules19022135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/16/2014] [Accepted: 02/01/2014] [Indexed: 12/15/2022] Open
Abstract
Owing to their large size proteinaceous drugs offer higher operative information content compared to the small molecules that correspond to the traditional understanding of druglikeness. As a consequence these drugs allow developing patient-specific therapies that provide the means to go beyond the possibilities of current drug therapy. However, the efficacy of these strategies, in particular "personalized medicine", depends on precise information about individual target expression rates. Molecular imaging combines non-invasive imaging methods with tools of molecular and cellular biology and thus bridges current knowledge to the clinical use. Moreover, nuclear medicine techniques provide therapeutic applications with tracers that behave like the diagnostic tracer. The advantages of radioiodination, still the most versatile radiolabeling strategy, and other labeled compounds comprising covalently attached radioisotopes are compared to the use of chelator-protein conjugates that are complexed with metallic radioisotopes. With the techniques using radioactive isotopes as a reporting unit or even the therapeutic principle, care has to be taken to avoid cleavage of the radionuclide from the protein it is linked to. The tracers used in molecular imaging require labeling techniques that provide site specific conjugation and metabolic stability. Appropriate choice of the radionuclide allows tailoring the properties of the labeled protein to the application required. Until the event of positron emission tomography the spectrum of nuclides used to visualize cellular and biochemical processes was largely restricted to iodine isotopes and 99m-technetium. Today, several nuclides such as 18-fluorine, 68-gallium and 86-yttrium have fundamentally extended the possibilities of tracer design and in turn caused the need for the development of chemical methods for their conjugation.
Collapse
Affiliation(s)
- Grant Sugiura
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Helen Kühn
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Max Sauter
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany.
| |
Collapse
|
25
|
Lütje S, Franssen GM, Sharkey RM, Laverman P, Rossi EA, Goldenberg DM, Oyen WJG, Boerman OC, McBride WJ. Anti-CEA antibody fragments labeled with [(18)F]AlF for PET imaging of CEA-expressing tumors. Bioconjug Chem 2014; 25:335-41. [PMID: 24382090 DOI: 10.1021/bc4004926] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile and rapid method to label peptides with (18)F based on chelation of [(18)F]AlF has been developed recently. Since this method requires heating to 100 °C, it cannot be used to label heat-sensitive proteins. Here, we used a two-step procedure to prepare (18)F-labeled heat-labile proteins using the [(18)F]AlF method based on hot maleimide conjugation. 1,4,7-Triazacyclononae-1,4-diacetate (NODA) containing a methyl phenylacetic acid group (MPA) functionalized with N-(2-aminoethyl)maleimide (EM) was used as a ligand which was labeled with [(18)F]AlF and then conjugated to the humanized anti-CEA antibody derivatives hMN-14-Fab', hMN-14-(scFv)2 (diabody), and a Dock-and-Lock engineered dimeric fragment hMN-14 Fab-AD2 at room temperature. The in vivo tumor targeting characteristics of the (18)F-labeled antibody derivatives were determined by PET imaging of mice with s.c. xenografts. NODA-MPAEM was radiolabeled with [(18)F]AlF at a specific activity of 29-39 MBq/nmol and a labeling efficiency of 94 ± 2%. The labeling efficiencies of the maleimide conjugation ranged from 70% to 77%, resulting in [(18)F]AlF-labeled hMN14-Fab', hMN14-Fab-AD2, or hMN14-diabody with a specific activity of 15-17 MBq/nmol. The radiolabeled conjugates were purified by gel filtration. For biodistribution and microPET imaging, antibody fragments were injected intravenously into BALB/c nude mice with s.c. CEA-expressing LS174T xenografts (right flank) and CEA-negative SK-RC-52 xenografts (left flank). All [(18)F]AlF-labeled conjugates showed specific uptake in the LS174T xenografts with a maximal tumor uptake of 4.73% ID/g at 4 h after injection. Uptake in CEA-negative SK-RC-52 xenografts was significantly lower. Tumors were clearly visualized on microPET images. Using a [(18)F]AlF-labeled maleimide functionalized chelator, antibody fragments could be radiofluorinated within 4 h at high specific activity. Here, we translated this method to preclinical PET imaging studies and showed feasibility of [(18)F]AlF-fluorinated hMN-14-Fab', [(18)F]AlF-hMN-14-Fab-AD2, and [(18)F]AlF-hMN-14-diabody for microPET imaging of CEA-expressing colonic cancer.
Collapse
Affiliation(s)
- S Lütje
- Department of Nuclear Medicine, Radboud University Medical Center , Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Velikyan I. Prospective of ⁶⁸Ga-radiopharmaceutical development. Theranostics 2013; 4:47-80. [PMID: 24396515 PMCID: PMC3881227 DOI: 10.7150/thno.7447] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023] Open
Abstract
Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the ⁶⁸Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of ⁶⁸Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the ⁶⁸Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents.
Collapse
Affiliation(s)
- Irina Velikyan
- 1. Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden
- 2. PET-Centre, Centre for Medical Imaging, Uppsala University Hospital, SE-75185, Uppsala, Sweden
- 3. Department of Radiology, Oncology, and Radiation Science, Uppsala University, SE-75285 Uppsala, Sweden
| |
Collapse
|
27
|
Morgat C, Hindié E, Mishra AK, Allard M, Fernandez P. Gallium-68: chemistry and radiolabeled peptides exploring different oncogenic pathways. Cancer Biother Radiopharm 2013; 28:85-97. [PMID: 23461410 DOI: 10.1089/cbr.2012.1244] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract Early and specific tumor detection and also therapy selection and response evaluation are some challenges of personalized medicine. This calls for high sensitive and specific molecular imaging such as positron emission tomography (PET). The use of peptides for PET molecular imaging has undeniable advantages: possibility of targeting through peptide-receptor interaction, small size and low-molecular weight conferring good penetration in the tissue or at cellular level, low toxicity, no antigenicity, and possibility of wide choice for radiolabeling. Among β(+)-emitter radioelements, Gallium-68 is a very attractive positron-emitter compared with carbon-11 or fluorine-18 taking into account its easy production via a (68)Ge/(68)Ga generator and well established radiochemistry. Gallium-68 chemistry is based on well-defined coordination complexes with macrocycle or chelates having strong binding properties, particularly suitable for linking peptides that allow resistance to in vivo transchelation of the metal ion. Understanding specific and nonspecific molecular mechanisms involved in oncogenesis is one major key to develop new molecular imaging tools. The present review focuses on peptide signaling involved in different oncogenic pathways. This peptide signalization might be common for tumoral and non-tumoral processes or could be specific of an oncological process. This review describes gallium chemistry and different (68)Ga-radiolabeled peptides already in use or under development aiming at developing molecular PET imaging of different oncological processes.
Collapse
|
28
|
Knowles SM, Wu AM. Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 2012; 30:3884-92. [PMID: 22987087 PMCID: PMC3478579 DOI: 10.1200/jco.2012.42.4887] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/20/2012] [Indexed: 01/20/2023] Open
Abstract
Identification of cancer cell-surface biomarkers and advances in antibody engineering have led to a sharp increase in the development of therapeutic antibodies. These same advances have led to a new generation of radiolabeled antibodies and antibody fragments that can be used as cancer-specific imaging agents, allowing quantitative imaging of cell-surface protein expression in vivo. Immuno-positron emission tomography (immunoPET) imaging with intact antibodies has shown success clinically in diagnosing and staging cancer. Engineered antibody fragments, such as diabodies, minibodies, and single-chain Fv (scFv) -Fc, have been successfully employed for immunoPET imaging of cancer cell-surface biomarkers in preclinical models and are poised to bring same-day imaging into clinical development. ImmunoPET can potentially provide a noninvasive approach for obtaining target-specific information useful for titrating doses for radioimmunotherapy, for patient risk stratification and selection of targeted therapies, for evaluating response to therapy, and for predicting adverse effects, thus contributing to the ongoing development of personalized cancer treatment.
Collapse
Affiliation(s)
- Scott M. Knowles
- All authors: David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Anna M. Wu
- All authors: David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
29
|
An engineered cysteine-modified diabody for imaging activated leukocyte cell adhesion molecule (ALCAM)-positive tumors. Mol Imaging Biol 2012; 14:336-47. [PMID: 21630083 DOI: 10.1007/s11307-011-0500-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to generate and evaluate a positron emission tomography (PET) radiotracer targeting activated leukocyte cell adhesion molecule (ALCAM). PROCEDURES A human anti-ALCAM single chain variable fragment was reformatted to produce a covalent dimer, termed a cys-diabody (CysDb). Purified CysDb was characterized by gel electrophoresis and size exclusion chromatography, and immunoreactivity was assessed by flow cytometry and immunofluorescence. Targeting and imaging of ALCAM-positive tumors using (64)Cu-DOTA-CysDb were evaluated in mice bearing human pancreatic adenocarcinoma xenografts (HPAF-II or BxPC-3). RESULTS CysDb binds specifically to ALCAM-positive cells in vitro with an apparent affinity in the range of 1-3 nM. MicroPET images at 4 h showed specific targeting of positive tumors in vivo, a finding confirmed by biodistribution analysis, with positive/negative tumor ratios of 1.9 ± 0.6 and 2.4 ± 0.6, and positive tumor/blood ratios of 2.5 ± 0.9 and 2.9 ± 0.6 (HPAF-II and BxPC-3, respectively). CONCLUSIONS Successful imaging with (64)Cu-DOTA-CysDb in animal models suggests further investigation of ALCAM as an imaging biomarker is warranted.
Collapse
|
30
|
Smith DL, Breeman WAP, Sims-Mourtada J. The untapped potential of Gallium 68-PET: the next wave of ⁶⁸Ga-agents. Appl Radiat Isot 2012; 76:14-23. [PMID: 23232184 DOI: 10.1016/j.apradiso.2012.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
Abstract
(68)Gallium-PET ((68)Ga-PET) agents have significant clinical promise. The radionuclide can be produced from a (68)Ge/(68)Ga generator on site and is a convenient alternative to cyclotron-based PET isotopes. The short half-life of (68)Ga permits imaging applications with sufficient radioactivity while maintaining patient dose to an acceptable level. Furthermore, due to superior resolution, (68)Ga-PET agents have the ability to replace current SPECT agents in many applications. This article outlines the upcoming agents and challenges faced during the translational development of (68)Ga agents.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, USA
| | | | | |
Collapse
|
31
|
Niu G, Murad YM, Gao H, Hu S, Guo N, Jacobson O, Nguyen TD, Zhang J, Chen X. Molecular targeting of CEACAM6 using antibody probes of different sizes. J Control Release 2012; 161:18-24. [PMID: 22568933 DOI: 10.1016/j.jconrel.2012.04.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 04/15/2012] [Accepted: 04/29/2012] [Indexed: 11/26/2022]
Abstract
Carcinocinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is overexpressed in a number of human malignancies, especially in pancreatic cancer. It has been demonstrated that CEACAM6 is a potential target for monoclonal antibody (mAb) therapy with a safe therapeutic index. Here, we labeled three anti-CEACAM6 antibodies of different sizes, including a single-domain antibody 2A3 (16 kDa), a heavy chain antibody 2A3-mFc (80 kDa) and a full length antibody 9A6 (150 kDa), with ⁶⁴Cu to image CEACAM6 expression in a xenografted pancreatic tumor model. For positron emission tomography (PET) imaging, the tumor mice were intravenously injected with ⁶⁴Cu-DOTA-antibodies and static scans were obtained at 5 min, 0.5, 1, 2, 4, 8 and 24h post-injection (p.i.). All three antibodies showed strong CEACAM6 binding. Ex vivo immunostaining on tumor sections at 24 h after Ab injection demonstrated specific tumor targeting of both 2A3-mFc and 9A6. ⁶⁴Cu-DOTA-2A3 showed fast BxPC3 tumor uptake and rapid whole-body clearance. At 24 h p.i., the tumor uptakes were 98.2±6.12%ID/g for ⁶⁴Cu-DOTA-2A3-mFc and 57.8±3.73%ID/g for ⁶⁴Cu-DOTA-9A6, respectively. Compared with the full length antibody 9A6, the heavy chain antibody 2A3-mFc showed higher tumor uptake, lower liver uptake and shorter circulation half-life. All the data supported that the heavy chain antibody 2A3-mFc is superior to the single domain antibody and the full-length antibody with regard to tumor detection and pharmacokinetics, which has great potential to be developed for CEACAM6-targeted pancreatic cancer imaging and therapy.
Collapse
Affiliation(s)
- Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine-LOMIN, National Institute of Biomedical Imaging and Bioengineering-NIBIB, National Institutes of Health-NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Radchenko V, Hauser H, Eisenhut M, Vugts DJ, van Dongen GAMS, Roesch F. 90Nb – a potential PET nuclide: production and labeling of monoclonal antibodies. RADIOCHIM ACTA 2012. [DOI: 10.1524/ract.2012.1971] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Fast progressing immuno-PET gives reasons to develop new potential medium-long and long-lived radioisotopes. One of the promising candidates is 90Nb. It has a half-life of 14.6 h, which allows visualizing and quantifying processes with medium and slow kinetics, such as tumor accumulation of antibodies and antibodies fragments or polymers and other nanoparticles. 90Nb exhibits a high positron branching of 53% and an optimal energy of β
+ emission of E
mean=0.35 MeV only. Consequently, efficient radionuclide production routes and NbV labeling techniques are required.
90Nb was produced by the 90Zr(p,n) 90Nb nuclear reaction on natural zirconium targets. No-carrier-added (n.c.a.) 90Nb was separated from the zirconium target via a multi-step separation procedure including extraction steps and ion-exchange chromatography. Protein labeling was exemplified using the bifunctional chelator desferrioxamine attached to the monoclonal antibody rituximab. Desferrioxamine was coupled to rituximab via two different routes, by the use of N-succinyl-desferrioxamine (N-suc-Df) and by means of the bifunctional derivative p-isothiocyanatobenzyl-desferrioxamine B (Df-Bz-NCS), respectively. Following antibody modification, labeling with 90Nb was performed in HEPES buffer at pH 7 at room temperature. In vitro stability of the radiolabeled conjugates was tested in saline buffer at room temperature and in fetal calf serum (FCS) at 37 ºC.
The selected production route led to a high yield of 145 ± 10 MBq/μA h of 90Nb with high radioisotopic purity of >97%. This yield may allow for large scale production of about 10 GBq 90Nb. The separation procedure resulted in 76–81% yield. The Zr/90Nb decontamination factor reaches 107. Subsequent radiolabeling of the two different conjugates with 90Nb gave high yields; after one hour incubation at room temperature, more than 90% of 90Nb-Df-mAb was formed in both cases. At room temperature in aqueous solution, both 90Nb-Df-mAb constructs were more than 99% stable over a period of 18 d.
The developed production and separation strategy provided 90Nb with purity appropriate for radiolabeling applications. Labeling and stability studies proved the applicability of 90Nb as a potential positron emitter for immuno-PET.
Collapse
|
33
|
Eder M, Schäfer M, Bauder-Wüst U, Hull WE, Wängler C, Mier W, Haberkorn U, Eisenhut M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 2012; 23:688-97. [PMID: 22369515 DOI: 10.1021/bc200279b] [Citation(s) in RCA: 639] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Urea-based inhibitors of the prostate-specific membrane antigen (PSMA) represent low-molecular-weight pepidomimetics showing the ability to image PSMA-expressing prostate tumors. The highly efficient, acyclic Ga(III) chelator N,N'-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylenediamine-N,N'- diacetic acid (HBED-CC) was introduced as a lipophilic side chain into the hydrophilic pharmacophore Glu-NH-CO-NH-Lys which was found favorable to interact with the PSMA "active binding site". This report describes the syntheses, in vitro binding analyses, and biodistribution data of the radiogallium labeled PSMA inhibitor Glu-NH-CO-NH-Lys(Ahx)-HBED-CC in comparison to the corresponding DOTA conjugate. The binding properties were analyzed using competitive cell binding and enzyme-based assays followed by internalization experiments. Compared to the DOTA-conjugate, the HBED-CC derivative showed reduced unspecific binding and considerable higher specific internalization in LNCaP cells. The (68)Ga complex of the HBED-CC ligand exhibited higher specificity for PSMA expressing tumor cells resulting in improved in vivo properties. (68)Ga labeled Glu-NH-CO-NH-Lys(Ahx)-HBED-CC showed fast blood and organ clearances, low liver accumulation, and high specific uptake in PSMA expressing organs and tumor. It could be demonstrated that the PET-imaging property of a urea-based PSMA inhibitor could significantly be improved with HBED-CC.
Collapse
Affiliation(s)
- Matthias Eder
- Radiopharmaceutical Chemistry, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Olafsen T, Sirk SJ, Olma S, Shen CKF, Wu AM. ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumour Biol 2012; 33:669-77. [DOI: 10.1007/s13277-012-0365-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/14/2012] [Indexed: 01/16/2023] Open
|
35
|
Romer T, Leonhardt H, Rothbauer U. Engineering antibodies and proteins for molecular in vivo imaging. Curr Opin Biotechnol 2011; 22:882-7. [DOI: 10.1016/j.copbio.2011.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 12/31/2022]
|
36
|
Zeglis BM, Lewis JS. A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. Dalton Trans 2011; 40:6168-95. [PMID: 21442098 PMCID: PMC3773488 DOI: 10.1039/c0dt01595d] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Positron emission tomography (PET) has become a vital imaging modality in the diagnosis and treatment of disease, most notably cancer. A wide array of small molecule PET radiotracers have been developed that employ the short half-life radionuclides (11)C, (13)N, (15)O, and (18)F. However, PET radiopharmaceuticals based on biomolecular targeting vectors have been the subject of dramatically increased research in both the laboratory and the clinic. Typically based on antibodies, oligopeptides, or oligonucleotides, these tracers have longer biological half-lives than their small molecule counterparts and thus require labeling with radionuclides with longer, complementary radioactive half-lives, such as the metallic isotopes (64)Cu, (68)Ga, (86)Y, and (89)Zr. Each bioconjugate radiopharmaceutical has four component parts: biomolecular vector, radiometal, chelator, and covalent link between chelator and biomolecule. With the exception of the radiometal, a tremendous variety of choices exists for each of these pieces, and a plethora of different chelation, conjugation, and radiometallation strategies have been utilized to create agents ranging from (68)Ga-labeled pentapeptides to (89)Zr-labeled monoclonal antibodies. Herein, the authors present a practical guide to the construction of radiometal-based PET bioconjugates, in which the design choices and synthetic details of a wide range of biomolecular tracers from the literature are collected in a single reference. In assembling this information, the authors hope both to illuminate the diverse methods employed in the synthesis of these agents and also to create a useful reference for molecular imaging researchers both experienced and new to the field.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Department of Radiology and Program in Molecular Pharmacology and Chemistry Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. Fax: (646)-888-3039; Tel: (646)-888-3038
| | - Jason S. Lewis
- Department of Radiology and Program in Molecular Pharmacology and Chemistry Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA. Fax: (646)-888-3039; Tel: (646)-888-3038
| |
Collapse
|
37
|
van Oosten M, Crane LM, Bart J, van Leeuwen FW, van Dam GM. Selecting Potential Targetable Biomarkers for Imaging Purposes in Colorectal Cancer Using TArget Selection Criteria (TASC): A Novel Target Identification Tool. Transl Oncol 2011; 4:71-82. [PMID: 21461170 PMCID: PMC3069650 DOI: 10.1593/tlo.10220] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/23/2010] [Accepted: 11/01/2010] [Indexed: 12/19/2022] Open
Abstract
Peritoneal carcinomatosis (PC) of colorectal origin is associated with a poor prognosis. However, cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is available for a selected group of PC patients, which significantly increases overall survival rates up to 30%. As a consequence, there is substantial room for improvement. Tumor targeting is expected to improve the treatment efficacy of colorectal cancer (CRC) further through 1) more sensitive preoperative tumor detection, thus reducing overtreatment; 2) better intraoperative detection and surgical elimination of residual disease using tumor-specific intraoperative imaging; and 3) tumor-specific targeted therapeutics. This review focuses, in particular, on the development of tumor-targeted imaging agents. A large number of biomarkers are known to be upregulated in CRC. However, to date, no validated criteria have been described for the selection of the most promising biomarkers for tumor targeting. Such a scoring system might improve the selection of the correct biomarker for imaging purposes. In this review, we present the TArget Selection Criteria (TASC) scoring system for selection of potential biomarkers for tumor-targeted imaging. By applying TASC to biomarkers for CRC, we identified seven biomarkers (carcinoembryonic antigen, CXC chemokine receptor 4, epidermal growth factor receptor, epithelial cell adhesion molecule, matrix metalloproteinases, mucin 1, and vascular endothelial growth factor A) that seem most suitable for tumor-targeted imaging applications in colorectal cancer. Further cross-validation studies in CRC and other tumor types are necessary to establish its definitive value.
Collapse
Affiliation(s)
- Marleen van Oosten
- Department of Surgery, Division of Surgical Oncology, Surgical Research Laboratory/BioOptical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Vosjan MJWD, Perk LR, Roovers RC, Visser GWM, Stigter-van Walsum M, van Bergen En Henegouwen PMP, van Dongen GAMS. Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET. Eur J Nucl Med Mol Imaging 2011; 38:753-63. [PMID: 21210114 PMCID: PMC3053459 DOI: 10.1007/s00259-010-1700-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/29/2010] [Indexed: 12/15/2022]
Abstract
Purpose The ∼15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies®) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with 68Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for 89Zr immuno-positron emission tomography (PET). Methods Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified 68Ga was performed at pH 5.0–6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml−1 gentisic acid, pH 5.5) at 4°C or in human serum at 37°C, a mixture of 67Ga and 68Ga was used. Biodistribution and immuno-PET studies of 68Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using 89Zr-Df-Bz-NCS-7D12 as the reference conjugate. Results The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall 68Ga radiochemical yield was 55–70% (not corrected for decay); specific activity was 100–500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. 68/67Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (<2% radioactivity loss). In biodistribution studies the 68Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 ± 1.3 to 7.2 ± 1.5%ID/g at 1–3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was similar to that of the reference conjugate 89Zr-Df-Bz-NCS-7D12. Tumours were clearly visualized in a PET imaging study. Conclusion Via a rapid procedure under mild conditions a 68Ga-Nanobody was obtained that exhibited high tumour uptake and tumour to normal tissue ratios in nude mice bearing A431 xenografts. Fast kinetic 68Ga-Nanobody conjugates can be promising tools for tumour detection and imaging of target expression.
Collapse
Affiliation(s)
- Maria J W D Vosjan
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|