1
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
2
|
Molecular Imaging of Vulnerable Coronary Plaque with Radiolabeled Somatostatin Receptors (SSTR). J Clin Med 2021; 10:jcm10235515. [PMID: 34884218 PMCID: PMC8658082 DOI: 10.3390/jcm10235515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is responsible for the majority of heart attacks and is characterized by several modifications of the arterial wall including an inflammatory reaction. The silent course of atherosclerosis has made it necessary to develop predictors of disease complications before symptomatic lesions occur. Vulnerable to rupture atherosclerotic plaques are the target for molecular imaging. To this aim, different radiopharmaceuticals for PET/CT have emerged for the identification of high-risk plaques, with high specificity for the identification of the cellular components and pathophysiological status of plaques. By targeting specific receptors on activated macrophages in high-risk plaques, radiolabelled somatostatin analogues such as 68Ga-DOTA-TOC, TATE,0 or NOC have shown high relevance to detect vulnerable, atherosclerotic plaques. This PET radiopharmaceutical has been tested in several pre-clinical and clinical studies, as reviewed here, showing an important correlation with other risk factors.
Collapse
|
3
|
Puca AA, Carrizzo A, Spinelli C, Damato A, Ambrosio M, Villa F, Ferrario A, Maciag A, Fornai F, Lenzi P, Valenti V, di Nonno F, Accarino G, Madonna M, Forte M, Calì G, Baragetti A, Norata GD, Catapano AL, Cattaneo M, Izzo R, Trimarco V, Montella F, Versaci F, Auricchio A, Frati G, Sciarretta S, Madeddu P, Ciaglia E, Vecchione C. Single systemic transfer of a human gene associated with exceptional longevity halts the progression of atherosclerosis and inflammation in ApoE knockout mice through a CXCR4-mediated mechanism. Eur Heart J 2021; 41:2487-2497. [PMID: 31289820 PMCID: PMC7340354 DOI: 10.1093/eurheartj/ehz459] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/13/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022] Open
Abstract
Aims Here, we aimed to determine the therapeutic effect of longevity-associated variant (LAV)-BPIFB4 gene therapy on atherosclerosis. Methods and results ApoE knockout mice (ApoE−/−) fed a high-fat diet were randomly allocated to receive LAV-BPIFB4, wild-type (WT)-BPIFB4, or empty vector via adeno-associated viral vector injection. The primary endpoints of the study were to assess (i) vascular reactivity and (ii) atherosclerotic disease severity, by Echo-Doppler imaging, histology and ultrastructural analysis. Moreover, we assessed the capacity of the LAV-BPIFB4 protein to shift monocyte-derived macrophages of atherosclerotic mice and patients towards an anti-inflammatory phenotype. LAV-BPIFB4 gene therapy rescued endothelial function of mesenteric and femoral arteries from ApoE−/− mice; this effect was blunted by AMD3100, a CXC chemokine receptor type 4 (CXCR4) inhibitor. LAV-BPIFB4-treated mice showed a CXCR4-mediated shift in the balance between Ly6Chigh/Ly6Clow monocytes and M2/M1 macrophages, along with decreased T cell proliferation and elevated circulating levels of interleukins IL-23 and IL-27. In vitro conditioning with LAV-BPIFB4 protein of macrophages from atherosclerotic patients resulted in a CXCR4-dependent M2 polarization phenotype. Furthermore, LAV-BPIFB4 treatment of arteries explanted from atherosclerotic patients increased the release of atheroprotective IL-33, while inhibiting the release of pro-inflammatory IL-1β, inducing endothelial nitric oxide synthase phosphorylation and restoring endothelial function. Finally, significantly lower plasma BPIFB4 was detected in patients with pathological carotid stenosis (>25%) and intima media thickness >2 mm. Conclusion Transfer of the LAV of BPIFB4 reduces the atherogenic process and skews macrophages towards an M2-resolving phenotype through modulation of CXCR4, thus opening up novel therapeutic possibilities in cardiovascular disease. ![]()
Collapse
Affiliation(s)
- Annibale Alessandro Puca
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy.,Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | | | - Chiara Spinelli
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Antonio Damato
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| | | | - Francesco Villa
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Anna Ferrario
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Anna Maciag
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | | | | | - Giulio Accarino
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | | | - Maurizio Forte
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| | - Gaetano Calì
- Department of Endocrinology and Experimental Oncology Institute, CNR, Via Sergio Pansini, 80131 Naples, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy.,Società Italiana per lo Studio della Arteriosclerosi (SISA) Centro Aterosclerosi, Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy.,IRCCS Multimedica Hospital, 20099 Sesto San Giovanni Milan, Italy
| | - Monica Cattaneo
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy
| | - Valentina Trimarco
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Francesco Versaci
- UOC Cardiologia Ospedale Santa Maria Goretti, 04100 Latina, Italy.,Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli (Na), Italy.,Department of Advanced Biomedicine, Federico II University, 80131 Naples, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, via Faggiana, 40100 Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, via Faggiana, 40100 Latina, Italy
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy.,IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| |
Collapse
|
4
|
Dib I, Khalil A, Chouaib R, El-Makhour Y, Noureddine H. Apolipoprotein C-III and cardiovascular diseases: when genetics meet molecular pathologies. Mol Biol Rep 2021; 48:875-886. [PMID: 33389539 PMCID: PMC7778846 DOI: 10.1007/s11033-020-06071-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/05/2020] [Indexed: 01/31/2023]
Abstract
Cardiovascular diseases (CVD) have overtaken infectious diseases and are currently the world's top killer. A quite strong linkage between this type of ailments and elevated plasma levels of triglycerides (TG) has been always noticed. Notably, this risk factor is mired in deep confusion, since its role in atherosclerosis is uncertain. One of the explanations that aim to decipher this persistent enigma was provided by apolipoprotein C-III (apoC-III), a small protein historically recognized as an important regulator of TG metabolism. Preeminently, hundreds of studies have been carried out in order to explore the APOC3 genetic background, as well as to establish a correlation between its variants and dyslipidemia-related disorders, pointing to an earnest predictive power for future outcomes. Among several polymorphisms reported within the APOC3, the SstI site in its 3'-untranslated region (3'-UTR) was the most consistently and robustly associated with an increased CVD risk. As more genetic data supporting its importance in cardiovascular events aggregate, it was declared, correspondingly, that apoC-III exerts various atherogenic effects, either by intervening in the function and catabolism of many lipoproteins, or by inducing endothelial inflammation and smooth muscle cells (SMC) proliferation. This review was designed to shed the light on the structural and functional aspects of the APOC3 gene, the existing association between its SstI polymorphism and CVD, and the specific molecular mechanisms that underlie apoC-III pathological implications. In addition, the translation of all these gathered knowledges into preventive and therapeutic benefits will be detailed too.
Collapse
Affiliation(s)
- Israa Dib
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Alia Khalil
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Racha Chouaib
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Yolla El-Makhour
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Hiba Noureddine
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| |
Collapse
|
5
|
Lorenzon dos Santos J, Schaan de Quadros A, Weschenfelder C, Bueno Garofallo S, Marcadenti A. Oxidative Stress Biomarkers, Nut-Related Antioxidants, and Cardiovascular Disease. Nutrients 2020; 12:nu12030682. [PMID: 32138220 PMCID: PMC7146201 DOI: 10.3390/nu12030682] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is related to fat accumulation in the arterial walls and vascular stiffening, and results in acute coronary syndrome which is commonly associated with acute myocardial infarction. Oxidative stress participates in the pathogenesis of atherosclerosis. Thus, the inclusion of food sources of dietary antioxidants, such as different kinds of nuts, may improve biomarkers related to oxidative stress, contributing to a possible reduction in atherosclerosis progression. This article has briefly highlighted the interaction between oxidative stress, atherosclerosis, and cardiovascular disease, in addition to the effect of the consumption of different nuts and related dietary antioxidants—like polyphenols and vitamin E—on biomarkers of oxidative stress in primary and secondary cardiovascular prevention. Studies in vitro suggest that nuts may exert antioxidant effects by DNA repair mechanisms, lipid peroxidation prevention, modulation of the signaling pathways, and inhibition of the MAPK pathways through the suppression of NF-κB and activation of the Nrf2 pathways. Studies conducted in animal models showed the ability of dietary nuts in improving biomarkers of oxidative stress, such as oxLDL and GPx. However, clinical trials in humans have not been conclusive, especially with regards to the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Julia Lorenzon dos Santos
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, 90040-371 Rio Grande do Sul, Brazil; (J.L.d.S.); (A.S.d.Q.); (C.W.); (S.B.G.)
| | - Alexandre Schaan de Quadros
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, 90040-371 Rio Grande do Sul, Brazil; (J.L.d.S.); (A.S.d.Q.); (C.W.); (S.B.G.)
| | - Camila Weschenfelder
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, 90040-371 Rio Grande do Sul, Brazil; (J.L.d.S.); (A.S.d.Q.); (C.W.); (S.B.G.)
| | - Silvia Bueno Garofallo
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, 90040-371 Rio Grande do Sul, Brazil; (J.L.d.S.); (A.S.d.Q.); (C.W.); (S.B.G.)
| | - Aline Marcadenti
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, 90040-371 Rio Grande do Sul, Brazil; (J.L.d.S.); (A.S.d.Q.); (C.W.); (S.B.G.)
- HCor Research Institute, Coracao Hospital (IP-HCor), Abílio Soares Street, 250, 04004-05 São Paulo, Brazil
- Correspondence: ; Tel.: +55-(11)-3053-6611 (ext. 3558)
| |
Collapse
|
6
|
Gao F, Chen J, Zhu H. A potential strategy for treating atherosclerosis: improving endothelial function via AMP-activated protein kinase. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1024-1029. [PMID: 29675553 DOI: 10.1007/s11427-017-9285-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Endothelial dysfunction is caused by many factors, such as dyslipidemia, endoplasmic reticulum (ER) stress, and inflammation. It has been demonstrated that endothelial dysfunction is the initial process of atherosclerosis. AMP-activated protein kinase (AMPK) is an important metabolic switch that plays a crucial role in lipid metabolism and inflammation. However, recent evidence indicates that AMPK could be a target for atherosclerosis by improving endothelial function. For instance, activation of AMPK inhibits the production of reactive oxygen species induced by mitochondrial dysfunction, ER stress, and NADPH oxidase. Moreover, activation of AMPK inhibits the production of pro-inflammatory factors induced by dyslipidemia and hyperglycemia and restrains production of perivascular adipose tissue-released adipokines. AMPK activation prevents endothelial dysfunction by increasing the bioavailability of nitric oxide. Therefore, we focused on the primary risk factors involved in endothelial dysfunction, and summarize the features of AMPK in the protection of endothelial function, by providing signaling pathways thought to be important in the pathological progress of risk factors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiemei Chen
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
7
|
In vitro uptake and metabolism of [ 14C]acetate in rabbit atherosclerotic arteries: biological basis for atherosclerosis imaging with [ 11C]acetate. Nucl Med Biol 2017; 56:21-25. [PMID: 29055850 DOI: 10.1016/j.nucmedbio.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Detection of vulnerable plaques is critically important for the selection of appropriate treatment and/or the prevention of atherosclerosis and ensuing cardiovascular diseases. In order to clarify the utility of [11C]acetate for atherosclerosis imaging, we determined the uptake and metabolism of acetate by in vitro studies using rabbit atherosclerotic arteries and [14C]acetate. METHODS Rabbits were fed with a conventional (n=5) or a 0.5% cholesterol diet (n=6). One side of the iliac-femoral arteries was injured by a balloon catheter. Radioactivity levels in the iliac-femoral arteries were measured after incubation in DMEM containing [1-14C]acetate for 60 min (% dpm/mg tissue). Radioactive components in the homogenized arteries were partitioned into aqueous, organic, and residue fractions by the Folch method, and analyzed by thin-layer chromatography (TLC). RESULTS The radioactivity level in the injured arteries of rabbits fed with the 0.5% cholesterol diet (atherosclerotic arteries) was significantly higher than that in either the non-injured or injured arteries of rabbits fed with the conventional diet (p<0.05) (% dpm/mg tissue: conventional diet groups; 0.022±0.005 and 0.024±0.007, cholesterol diet groups; 0.029±0.007 and 0.034±0.005 for non-injured and injured arteries). In metabolite analysis, most of the radioactivity was found in the aqueous fraction in each group (87.4-94.6% of total radioactivity in the arteries), and glutamate was a dominant component (67.4-69.7% of the aqueous fraction in the arteries). CONCLUSIONS The level of [14C]acetate-derived radioactivity into the arteries was increased by balloon injury and the burden of a cholesterol diet. Water-soluble metabolites were the dominant components with radioactivity in the atherosclerotic lesions. These results provide a biological basis for imaging atherosclerotic lesions by PET using [11C]acetate.
Collapse
|
8
|
Soto Y, Mesa N, Alfonso Y, Pérez A, Batlle F, Griñán T, Pino A, Viera J, Frómeta M, Brito V, Olivera A, Zayas F, Vázquez AM. Targeting arterial wall sulfated glycosaminoglycans in rabbit atherosclerosis with a mouse/human chimeric antibody. MAbs 2014; 6:1340-6. [PMID: 25517318 DOI: 10.4161/mabs.29970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The progression of atherosclerosis is favored by increasing amounts of chondroitin sulfate proteoglycans in the artery wall. We previously reported the reactivity of chP3R99 monoclonal antibody (mAb) with sulfated glycosaminoglycans and its association with the anti-atherogenic properties displayed. Now, we evaluated the accumulation of this mAb in atherosclerotic lesions and its potential use as a probe for specific in vivo detection of the disease. Atherosclerosis was induced in NZW rabbits (n = 14) by the administration of Lipofundin 20% using PBS-receiving animals as control (n = 8). Accumulation of chP3R99 mAb in atherosclerotic lesions was assessed either by immunofluorescence detection of human IgG in fresh-frozen sections of aorta, or by immunoscintigraphy followed by biodistribution of the radiotracer upon administration of (99m)Tc-chP3R99 mAb. Immunofluorescence studies revealed the presence of chP3R99 mAb in atherosclerotic lesions 24 h after intravenous administration, whereas planar images showed an evident accumulation of (99m)Tc-chP3R99 mAb in atherosclerotic rabbit carotids. Accordingly, (99m)Tc-chP3R99 mAb uptake by lesioned aortic arch and thoracic segment was increased 5.6-fold over controls and it was 3.9-folds higher in carotids, in agreement with immunoscintigrams. Moreover, the deposition of (99m)Tc-chP3R99 mAb in the artery wall was associated both with the presence and size of the lesions in the different portions of evaluated arteries and was greater than in non-targeted organs. In conclusion, chP3R99 mAb preferentially accumulates in arterial atherosclerotic lesions supporting the potential use of this anti-glycosaminoglycans antibody for diagnosis and treatment of atherosclerosis.
Collapse
Key Words
- % ID/g, percentage of injected dose per gram of tissue
- At-R, Atherosclerotic rabbits
- CS, chondroitin sulfate
- CSPG, chondroitin sulfate proteoglycans
- DS, dermatan sulfate
- ELISA, enzyme-linked immunoadsorbent assay
- GAG, glycosaminoglycan
- LDL, low density lipoprotein
- NZW rabbits, New Zealand White rabbits
- Non At-R, Non atherosclerotic rabbit
- PG, proteoglycans
- atherosclerosis
- glycosaminoglycans
- imaging
- mAb, monoclonal antibody
- monoclonal antibodies
- technetium-99m
Collapse
Affiliation(s)
- Yosdel Soto
- a Research and Development Direction, Center of Molecular Immunology , Havana , Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Houshmand S, Salavati A, Hess S, Ravina M, Alavi A. The role of molecular imaging in diagnosis of deep vein thrombosis. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:406-425. [PMID: 25143860 PMCID: PMC4138136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Venous thromboembolism (VTE) mostly presenting as deep venous thrombosis (DVT) and pulmonary embolism (PE) affects up to 600,000 individuals in United States each year. Clinical symptoms of VTE are nonspecific and sometimes misleading. Additionally, side effects of available treatment plans for DVT are significant. Therefore, medical imaging plays a crucial role in proper diagnosis and avoidance from over/under diagnosis, which exposes the patient to risk. In addition to conventional structural imaging modalities, such as ultrasonography and computed tomography, molecular imaging with different tracers have been studied for diagnosis of DVT. In this review we will discuss currently available and newly evolving targets and tracers for detection of DVT using molecular imaging methods.
Collapse
Affiliation(s)
- Sina Houshmand
- Department of Radiology, University of PennsylvaniaPhiladelphia, USA
| | - Ali Salavati
- Department of Radiology, University of PennsylvaniaPhiladelphia, USA
| | - Søren Hess
- Department of Nuclear Medicine, Odense University HospitalDenmark
| | - Mudalsha Ravina
- Department of Nuclear Medicine Army Hospital Research & Referral New DelhiIndia
| | - Abass Alavi
- Department of Radiology, University of PennsylvaniaPhiladelphia, USA
| |
Collapse
|
10
|
Ramos-Arellano LE, Muñoz-Valle JF, De la Cruz-Mosso U, Salgado-Bernabé AB, Castro-Alarcón N, Parra-Rojas I. Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects. BMC Cardiovasc Disord 2014; 14:54. [PMID: 24766787 PMCID: PMC4012526 DOI: 10.1186/1471-2261-14-54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) results from a combination of abnormalities in lipoprotein metabolism, oxidative stress, chronic inflammation, and susceptibility to thrombosis. Atherosclerosis is the major cause of CVD. CD36 has been shown to play a critical role in the development of atherosclerotic lesions by its capacity to bind and promote endocytosis of oxidized low-density lipoprotein (oxLDL) and is implicated in the formation of foam cells. The purpose of this research was to evaluate whether there is an association of sCD36 and oxLDL levels with cardiovascular risk factors in young subjects. METHODS A total of 188 subjects, 18 to 25 years old, 133 normal-weight and 55 obese subjects from the state of Guerrero, Mexico were recruited in the study. The lipid profile and glucose levels were measured by enzymatic colorimetric assays. Enzyme-linked immunosorbant assays (ELISA) for oxLDL and sCD36 were performed. Statistical analyses of data were performed with Wilcoxon- Mann Whitney and chi-square tests as well as with multinomial regression. RESULTS TC, LDL-C, TG, oxLDL and sCD36 levels were higher in obese subjects than in normal-weight controls, as well as, monocyte and platelet counts (P < 0.05). Obese subjects had 5.8 times higher risk of sCD36 in the third tertil (>97.8 ng/mL) than normal-weight controls (P = 0.014), and 7.4 times higher risk of oxLDL levels in third tertile (>48 U/L) than control group. The subjects with hypercholesterolemia, hypertriglyceridemia, fasting impaired LDL-C had a higher risk of oxLDL levels in the third tertile (>48 U/L) than the control group (P < 0.05). CONCLUSIONS Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects and may be potential early markers for cardiovascular disease (CVD).
Collapse
Affiliation(s)
| | | | | | | | | | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
| |
Collapse
|
11
|
Glaudemans AWJM, Bonanno E, Galli F, Zeebregts CJ, de Vries EFJ, Koole M, Luurtsema G, Boersma HH, Taurino M, Slart RHJA, Signore A. In vivo and in vitro evidence that ⁹⁹mTc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Eur J Nucl Med Mol Imaging 2014; 41:1710-9. [PMID: 24737117 DOI: 10.1007/s00259-014-2764-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE Recent advances in basic science have established that inflammation plays a pivotal role in the pathogenesis of atherosclerosis. Inflammatory cells are thought to be responsible for the transformation of a stable plaque into a vulnerable one. Lymphocytes constitute at least 20 % of infiltrating cells in these vulnerable plaques. Therefore, the interleukin-2 (IL-2) receptor, being overexpressed on activated T lymphocytes, may represent an attractive biomarker for plaque vulnerability. The aim of this study was to evaluate the specificity of radiolabelled IL-2 [(99m)Tc-hydrazinonicotinamide (HYNIC)-IL-2] for imaging the lymphocytic infiltration in carotid plaques in vivo by planar and single photon emission computed tomography (SPECT)/CT imaging and ex vivo by microSPECT and autoradiography. METHODS For the in vivo study, ten symptomatic patients with advanced plaques at ultrasound who were scheduled for carotid endarterectomy underwent (99m)Tc-HYNIC-IL-2 scintigraphy. The images were analysed visually on planar and SPECT images and semi-quantitatively on SPECT images by calculating target to background (T/B) ratios. After endarterectomy, immunomorphological evaluation and immunophenotyping were performed on plaque slices. For the ex vivo studies, four additional patients were included and, after in vitro incubation of removed plaques with (99m)Tc-HYNIC-IL-2, autoradiography was performed and microSPECT images were acquired. RESULTS Visual analysis defined clear (99m)Tc-HYNIC-IL-2 uptake in seven of the ten symptomatic plaques. SPECT/CT allowed visualization in eight of ten. A significant correlation was found between the number of CD25+ lymphocytes and the total number of CD25+ cells in the plaque and the T/B ratio with adjacent carotid artery as background (Pearson's r = 0.89, p = 0.003 and r = 0.87, p = 0.005, respectively). MicroSPECT imaging showed clear (99m)Tc-HYNIC-IL-2 uptake within the plaque wall and not in the lipidic core. With autoradiography, only CD3+ lymphocytes were found to be labelled. CONCLUSION These in vivo and ex vivo studies confirm the specificity of (99m)Tc-HYNIC-IL-2 for imaging activated T lymphocytes in carotid plaques. (99m)Tc-HYNIC-IL-2 is a true marker for the inflamed plaque and therefore of plaque instability.
Collapse
Affiliation(s)
- Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Orbay H, Hong H, Zhang Y, Cai W. Positron emission tomography imaging of atherosclerosis. Theranostics 2013; 3:894-902. [PMID: 24312158 PMCID: PMC3841339 DOI: 10.7150/thno.5506] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/27/2013] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease at an early stage before fatal manifestations occur. Among the various molecular imaging techniques, this review mainly focuses on positron emission tomography (PET) imaging of atherosclerosis. The targets and pathways that have been investigated to date for PET imaging of atherosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), integrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance receptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical to the benefit of patients.
Collapse
|
13
|
Rennier K, Ji JY. The role of death-associated protein kinase (DAPK) in endothelial apoptosis under fluid shear stress. Life Sci 2013; 93:194-200. [DOI: 10.1016/j.lfs.2013.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/30/2013] [Accepted: 06/13/2013] [Indexed: 01/13/2023]
|
14
|
Kurata S, Tateishi U, Shizukuishi K, Yoneyama T, Hino A, Kaida H, Fujimoto K, Ishibashi M, Inoue T. Assessment of atherosclerosis in oncologic patients using ¹⁸F-fluoride PET/CT. Ann Nucl Med 2013; 27:481-6. [PMID: 23443956 DOI: 10.1007/s12149-013-0706-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/13/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the prevalence, distribution, and relationship of (18)F-fluoride uptake and arterial calcification in oncologic patients using (18)F-fluoride PET/CT. METHODS Image data obtained from 29 oncologic patients undergoing whole-body (18)F-fluoride PET/CT were evaluated retrospectively. Arterial wall (18)F-fluoride uptake and calcification were analyzed both quantitatively and semiquantitatively in 8 patients with arterial (18)F-fluoride uptake. RESULTS Arterial (18)F-fluoride uptake was observed at 35 lesions in 8 (28 %) of the 29 patients, and calcification was observed at 345 lesions in the same patients. Five of the 8 patients had prostate cancer, and the remaining patients had hepatocellular carcinoma or malignant melanoma. In these 8 patients, the prevalence of both (18)F-fluoride uptake and calcification was highest in the abdominal aorta, followed by the descending thoracic aorta and the aortic arch. Colocalization of radiotracer accumulation and calcification could be observed in the 32 lesions (91 %) with arterial (18)F-fluoride uptake, and only the 3 lesions (9 %) with arterial (18)F-fluoride uptake were not colocalized with arterial calcification. The presence of both arterial radiotracer uptake and calcification was significantly associated with advancing age (P < 0.01). CONCLUSION Our results suggest that (18)F-fluoride PET/CT might be a useful modality for detecting active mineral deposition sites of atherosclerosis in oncologic patients.
Collapse
Affiliation(s)
- Seiji Kurata
- Department of Radiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume 830-0011, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nishigori K, Temma T, Yoda K, Onoe S, Kondo N, Shiomi M, Ono M, Saji H. Radioiodinated peptide probe for selective detection of oxidized low density lipoprotein in atherosclerotic plaques. Nucl Med Biol 2012; 40:97-103. [PMID: 23157986 DOI: 10.1016/j.nucmedbio.2012.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Despite the significant effort in developing radioprobes for atherosclerosis, few have low molecular weight. Oxidized LDL (OxLDL), a highly proinflammatory and proatherogenic factor that is abundant in atherosclerotic plaques, plays a pivotal role in plaque destabilization, which makes OxLDL a relevant probe target. We developed a radioiodinated short peptide, AHP7, as a low molecular weight probe for specific OxLDL imaging and evaluated its utility using myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits (WHHLMI). METHODS [¹²⁵I]AHP7 was designed and synthesized based on the sequence of Asp-hemolysin, an OxLDL binding protein extracted from Aspergillus fumigatus. In vitro binding studies with OxLDL having varying degrees of oxidation were performed. Radioactivity accumulation in the aorta was measured 30 min post-administration in rabbits. Autoradiography and histological studies were performed using serial aorta sections. A radioiodinated scrambled peptide ([¹²⁵I]AHP scramble) was used as a negative control. RESULTS [¹²⁵I]AHP7 bound to OxLDL in proportion to the degree of oxidation (R=0.91, P<0.0001) and was inhibited by unlabeled AHP7 in a concentration-dependent manner. The aorta accumulation level and aorta/blood and aorta/muscle ratios of [¹²⁵I]AHP7 in WHHLMI were 2.8-, 1.3- and 1.8-fold higher, respectively, than those in control rabbits (P<0.001). Co-administration of AHP7 significantly reduced [¹²⁵I]AHP7 radioactivity in aorta sections (P<0.0001). Regional radioactivity levels in the aorta sections showed nonuniformity but similarity to the immunohistochemical OxLDL density. CONCLUSIONS The potential of radioiodinated AHP7 for selectively imaging OxLDL was demonstrated both in vitro and in vivo.
Collapse
Affiliation(s)
- Kantaro Nishigori
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Temma T, Saji H. Radiolabelled probes for imaging of atherosclerotic plaques. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2012; 2:432-447. [PMID: 23145360 PMCID: PMC3484420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/20/2012] [Indexed: 06/01/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Unstable atherosclerotic plaques are prone to rupture followed by thrombus formation, vessel stenosis, and occlusion and frequently lead to acute myocardial infarction and brain infarction. As such, unstable plaques represent an important diagnostic target in clinical settings and the specific diagnosis of unstable plaques would enable preventive treatments for cardiovascular disease. To date, various imaging methods such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and intravascular ultrasound (IVUS) have been widely used clinically. Although these methods have advantages in terms of spatial resolution and the ability to make detailed identification of morphological alterations such as calcifications and vessel stenosis, these techniques require skill or expertise to discriminate plaque instability, which is essential for early diagnosis and treatment and can present difficulties for quantitative estimation. On the other hand, nuclear imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) can noninvasively collect quantitative information on the expression levels of functional molecules and metabolic activities in vivo and thus provide functional diagnoses of unstable plaques with high sensitivity. Specifically, unstable plaques are characterized by an abundance of invasive inflammatory cells (macrophages), increased oxidative stress that increases oxidized LDL and its receptor expressed on cells in the lesions, increased occurrence of apoptosis of macrophages and other cells involved in disease progression, increased protease expression and activity, and finally thrombus formation triggered by plaque rupture, which is the most important mechanism leading to the onset of infarctions and ischemic sudden death. Therefore, these characteristics can all be targets for molecular imaging by PET and SPECT. In this paper, we review the present state and future of radiolabelled probes that have been developed for detecting atherosclerotic unstable plaques with nuclear imaging techniques.
Collapse
Affiliation(s)
- Takashi Temma
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
17
|
Basu S, Høilund-Carlsen PF, Alavi A. Assessing global cardiovascular molecular calcification with 18F-fluoride PET/CT: will this become a clinical reality and a challenge to CT calcification scoring? Eur J Nucl Med Mol Imaging 2012; 39:660-4. [PMID: 22274730 DOI: 10.1007/s00259-011-2048-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Basu S, Beheshti M, Alavi A. Value of 18F NaF PET/CT in the Detection and Global Quantification of Cardiovascular Molecular Calcification as Part of the Atherosclerotic Process. PET Clin 2012; 7:329-39. [DOI: 10.1016/j.cpet.2012.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Affiliation(s)
- S. Anna Sargsyan
- From the Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Joshua M. Thurman
- From the Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
20
|
Suter MJ, Nadkarni SK, Weisz G, Tanaka A, Jaffer FA, Bouma BE, Tearney GJ. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging 2011; 4:1022-39. [PMID: 21920342 PMCID: PMC3583353 DOI: 10.1016/j.jcmg.2011.03.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 03/04/2011] [Accepted: 03/14/2011] [Indexed: 12/14/2022]
Abstract
There is an ever-increasing demand for new imaging methods that can provide additional information about the coronary wall to better characterize and stratify high-risk plaques, and to guide interventional and pharmacologic management of patients with coronary artery disease. While there are a number of imaging modalities that facilitate the assessment of coronary artery pathology, this review paper focuses on intravascular optical imaging modalities that provide information on the microstructural, compositional, biochemical, biomechanical, and molecular features of coronary lesions and stents. The optical imaging modalities discussed include angioscopy, optical coherence tomography, polarization sensitive-optical coherence tomography, laser speckle imaging, near-infrared spectroscopy, time-resolved laser induced fluorescence spectroscopy, Raman spectroscopy, and near-infrared fluorescence molecular imaging. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in the evaluation of the coronary artery in the future.
Collapse
Affiliation(s)
- Melissa J. Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Giora Weisz
- Center for Interventional Vascular Therapy, New York-Presbyterian Hospital, Columbia University, and Cardiovascular Research Foundation, New York, New York
| | - Atsushi Tanaka
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Farouc A. Jaffer
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Research Center, Cardiology Division, and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston Massachusetts
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Signore A, Glaudemans AWJM. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med 2011; 25:681-700. [PMID: 21837469 DOI: 10.1007/s12149-011-0521-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/13/2022]
Abstract
Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine techniques, by contrast, allow the in vivo detection in humans of different physiologic and pathologic phenomena and offer noninvasive tools to detect early pathophysiological changes before anatomical changes occur. In this review, we highlight the role of nuclear medicine in inflammation/infection with emphasis on molecular imaging for in vivo histological characterization of affected tissues for diagnostic purposes and follow-up of therapies. We also describe the clinical indications of all available radiopharmaceuticals in the light of the newly available guidelines.
Collapse
Affiliation(s)
- Alberto Signore
- Medicina Nucleare, 2nd Faculty of Medicine, Ospedale S. Andrea, University of Rome "Sapienza", Via di Grottarossa 1035, 00189 Rome, Italy.
| | | |
Collapse
|
22
|
Kihara Y. After the triumph of cardiovascular medicine over acute myocardial infarction at the end of the 20th Century. -Can we predict the onset of acute coronary syndrome? (Con)-. Circ J 2011; 75:2019-26; discussion 2018. [PMID: 21737947 DOI: 10.1253/circj.cj-11-0573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting acute cardiovascular ischemic events is a crucial and urgent issue in the current cardiovascular field. An enormous effort to develop methodologies to achieve this purpose is being undertaken in cardiovascular institutes worldwide. However, currently, there is no established method of determining acute cardiovascular ischemic events in advance. This article reviews the latest progress on understanding how these events occur and how they can be detected. This goal represents a great dream that has realistic expectations.
Collapse
Affiliation(s)
- Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Japan.
| |
Collapse
|
23
|
Recent developments in drug-eluting stents. J Mol Med (Berl) 2011; 89:545-53. [DOI: 10.1007/s00109-011-0729-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
|
24
|
Lucignani G, Schäfers M. PET, CT and MRI characterisation of the atherosclerotic plaque. Eur J Nucl Med Mol Imaging 2010; 37:2398-402. [DOI: 10.1007/s00259-010-1634-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|