1
|
Dias AH, Andersen KF, Fosbøl MØ, Gormsen LC, Andersen FL, Munk OL. Long Axial Field-of-View PET/CT: New Opportunities for Pediatric Imaging. Semin Nucl Med 2025; 55:76-85. [PMID: 39542815 DOI: 10.1053/j.semnuclmed.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The combined use of Positron Emission Tomography (PET) and Computed Tomography (CT) has become increasingly vital for diagnosing and managing oncological and infectious diseases in pediatric patients. The introduction of long axial field-of-view (LAFOV) PET/CT scanners, also known as "Total Body PET/CT," marks a significant advancement in nuclear medicine. This new technology enables faster pediatric imaging with substantially reduced radiation exposure and essentially eliminates the need for sedation, addressing previous critical concerns in pediatric imaging. This review will explore the applications and challenges of LAFOV PET/CT in pediatric imaging, highlight the benefits observed at two Danish hospitals, and evaluate its potential to transform the management of pediatric patients.
Collapse
Affiliation(s)
- André Henrique Dias
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Marie Øbro Fosbøl
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Teles L, Tolboom N, Plasschaert SL, Poot AJ, Braat AJ, van Noesel MM. Potential of non-FDG PET radiotracers for paediatric patients with solid tumours. EJC PAEDIATRIC ONCOLOGY 2024; 4:100203. [DOI: 10.1016/j.ejcped.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Zhao Z, Yang C. Predictive value of 18 F-FDG PET/CT versus bone marrow biopsy and aspiration in pediatric neuroblastoma. Clin Exp Metastasis 2024; 41:627-638. [PMID: 38609536 DOI: 10.1007/s10585-024-10286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Neuroblastoma (NB) is the most prevalent solid extracranial malignancy in children, often with bone marrow metastases (BMM) are present. The conventional approach for detecting BMM is bone marrow biopsy and aspiration (BMBA). 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography (18 F-FDG PET/CT) has become a staple for staging and is also capable of evaluating marrow infiltration. The consensus on the utility of 18 F-FDG PET/CT for assessing BMM in NB patients is still under deliberation. METHODS This retrospective study enrolled 266 pediatric patients with pathologically proven NB. All patients had pretherapy FDG PET/CT. BMBA, clinical, radiological, and follow-up data were also collected. The diagnostic accuracy of BMBA and 18 F-FDG PET/CT was assessed. RESULTS BMBAs identified BMM in 96 cases (36.1%), while 18 F-FDG PET/CT detected BMI in 106 cases (39.8%) within the cohort. The initial sensitivity, positive predictive value (PPV), specificity, and negative predictive value (NPV) of 18 F-FDG PET/CT were 93.8%, 84.9%, 90.6%, and 96.3%, respectively. After treatment, these values were 92.3%, 70.6%, 97.3%, and 99.4%, respectively. The kappa statistic, which measures agreement between BMBA and 18 F-FDG PET/CT, was 0.825 before treatment and 0.784 after treatment, with both values indicating a substantial agreement (P = 0.000). Additionally, the amplification of MYCN and a positive initial PET/CT scan were identified as independent prognostic factors for overall survival (OS). CONCLUSION 18 F-FDG-PET/CT is a valuable method for evaluating BMM in NB. The routine practice of performing a BMBA without discrimination may need to be reassessed. Negative result from 18 F-FDG-PET/CT could potentially spare children with invasive bone marrow biopsies.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Surgical oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chao Yang
- Department of Surgical oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- , 136 Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
4
|
Alabed YZ. Adult Neuroblastoma of the Neck Is Better Imaged With 18 F-FDG PET/CT Than With 18 F-DOPA PET/CT. Clin Nucl Med 2024; 49:e401-e402. [PMID: 38778475 DOI: 10.1097/rlu.0000000000005288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT A 41-year-old woman presented with 2 months history of right submandibular swelling. Biopsy revealed neuroblastoma (NB). Patient was referred for staging PET/CT scan. We compared the findings of 18 F-DOPA PET/CT and 18 F-FDG PET/CT scans. Both imaging modalities were positive in the patient; however, tumor delineation was superior with 18 F-FDG PET/CT. Tumor uptake of FDG was significantly higher than tumor uptake of DOPA. Follow-up FDG PET/CT scan postsurgery showed local recurrent NB and their metastases avidly concentrate FDG. We present a very rare case of adult NB of the neck better imaged with FDG instead of DOPA PET/CT.
Collapse
Affiliation(s)
- Yazan Z Alabed
- From the Department of Nuclear Medicine, PET/CT Unit, Gulf International Cancer Center, Abu Dhabi, UAE
| |
Collapse
|
5
|
Fargette C, Shulkin B, Jha A, Pacak K, Taïeb D. Clinical utility of nuclear imaging in the evaluation of pediatric adrenal neoplasms. Front Oncol 2023; 12:1081783. [PMID: 36733351 PMCID: PMC9886856 DOI: 10.3389/fonc.2022.1081783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Adrenal neoplasms rarely occur in children. They can be diagnosed in the presence of endocrine, metabolic or neurological problems, an abdominal mass, more rarely an adrenal incidentaloma, or in the context of an adrenal mass discovered in the evaluation of childhood cancer including hematologic malignancy. According to standard medical practice, pediatric malignancies are almost always evaluated by 18F-fluorodeoxyglucose positron emission tomography with computed tomography ([18F]FDG PET/CT). Nuclear imaging using specific radiotracers is also an important tool for diagnosing and staging neuroblastoma, pheochromocytoma, hormone hypersecretion, or indeterminate adrenal masses. The Hippocratic oath "primum non nocere" encourages limitation of radiation in children per the ALARA concept (as low as reasonably achievable) but should not lead to the under-use of nuclear imaging because of the potential risk of inaccurate diagnosis or underestimation of the extent of disease. As in adults, nuclear imaging in children should be performed in conjunction with hormone evaluation and morphological imaging.
Collapse
Affiliation(s)
- Christelle Fargette
- Department of Nuclear Medicine, La Timone University Hospital, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille University, Marseille, France
| | - Barry Shulkin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille University, Marseille, France,*Correspondence: David Taïeb,
| |
Collapse
|
6
|
Fiz F, Bottoni G, Bini F, Cerroni F, Marinozzi F, Conte M, Treglia G, Morana G, Sorrentino S, Garaventa A, Siri G, Piccardo A. Prognostic value of texture analysis of the primary tumour in high-risk neuroblastoma: An 18 F-DOPA PET study. Pediatr Blood Cancer 2022; 69:e29910. [PMID: 35920594 DOI: 10.1002/pbc.29910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the prognostic value of texture analysis of the primary tumour with 18 fluorine-dihydroxyphenylalanine positron emission tomography/X-ray computed tomography (18 F-DOPA PET/CT) in patients affected by high-risk neuroblastoma (HR-NBL). METHODS We retrospectively analysed 18 patients with HR-NBL, which had been prospectively enrolled in the course of a previous trial investigating the diagnostic role of 18 F-DOPA PET/CT at the time of the first onset. Texture analysis of the primary tumour was carried out on the PET images using LifeX. Conventional indices, histogram parameters, grey level co-occurrence (GLCM), run-length (GLRLM), neighbouring difference (NGLDM) and zone-length (GLZLM) matrices parameter were extracted; their values were compared with the overall metastatic load, expressed by means of whole-body metabolic burden (WBMB) score and the progression-free/overall survival (PFS and OS). RESULTS There was a direct correlation between WBMB and radiomics parameter describing uptake intensity (SUVmean : p = .004) and voxel heterogeneity (entropy: p = .026; GLCM_Contrast: p = .001). Conversely, texture indices of homogeneity showed an inverse correlation with WBMB (energy: p = .026; GLCM_Homogeneity: p = .006). On the multivariate model, WBMB (p < .01) and the first standardised uptake value (SUV) quartile (p < .001) predicted PFS; OS was predicted by WBMB and the N-myc proto-oncogene protein (MYCN) amplification (p < .05) for both. CONCLUSIONS Textural parameters describing heterogeneity and metabolic intensity of the primary HR-NBL are closely associated with its overall metastatic burden. In turn, the whole-body tumour load appears to be one of the most relevant predictors of progression-free and overall survival.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, E.O. 'Ospedali Galliera', Genoa, Italy
| | - Gianluca Bottoni
- Department of Nuclear Medicine, E.O. 'Ospedali Galliera', Genoa, Italy
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, 'Sapienza' University of Rome, Rome, Italy
| | - Francesca Cerroni
- Department of Mechanical and Aerospace Engineering, 'Sapienza' University of Rome, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, 'Sapienza' University of Rome, Rome, Italy
| | - Massimo Conte
- Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanni Morana
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, University of Turin, Turin, Italy
| | | | | | - Giacomo Siri
- Scientific Directorate, E.O. 'Ospedali Galliera', Genoa, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. 'Ospedali Galliera', Genoa, Italy
| |
Collapse
|
7
|
Fiz F, Bini F, Gabriele E, Bottoni G, Garrè ML, Marinozzi F, Milanaccio C, Verrico A, Massollo M, Bosio V, Lattuada M, Rossi A, Ramaglia A, Puntoni M, Morana G, Piccardo A. Role of Dynamic Parameters of 18F-DOPA PET/CT in Pediatric Gliomas. Clin Nucl Med 2022; 47:517-524. [PMID: 35353725 DOI: 10.1097/rlu.0000000000004185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF THE REPORT PET with 18F-DOPA can be used to evaluate grading and aggressiveness of pediatric cerebral gliomas. However, standard uptake parameters may underperform in circumscribed lesions and in diffuse pontine gliomas. In this study, we tested whether dynamic 18F-DOPA PET could overcome these limitations. PATIENTS AND METHODS Patients with available dynamic 18F-DOPA PET were included retrospectively. Static parameters (tumor/striatum ratio [T/S] and tumor/cortex ratio [T/N]) and dynamic ones, calculated on the tumor time activity curve (TAC), including time-to-peak (TTP), slope steepness, the ratio between tumor and striatum TAC steepness (dynamic slope ratio [DSR]), and TAC shape (accumulation vs plateau), were evaluated as predictors of high/low grading (HG and LG) and of progression-free survival and overall survival. RESULTS Fifteen patients were included; T/S, T/N, TTP, TAC slope steepness, and DSR were not significantly different between HG and LG. The accumulation TAC shape was more prevalent in the LG than in the HG group (75% vs 27%). On progression-free survival univariate analysis, TAC accumulation shape predicted longer survival (P < 0.001), whereas T/N and DSR showed borderline significance; on multivariate analyses, only TAC shape was retained (P < 0.01, Harrell C index, 0.93-0.95). On overall survival univariate analysis, T/N (P < 0.05), DSR (P < 0.05), and TAC "accumulating" shape predicted survival (P < 0.001); once more, only this last parameter was retained in the multivariate models (P < 0.05, Harrell C index, 0.86-0.89). CONCLUSIONS Dynamic 18F-DOPA PET analysis outperforms the static parameter evaluation in grading assessment and survival prediction. Evaluation of the curve shape is a simple-to-use parameter with strong predictive power.
Collapse
Affiliation(s)
- Francesco Fiz
- From the Department of Nuclear Medicine, E.O. "Ospedali Galliera," Genoa
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Rome
| | - Edoardo Gabriele
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Rome
| | - Gianluca Bottoni
- From the Department of Nuclear Medicine, E.O. "Ospedali Galliera," Genoa
| | | | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Rome
| | | | | | - Michela Massollo
- From the Department of Nuclear Medicine, E.O. "Ospedali Galliera," Genoa
| | | | | | - Andrea Rossi
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova
| | - Antonia Ramaglia
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova
| | - Matteo Puntoni
- Clinical and Epidemiological Research Unit, University Hospital of Parma, Parma
| | | | - Arnoldo Piccardo
- From the Department of Nuclear Medicine, E.O. "Ospedali Galliera," Genoa
| |
Collapse
|
8
|
Pedersen C, Aboian M, McConathy JE, Daldrup-Link H, Franceschi AM. PET/MRI in Pediatric Neuroimaging: Primer for Clinical Practice. AJNR Am J Neuroradiol 2022; 43:938-943. [PMID: 35512826 DOI: 10.3174/ajnr.a7464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Modern pediatric imaging seeks to provide not only exceptional anatomic detail but also physiologic and metabolic information of the pathology in question with as little radiation penalty as possible. Hybrid PET/MR imaging combines exquisite soft-tissue information obtained by MR imaging with functional information provided by PET, including metabolic markers, receptor binding, perfusion, and neurotransmitter release data. In pediatric neuro-oncology, PET/MR imaging is, in many ways, ideal for follow-up compared with PET/CT, given the superiority of MR imaging in neuroimaging compared with CT and the lower radiation dose, which is relevant in serial imaging and long-term follow-up of pediatric patients. In addition, although MR imaging is the main imaging technique for the evaluation of spinal pathology, PET/MR imaging may provide useful information in several clinical scenarios, including tumor staging and follow-up, treatment response assessment of spinal malignancies, and vertebral osteomyelitis. This review article covers neuropediatric applications of PET/MR imaging in addition to considerations regarding radiopharmaceuticals, imaging protocols, and current challenges to clinical implementation.
Collapse
Affiliation(s)
- C Pedersen
- From the Department of Radiology (C.P., M.A.), Yale School of Medicine, New Haven, Connecticut
| | - M Aboian
- From the Department of Radiology (C.P., M.A.), Yale School of Medicine, New Haven, Connecticut
| | - J E McConathy
- Division of Molecular Imaging and Therapeutics (J.E.M.), Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - H Daldrup-Link
- Department of Radiology and Pediatrics (H.D.-L.), Stanford University School of Medicine, Palo Alto, California
| | - A M Franceschi
- Neuroradiology Division (A.M.F.), Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, New York, New York
| |
Collapse
|
9
|
Prado-Wohlwend S, del Olmo-García MI, Bello-Arques P, Merino-Torres JF. [ 177Lu]Lu-DOTA-TATE and [ 131I]MIBG Phenotypic Imaging-Based Therapy in Metastatic/Inoperable Pheochromocytomas and Paragangliomas: Comparative Results in a Single Center. Front Endocrinol (Lausanne) 2022; 13:778322. [PMID: 35197929 PMCID: PMC8859101 DOI: 10.3389/fendo.2022.778322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The aim of the study is to assess phenotypic imaging patterns and the response to treatment with [177Lu]Lu-DOTA-TATE and/or [131I]MIBG in paragangliomas (PGLs) and pheochromocytomas (PHEOs), globally and according to the primary location. METHODS This is a 17-patient retrospective observational study, with 9 cases treated with [177Lu]Lu-DOTA-TATE and 8 with [131I]MIBG (37 total treatments). Functional imaging scans and treatment responses were studied in order to choose the best therapeutic option and to define the progression-free survival (PFS) and disease control rate (DCR) according to treatment modality and primary location. RESULTS All patients were studied with phenotypic nuclear medicine images. Twelve of 17 patients were tested with both [123I]MIBG and somatostatin receptor images, and 6/12 showed appropriate expression of both targets to treatment in the phenotypic images. The rest of the patients were tested with one of the image modalities or only showed suitable uptake of a single radiotracer and were treated with the corresponding therapeutic option. [177Lu]Lu-DOTA-TATE PFS was 29 months with a DCR of 88.8%. [131I]MIBG PFS was 18.5 months with a 62.5% DCR. According to the primary location, the best PFS was in PHEOs treated with [177Lu]Lu-DOTA-TATE. Although the series are small due to the low disease prevalence and do not allow to yield statistically significant differences, this first study comparing [177Lu]Lu-DOTA-TATE and [131I]MIBG displays a trend to an overall longer PFS with [177Lu]Lu-DOTA-TATE, especially in the adrenal primary location. When both radionuclide targets are expressed, the patients' comorbidity and treatment effectiveness should be valued together with the intensity uptake in the phenotypic image in order to choose the best therapeutic option. These preliminary retrospective results reinforce the need for a prospective, multicentric trial to be confirmed.
Collapse
Affiliation(s)
- Stefan Prado-Wohlwend
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, Valencia, Spain
- *Correspondence: Stefan Prado-Wohlwend,
| | | | - Pilar Bello-Arques
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Juan Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Polytechnic Hospital La Fe, Valencia, Spain
- Medicine Department, Universitat de València, Valencia, Spain
| |
Collapse
|
10
|
Ko KY, Yen RF, Ko CL, Chou SW, Chang HH, Yang YL, Jou ST, Hsu WM, Lu MY. Prognostic Value of Interim 18F-DOPA and 18F-FDG PET/CT Findings in Stage 3-4 Pediatric Neuroblastoma. Clin Nucl Med 2022; 47:21-25. [PMID: 34874346 DOI: 10.1097/rlu.0000000000003972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This retrospective study aimed to determine the prognostic value of imaging parameters derived from midtherapy 18F-fluorodihydroxyphenylalanine (18F-DOPA) and 18F-FDG PET in pediatric patients with stage 3-4 neuroblastoma. METHODS We enrolled 32 stage 3-4 pediatric neuroblastoma patients who underwent 18F-DOPA and 18F-FDG PET/CT scans before and after 3 chemotherapy cycles. We measured metabolic and volumetric parameters and applied a metabolic burden scoring system to evaluate the primary tumor extent and soft tissue metastases and that of bone/bone marrow involvement. The associations between these parameters and clinical outcomes were investigated. RESULTS Over a median follow-up period of 47 months (range, 3-137 months), 16 patients experienced disease progression, and 13 died. After adjustment for clinical factors, multivariate Cox proportional hazard models showed that interim tumor FDG/FDOPA SUVmax (hazard ratio [HR], 5.94; 95% confidence interval [CI], 1.10-34.98) and interim FDOPA whole-body metabolic burden scores (WBMB) (HR, 7.30; 95% CI, 1.50-35.50) were significant prognostic factors for overall survival (OS). Only interim FDOPA WBMB scores (HR, 7.05; 95% CI, 1.02-48.7) were predictive of progression-free survival. Based on median cutoff values, prognosis (OS and progression-free survival) was significantly associated with an interim FDOPA WBMB score ≥21.92 (all P < 0.05) and interim tumor FDG/FDOPA (SUVmax) score ≥0.57 with poor OS (P < 0.05). CONCLUSIONS Our results indicate that midtreatment FDG and FDOPA PET/CT could serve as prognostic markers in stage 3-4 neuroblastoma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen-Ming Hsu
- Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | |
Collapse
|
11
|
Pfluger T, Ciarmiello A, Giovacchini G, Montravers F, Le Pointe HD, Landman-Parker J, Meniconi M, Franzius C. Diagnostic Applications of Nuclear Medicine: Pediatric Cancers. NUCLEAR ONCOLOGY 2022:1271-1307. [DOI: 10.1007/978-3-031-05494-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Pedersen C, Link HD, Aboian M. Pediatric Spine. HYBRID PET/MR NEUROIMAGING 2022:765-777. [DOI: 10.1007/978-3-030-82367-2_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Gassenmaier S, Bares R, Barreuther M, Flaadt T, Lang P, Schaefer JF, Tsiflikas I. 123Iodine-metaiodobenzylguanidine scintigraphy versus whole-body magnetic resonance imaging with diffusion-weighted imaging in children with high-risk neuroblastoma - pilot study. Pediatr Radiol 2021; 51:1223-1230. [PMID: 33544193 DOI: 10.1007/s00247-020-04960-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prognostic value of the International Society of Paediatric Oncology European Neuroblastoma Research Network (SIOPEN) skeletal score using 123iodine-metaiodobenzylguanidine (MIBG) has been confirmed for people with high-risk neuroblastoma. Whole-body MRI with diffusion-weighted imaging is used increasingly. OBJECTIVE To compare the original SIOPEN score and its adaption by diffusion-weighted imaging in high-risk stage 4 neuroblastoma and to evaluate any consequences of score differences on overall survival. MATERIALS AND METHODS This retrospective observational study included pediatric patients who underwent MIBG scintigraphy and whole-body MRI, including diffusion-weighted imaging, between 2010 and 2015. Semi-quantitative skeletal scores for each exam were calculated independently. A difference of two or more points was defined as clinically relevant and counted as M+ (more in diffusion-weighted imaging) or S+ (more in MIBG). In cases of a negative result in one of the studies, residual disease of 1 point was also rated as relevant. We tested correlation and differences on an exam basis and also grouped by different therapeutic conditions. Overall survival was used to evaluate prognostic relevance. RESULTS Seventeen children with 25 paired examinations were evaluated. Median MIBG scintigraphy score was 0 (interquartile range [IQR] 0-4, range 0-25) vs. a median whole-body MRI score of 1 (IQR 0-5.5, range 0-35) (P=0.018). A relevant difference between whole-body MRI and MIBG scintigraphy was noted in 14 of the 25 paired examinations (M+: n=9; S+: n=5). After treatment, the median survival of cases with M+ was 14 months (IQR 4-59, range 1-74 months), while S+ cases showed a median survival of 49 months (IQR 36-52, range 36-52 months) (P=0.413). CONCLUSION The SIOPEN scoring system is feasible for whole-body MRI but might result in slightly higher scores, probably because of MRI's superior spatial resolution. Further studies are necessary to validate any impact on prognosis.
Collapse
Affiliation(s)
- Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Roland Bares
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Marcel Barreuther
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Tim Flaadt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Juergen F Schaefer
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Ilias Tsiflikas
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| |
Collapse
|
14
|
Qiu ZL, Saito S, Kayano D, Wakabayashi H, Kinuya S. Comparison of the detecting capability between 123I-mIBG and post-therapeutic 131I-mIBG scintigraphy for curie scoring in patients with neuroblastoma after chemotherapy. Ann Nucl Med 2021; 35:649-661. [PMID: 33866530 DOI: 10.1007/s12149-020-01569-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the detecting capability between planar imaging (PI) and PI combined with single-photon emission computed tomography/computed tomography (PICWS), including 123I- and 131I-labeled metaiodobenzylguanidine (mIBG) and to compare the detecting capability between 123I-mIBG and post-therapeutic 131I-mIBG scintigraphy including PI and PICWS for Curie scoring in patients with neuroblastoma. METHODS Sixty-two patients with 66 pairs of complete images with neuroblastoma were enrolled in this retrospective study. RESULTS Comparing the Curie scoring between 123I-mIBG PI and PICWS and between post-therapeutic 131I-mIBG PI and PICWS, findings were concordantly negative in 28.79% and 18.18% of studies, concordantly positive in 66.67% and 74.24% of studies, and discordant in 4.54% and 7.58% of studies, respectively. PICWS was superior to PI including 123I- and 131I-mIBG in the evaluation of Curie scoring for neuroblastoma patients (both P < 0.001). Comparing the Curie scores between 123I- and post-therapeutic 131I-mIBG PI and between 123I- and post-therapeutic 131I-mIBG PICWS, concordantly negative imaging was visualized in 22.73% and 19.70% of studies, concordantly positive imaging in 66.67% and 69.70% of studies, and discordant imaging in 10.60% and 10.60% of studies, respectively. Post-therapeutic 131I-mIBG was significantly better than that of 123I-mIBG scintigraphy including PI and PICWS in detecting the Curie scoring for neuroblastoma patients (both P < 0.001). CONCLUSION The present study demonstrates that 131I- or 123I-mIBG PICWS are more helpful in the evaluation of Curie scores than that of conventional PI and that post-therapeutic 131I-mIBG is superior to 123I-mIBG scintigraphy for the detecting capability of Curie scoring in patients with neuroblastoma.
Collapse
Affiliation(s)
- Zhong-Ling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shintaro Saito
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
15
|
Samim A, Tytgat GA, Bleeker G, Wenker ST, Chatalic KL, Poot AJ, Tolboom N, van Noesel MM, Lam MG, de Keizer B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J Pers Med 2021; 11:jpm11040270. [PMID: 33916640 PMCID: PMC8066332 DOI: 10.3390/jpm11040270] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid malignancy in children. At diagnosis, approximately 50% of patients present with metastatic disease. These patients are at high risk for refractory or recurrent disease, which conveys a very poor prognosis. During the past decades, nuclear medicine has been essential for the staging and response assessment of neuroblastoma. Currently, the standard nuclear imaging technique is meta-[123I]iodobenzylguanidine ([123I]mIBG) whole-body scintigraphy, usually combined with single-photon emission computed tomography with computed tomography (SPECT-CT). Nevertheless, 10% of neuroblastomas are mIBG non-avid and [123I]mIBG imaging has relatively low spatial resolution, resulting in limited sensitivity for smaller lesions. More accurate methods to assess full disease extent are needed in order to optimize treatment strategies. Advances in nuclear medicine have led to the introduction of radiotracers compatible for positron emission tomography (PET) imaging in neuroblastoma, such as [124I]mIBG, [18F]mFBG, [18F]FDG, [68Ga]Ga-DOTA peptides, [18F]F-DOPA, and [11C]mHED. PET has multiple advantages over SPECT, including a superior resolution and whole-body tomographic range. This article reviews the use, characteristics, diagnostic accuracy, advantages, and limitations of current and new tracers for nuclear medicine imaging in neuroblastoma.
Collapse
Affiliation(s)
- Atia Samim
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Godelieve A.M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Gitta Bleeker
- Department of Radiology and Nuclear Medicine, Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands;
| | - Sylvia T.M. Wenker
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Kristell L.S. Chatalic
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Alex J. Poot
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Nelleke Tolboom
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Max M. van Noesel
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Marnix G.E.H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Bart de Keizer
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
- Correspondence: ; Tel.: +31-887-571-794
| |
Collapse
|
16
|
Aldridge MD, Peet C, Wan S, Shankar A, Gains JE, Bomanji JB, Gaze MN. Paediatric Molecular Radiotherapy: Challenges and Opportunities. Clin Oncol (R Coll Radiol) 2021; 33:80-91. [PMID: 33246658 DOI: 10.1016/j.clon.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
The common contemporary indications for paediatric molecular radiotherapy (pMRT) are differentiated thyroid cancer and neuroblastoma. It may also have value in neuroendocrine cancers, and it is being investigated in clinical trials for other diseases. pMRT is the prototypical biomarker-driven, precision therapy, with a unique mode of delivery and mechanism of action. It is safe and well tolerated, compared with other treatments. However, its full potential has not yet been achieved, and its wider use faces a number of challenges and obstacles. Paradoxically, the success of radioactive iodine as a curative treatment for metastatic thyroid cancer has led to a 'one size fits all' approach and limited academic enquiry into optimisation of the conventional treatment regimen, until very recently. Second, the specialised requirements for the delivery of pMRT are available in only a very limited number of centres. This limited capacity and geographical coverage results in reduced accessibility. With few enthusiastic advocates for this treatment modality, investment in research to improve treatments and broaden indications from both industry and national and charitable research funders has historically been suboptimal. Nonetheless, there is now an increasing interest in the opportunities offered by pMRT. Increased research funding has been allocated, and technical developments that will permit innovative approaches in pMRT are available for exploration. A new portfolio of clinical trials is being assembled. These studies should help to move at least some paediatric treatments from simply palliative use into potentially curative protocols. Therapeutic strategies require modification and optimisation to achieve this. The delivery should be personalised and tailored appropriately, with a comprehensive evaluation of tumour and organ-at-risk dosimetry, in alignment with the external beam model of radiotherapy. This article gives an overview of the current status of pMRT, indicating the barriers to progress and identifying ways in which these may be overcome.
Collapse
Affiliation(s)
- M D Aldridge
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - C Peet
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Wan
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - A Shankar
- Department of Paediatric and Adolescent Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J B Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - M N Gaze
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
17
|
Snyder SE, Butch ER, Shulkin BL. Radiopharmaceuticals in Pediatric Nuclear Medicine. HANDBOOK OF RADIOPHARMACEUTICALS 2020:653-701. [DOI: 10.1002/9781119500575.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Pictorial review of the clinical applications of MIBG in neuroblastoma: current practices. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Wang X, Huo L. Non-18F-Fluorodeoxyglucos PET Tracers in Pediatric Disease. PET Clin 2020; 15:241-251. [DOI: 10.1016/j.cpet.2020.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
Neuroblastoma is one of the most common pediatric malignant tumors. Functional imaging plays an important role in the diagnosis, staging, and therapy response monitoring of neuroblastoma. Although metaiodobenzylguanidine scan with single-photon emission computed tomography/computed tomography remains the mainstay in functional imaging of the neuroblastomas, PET/CT has begun to show increased utility in this clinical setting.
Collapse
|
21
|
Li HF, Mao HJ, Zhao L, Guo DL, Chen B, Yang JF. The Diagnostic Accuracy of PET(CT) in Patients With Neuroblastoma: A Meta-Analysis and Systematic Review. J Comput Assist Tomogr 2020; 44:111-117. [PMID: 31939891 DOI: 10.1097/rct.0000000000000973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the overall diagnostic value of PET(CT) in patients with neuroblastoma (NB) based on qualified studies. METHODS PubMed, Cochrane, and Embase database were searched by the index words to identify the qualified studies, and relevant literature sources were also searched. The latest research was performed in April 2019. Heterogeneity of the included studies was tested, which was used to select proper effect model to calculate pooled weighted sensitivity, specificity, and diagnostic odds ratio (DOR). Summary receiver operating characteristic (SROC) analyses were also performed. RESULTS Eleven studies with 580 patients were involved in the meta-analysis to explore the diagnostic accuracy of PET(CT) for NB. PET(CT) has high diagnostic accuracy of NB: the global sensitivity was 91% (95% confidence interval [CI], 86%-94%), the global specificity was 78% (95% CI, 66%-86%), the global positive likelihood ratio was 4.07 (95% CI, 2.54-6.50), the global negative likelihood ratio was 0.12 (95% CI, 0.08-0.18), the global DOR was 27.43 (95% CI, 14.45-52.07), and the area under the SROC was high (area under the curve, 0.93; 95% CI, 0.90-0.95). Besides this, PET(CT) has high diagnostic accuracy of primary NB: the global sensitivity was 86% (95% CI, 73%-93%), the global specificity was 82% (95% CI, 57%-94%), the global positive likelihood ratio was 4.90 (95% CI, 1.63-14.72), the global negative likelihood ratio was 0.17 (95% CI, 0.07-0.40), the global DOR was 25.427 (95% CI, 3.988-162.098), and the area under the SROC was high (area under the curve, 0.91; 95% CI, 0.88-0.93). However, there has no significant accuracy of PET(CT) in NB with bone marrow. CONCLUSIONS This study provides a systematic review and meta-analysis of diagnostic accuracy studies of PET(CT) for NB. The results indicated that PET(CT) is a highly accurate diagnostic tool for NB.
Collapse
Affiliation(s)
- Huai-Feng Li
- From the Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
22
|
Piccardo A, Castellani R, Bottoni G, Massollo M, Follacchio GA, Lopci E. Nuclear Medicine Procedures in Neuroblastoma. NEUROBLASTOMA 2020:139-162. [DOI: 10.1007/978-3-030-18396-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Piccardo A, Morana G, Puntoni M, Campora S, Sorrentino S, Zucchetta P, Ugolini M, Conte M, Cistaro A, Ferrarazzo G, Pescetto M, Lattuada M, Bottoni G, Garaventa A, Giovanella L, Lopci E. Diagnosis, Treatment Response, and Prognosis: The Role of 18F-DOPA PET/CT in Children Affected by Neuroblastoma in Comparison with 123I-mIBG Scan: The First Prospective Study. J Nucl Med 2019; 61:367-374. [PMID: 31541036 DOI: 10.2967/jnumed.119.232553] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
|
24
|
Early 18F-FDOPA PET/CT imaging after carbidopa premedication as a valuable diagnostic option in patients with insulinoma. Eur J Nucl Med Mol Imaging 2019; 46:686-695. [DOI: 10.1007/s00259-018-4245-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022]
|
25
|
Abstract
Nuclear medicine has a central role in the diagnosis, staging, response assessment and long-term follow-up of neuroblastoma, the most common solid extracranial tumour in children. These EANM guidelines include updated information on 123I-mIBG, the most common study in nuclear medicine for the evaluation of neuroblastoma, and on PET/CT imaging with 18F-FDG, 18F-DOPA and 68Ga-DOTA peptides. These PET/CT studies are increasingly employed in clinical practice. Indications, advantages and limitations are presented along with recommendations on study protocols, interpretation of findings and reporting results.
Collapse
|
26
|
Lyons K, Sher A, Orth R, Seghers V. The utility of PET/MRI in pediatric malignancies. APPLIED RADIOLOGY 2018:14-20. [DOI: 10.37549/ar2528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Piccardo A, Puntoni M, Morbelli S, Bongioanni F, Paparo F, Altrinetti V, Gonella R, Gennari A, Iacozzi M, Sambuceti G, DeCensi A, Massollo M. 18F-FDG PET/CT is a prognostic biomarker in patients affected by bone metastases from breast cancer in comparison with 18F-NaF PET/CT. Nuklearmedizin 2017; 54:163-72. [DOI: 10.3413/nukmed-0727-15-02] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023]
Abstract
SummaryAim: To compare 18F-FDG PET/CT and 18F-NaF PET/CT with respect to disease prognostication and outcome in patients affected by bone metastases from breast cancer (BC). Patients, methods: We retrospectively investigated 32 women with BC and documented bone metastases. Semi-quantitative parameters were applied to 18F-FDG PET/CT and 18F-Na PET/CT in order to evaluate disease extent and tumour metabolism. We used time-to-event analyses (Kaplan Meier and COX proportional hazard methods) to estimate progression-free (PFS) and overall survival (OS) in order to assess the independent prognostic value of 18F-FDG PET/CT and 18F-Na PET/CT. Results: The sensitivity of 18F-NaF PET/CT (100%) was higher (p < 0.05) than that of 18F-FDG PET/CT (72% and 72%). None of the 18F-FDG PET/CT-negative patients showed disease progression at the end of follow-up. After adjustment for age, Ki-67 levels, presence of visceral metastases, hormone therapy, duration of bone disease and response to first-line therapy, only 18F-FDG SUV mean [HR 15.7, 95% confidence interval (CI) 1.15-214.5] and 18F-FDG whole-body bone metabolic burden (WB-B-MB) (HR 16.9; 95%CI 1.87-152.2) were independently and significantly associated with OS. None of the 18F-NaF PET/CT parameters were associated with OS. None of the conventional clinical prognostic parameters remained significantly associated with OS after the inclusion of PET/ CT parameters in the model. Conclusion: 18F-FDG PET/CT is independently associated with OS in BC patients with bone metastases and its prognostic impact seems to be higher than conventional clinical and biological prognostic factors. Although 18F-NaF PET/CT has a higher diagnostic sensitivity than 18F-FDG PET/ CT, it is not independently associated with OS.
Collapse
|
28
|
Gauguet JM, Pace-Emerson T, Grant FD, Shusterman S, DuBois SG, Frazier AL, Voss SD. Evaluation of the utility of 99m Tc-MDP bone scintigraphy versus MIBG scintigraphy and cross-sectional imaging for staging patients with neuroblastoma. Pediatr Blood Cancer 2017; 64. [PMID: 28449267 DOI: 10.1002/pbc.26601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE Accurate staging of neuroblastoma requires multiple imaging examinations. The purpose of this study was to determine the relative contribution of 99m Tc-methylene diphosphonate (MDP) bone scintigraphy (bone scan) versus metaiodobenzylguanidine scintigraphy (MIBG scan) for accurate staging of neuroblastoma. METHODS A medical record search by the identified patients with neuroblastoma from 1993 to 2012 who underwent both MIBG and bone scan for disease staging. Cross-sectional imaging was used to corroborate the scintigraphy results. Clinical records were used to correlate imaging findings with clinical staging and patient management. RESULTS One hundred thirty-two patients underwent both MIBG and bone scan for diagnosis. All stage 1 (n = 12), 2 (n = 8), and 4S (n = 4) patients had a normal bone scan with no skeletal MIBG uptake. Six of 30 stage 3 patients had false (+) bone scans. In the 78 stage 4 patients, 58/78 (74%) were both skeletal MIBG(+)/bone scan (+). In 56 of the 58 cases, skeletal involvement detected with MIBG was equal to or greater than that detected by bone scan. Only 3/78 had (-) skeletal MIBG uptake and (+) bone scans; all 3 had other sites of metastatic disease. Five of 78 had (+) skeletal MIBG with a (-) bone scan, while 12/78 had no skeletal involvement by either MIBG or bone scan. In no case did a positive bone scan alone determine a stage 4 designation. CONCLUSION In the staging of neuroblastoma, 99m Tc-MDP bone scintigraphy does not identify unique sites of disease that affect disease stage or clinical management, and in the majority of cases bone scans can be omitted from the routine neuroblastoma staging algorithm.
Collapse
Affiliation(s)
- Jean-Marc Gauguet
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts.,Department of Radiology, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Tamara Pace-Emerson
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Frederick D Grant
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Suzanne Shusterman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
29
|
Xia J, Zhang H, Hu Q, Liu SY, Zhang LQ, Zhang A, Zhang XL, Wang YQ, Liu AG. Comparison of diagnosing and staging accuracy of PET (CT) and MIBG on patients with neuroblastoma: Systemic review and meta-analysis. Curr Med Sci 2017; 37:649-660. [PMID: 29058276 DOI: 10.1007/s11596-017-1785-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/31/2017] [Indexed: 12/24/2022]
Abstract
To perform a systemic review and meta-analysis of the diagnostic accuracy of PET (CT) and metaiodobenzylguanidine (MIBG) for diagnosing neuroblastoma (NB), electronic databases were searched as well as relevant references and conference proceedings. The diagnostic accuracy of MIBG and PET (CT) was calculated for NB, primary NB, and relapse/metastasis of NB based on their sensitivity, specificity, and area under the summary receiver operating characteristic curve (AUSROC) in terms of per-lesion and per-patient data. A total of 40 eligible studies comprising 1134 patients with 939 NB lesions were considered for the meta-analysis. For the staging of NB, the per-lesion AUSROC value of MIBG was lower than that of PET (CT) [0.8064±0.0414 vs. 0.9366±0.0166 (P<0.05)]. The per-patient AUSROC value of MIBG and PET (CT) for the diagnosis of NB was 0.8771±0.0230 and 0.6851±0.2111, respectively. The summary sensitivity for MIBG and PET (CT) was 0.79 and 0.89, respectively. The summary specificity for MIBG and PET (CT) was 0.84 and 0.71, respectively. PET (CT) showed higher per-lesion accuracy than MIBG and might be the preferred modality for the staging of NB. On the other hand, MIBG has a comparable diagnosing performance with PET (CT) in per-patient analysis but shows a better specificity.
Collapse
Affiliation(s)
- Jia Xia
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang-You Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liu-Qing Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Ling Zhang
- Department of Hematology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Ya-Qin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai-Guo Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Up-to-date review of nuclear medicine applications in pediatric thoracic imaging. Eur J Radiol 2017; 95:418-427. [PMID: 27142495 DOI: 10.1016/j.ejrad.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/02/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
|
31
|
Pandit-Taskar N, Modak S. Norepinephrine Transporter as a Target for Imaging and Therapy. J Nucl Med 2017; 58:39S-53S. [PMID: 28864611 DOI: 10.2967/jnumed.116.186833] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
The norepinephrine transporter (NET) is essential for norepinephrine uptake at the synaptic terminals and adrenal chromaffin cells. In neuroendocrine tumors, NET can be targeted for imaging as well as therapy. One of the most widely used theranostic agents targeting NET is metaiodobenzylguanidine (MIBG), a guanethidine analog of norepinephrine. 123I/131I-MIBG theranostics have been applied in the clinical evaluation and management of neuroendocrine tumors, especially in neuroblastoma, paraganglioma, and pheochromocytoma. 123I-MIBG imaging is a mainstay in the evaluation of neuroblastoma, and 131I-MIBG has been used for the treatment of relapsed high-risk neuroblastoma for several years, however, the outcome remains suboptimal. 131I-MIBG has essentially been only palliative in paraganglioma/pheochromocytoma patients. Various techniques of improving therapeutic outcomes, such as dosimetric estimations, high-dose therapies, multiple fractionated administration and combination therapy with radiation sensitizers, chemotherapy, and other radionuclide therapies, are being evaluated. PET tracers targeting NET appear promising and may be more convenient options for the imaging and assessment after treatment. Here, we present an overview of NET as a target for theranostics; review its current role in some neuroendocrine tumors, such as neuroblastoma, paraganglioma/pheochromocytoma, and carcinoids; and discuss approaches to improving targeting and theranostic outcomes.
Collapse
Affiliation(s)
| | - Shakeel Modak
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
32
|
Biassoni L, Easty M. Paediatric nuclear medicine imaging. Br Med Bull 2017; 123:127-148. [PMID: 28910997 DOI: 10.1093/bmb/ldx025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/05/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nuclear medicine imaging explores tissue viability and function by using radiotracers that are taken up at cellular level with different mechanism. This imaging technique can also be used to assess blood flow and transit through tubular organs. Nuclear medicine imaging has been used in paediatrics for decades and this field is continuously evolving. SOURCES OF DATA The data presented comes from clinical experience and some milestone papers on the subject. AREAS OF AGREEMENT Nuclear medicine imaging is well-established in paediatric nephro-urology in the context of urinary tract infection, ante-natally diagnosed hydronephrosis and other congenital renal anomalies. Also, in paediatric oncology, I-123-meta-iodobenzyl-guanidine has a key role in the management of children with neuroblastic tumours. Bone scintigraphy is still highly valuable to localize the source of symptoms in children and adolescents with bone pain when other imaging techniques have failed. Thyroid scintigraphy in neonates with congenital hypothyroidism is the most accurate imaging technique to confirm the presence of ectopic functioning thyroid tissue. AREAS OF CONTROVERSY Radionuclide transit studies of the gastro-intestinal tract are potentially useful in suspected gastroparesis or small bowel or colonic dysmotility. However, until now a standardized protocol and a validated normal range have not been agreed, and more work is necessary. Research is ongoing on whether magnetic resonance imaging (MRI), with its great advantage of great anatomical detail and no ionizing radiations, can replace nuclear medicine imaging in some clinical context. On the other hand, access to MRI is often difficult in many district general hospitals and general anaesthesia is frequently required, thus adding to the complexity of the examination. GROWING POINTS Patients with bone pain and no cause for it demonstrated on MRI can benefit from bone scintigraphy with single photon emission tomography and low-dose computed tomography. This technique can identify areas of mechanical stress at cortical bone level, difficult to demonstrate on MRI, which can act as pain generators. Positron emission tomography (PET) is being tested in the staging, response assessment and at the end of treatment of several paediatric malignancies. PET is becoming more widely utilized in neurology in the pre-surgical assessment of some children with drug resistant epilepsy. AREAS TIMELY FOR DEVELOPING RESEARCH The use of PET/MRI scanners is very attractive as it combines benefits of MR imaging with the assessment of cellular viability and metabolism with PET in one examination. This imaging technique will allow important research on tumour in-vivo metabolism (possible applications include lymphomas, neuroblastomas, malignant germ cell tumours andbrain tumours), with the aim of offering a personalized biological profile of the tumour in a particular patient. Ground-breaking research is also envisaged in neurosciences, especially in epilepsy, using PET tracers that would enable a better identification of the epileptogenic focus, and in psychiatry, with the use of radiolabeled neurotransmitters. In paediatric nephro-urology, the identification of the asymptomatic child with ante-natally diagnosed hydronephrosis at risk of losing renal parenchymal function if left untreated is another area of active research involving radionuclide renography.
Collapse
Affiliation(s)
- Lorenzo Biassoni
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marina Easty
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
33
|
Abstract
Nuclear medicine has an important role in the management of many cancers in pediatric age group with multiple imaging modalities and radiopharmaceuticals targeting various biological uptake mechanisms. 18-Flourodeoxyglucose is the radiotracer of choice especially in patients with sarcoma and lymphoma. (18)FDG-PET, for sarcoma and lymphomas, is proved to be superior to conventional imaging in staging and therapy response. Although studies are limited in pediatric population, (18)FDG-PET/CT has found its way through international guidelines. Limitations and strengths of PET imaging must be noticed before adapting PET imaging in clinical protocols. Established new response criteria using multiple parameters derived from (18)FDG-PET would increase the accuracy and repeatability of response evaluation. Current data suggest that I-123 metaiodobenzylguanidine (MIBG) remains the tracer of choice in the evaluation of neuroblastoma (NB) because of its high sensitivity, specificity, diagnostic accuracy, and prognostic value. It is valuable in determining the response to therapy, surveillance for disease recurrence, and in selecting patients for I-131 therapy. SPECT/CT improves the diagnostic accuracy and the interpretation confidence of MIBG scans. (18)FDG-PET/CT is an important complementary to MIBG imaging despite its lack of specificity to NB. It is valuable in cases of negative or inconclusive MIBG scans and when MIBG findings underestimate the disease status as determined from clinical and radiological findings. F-18 DOPA is promising tracer that reflects catecholamine metabolism and is both sensitive and specific. F-18 DOPA scintigraphy provides the advantages of PET/CT imaging with early and short imaging times, high spatial resolution, inherent morphologic correlation with CT, and quantitation. Regulatory and production issues currently limit the tracer's availability. PET/CT with Ga-68 DOTA appears to be useful in NB imaging and may have a unique role in selecting patients for peptide receptor radionuclide therapy with somatostatin analogues. C-11 hydroxyephedrine PET/CT is a specific PET tracer for NB, but the C-11 label that requires an on-site cyclotron production and the high physiologic uptake in the liver and kidneys limit its use. I-124 MIBG is useful for I-131 MIBG pretherapeutic dosimetry planning. Its use for diagnostic imaging as well as the use of F-18 labeled MIBG analogues is currently experimental. PET/MR imaging is emerging and is likely to become an important tool in the evaluation. It provides metabolic and superior morphological data in one imaging session, expediting the diagnosis and lowering the radiation exposure. Radioactive iodines not only detect residual tissue and metastatic disease but also are used in the treatment of differentiated thyroid cancer. However, these are not well documented in pediatric age group like adult patients. Use of radioactivity in pediatric population is very important and strictly controlled because of the possibility of secondary malignities; therefore, management of oncological cases requires detailed literature knowledge. This article aims to review the literature on the use of radionuclide imaging and therapy in pediatric population with thyroid cancer, sarcomas, lymphoma, and NB.
Collapse
Affiliation(s)
- Pınar Özgen Kiratli
- Department of Nuclear Medicine, Hacettepe University Medical Center, Ankara, Turkey.
| | - Murat Tuncel
- Department of Nuclear Medicine, Hacettepe University Medical Center, Ankara, Turkey
| | - Zvi Bar-Sever
- Department of Nuclear Medicine, Schneider Children's Medical Center, Petah Tikva, Israel
| |
Collapse
|
34
|
Risk Stratification of Pediatric Patients With Neuroblastoma Using Volumetric Parameters of 18F-FDG and 18F-DOPA PET/CT. Clin Nucl Med 2017; 42:e142-e148. [PMID: 28072621 DOI: 10.1097/rlu.0000000000001529] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE This study determined the prognostic value of volumetric parameters derived from pretreatment F-FDG and F-DOPA PET/CT of neuroblastoma and their correlation with clinical and histopathologic features. PATIENTS AND METHODS A total of 25 children with neuroblastoma underwent pretreatment F-FDG and F-DOPA PET/CT within 4 weeks. The SUVmax of primary tumors on F-FDG and F-DOPA PET were recorded as SUVFDG and SUVDOPA, respectively. For volumetric parameters of primary tumors, 40% of SUVmax was used to generate volume of interest. If the 40% of SUVmax was below 2.5, an SUV threshold of 2.5 was used instead. Metabolic tumor volume (MTV), total lesion glycolysis (TLG), dopaminergic tumor volume (DTV), and total lesion F-DOPA activity (TLDA) were recorded as F-FDG and F-DOPA volumetric parameters. All indices were compared between groups distinguished by survival status and clinical features, including bone marrow involvement, lymph node metastasis, amplification of the MYCN oncogene, invasive features on anatomic images, and risk categories. The Kaplan-Meier method and log-rank test were used to compare the survival curves between groups. RESULTS The median follow-up period was 28.2 months. Nonsurvivors (20%) tended to have lower SUVDOPA, DTV, and TLDA (P ≤ 0.05), and higher SUVFDG, MTV, and TLG (all P < 0.05). Lower F-DOPA uptake is associated with bone marrow and lymph node metastases (all P < 0.05). Higher F-FDG uptake is associated with MYCN amplification (all P < 0.05) and anatomic invasive features of tumors such as vascular encasement or adjacent organ invasion (TLG, P = 0.05). Only volumetric indices (DTV, TLDA, MTV, and TLG) significantly differed among risk groups (all P < 0.05). CONCLUSIONS Pretherapeutic F-DOPA and F-FDG PET provided complementary information, and both can be served for risk stratification. Volumetric indices of F-DOPA and F-FDG PET correlate more highly with risk grouping.
Collapse
|
35
|
Gaze MN. Semi-quantitative scoring of skeletal metastases by 123I-mIBG scintigraphy in high-risk neuroblastoma. Eur J Nucl Med Mol Imaging 2017; 44:1251-1253. [PMID: 28258443 DOI: 10.1007/s00259-017-3660-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK.
| |
Collapse
|
36
|
Diagnostic FDG and FDOPA positron emission tomography scans distinguish the genomic type and treatment outcome of neuroblastoma. Oncotarget 2017; 7:18774-86. [PMID: 26959748 PMCID: PMC4951328 DOI: 10.18632/oncotarget.7933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous childhood cancer that requires multiple imaging modalities for accurate staging and surveillances. This study aims to investigate the utility of positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) and 18F-fluoro-dihydroxyphenylalanine (FDOPA) in determining the prognosis of NB. During 2007–2014, forty-two NB patients (male:female, 28:14; median age, 2.0 years) undergoing paired FDG and FDOPA PET scans at diagnosis were evaluated for the maximum standardized uptake value (SUVmax) of FDG or FDOPA by the primary tumor. Patients with older age, advanced stages, or MYCN amplification showed higher FDG and lower FDOPA SUVmax (all P < 0.02). Receiver operating characteristics analysis identified FDG SUVmax≥ 3.31 and FDOPA SUVmax < 4.12 as an ultra-high-risk feature (PET-UHR) that distinguished the most unfavorable genomic types, i.e. segmental chromosomal alterations and/or MYCN amplification, at a sensitivity of 81.3% (54.4%–96.0%) and a specificity of 93.3% (68.1%–99.8%). Considering with age, stage, MYCN status, and anatomical image-defined risk factor, PET-UHR was an independent predictor of inferior event-free survival (multivariate hazard ratio, 4.9 [1.9–30.1]; P = 0.012). Meanwhile, the ratio between FDG and FDOPA SUVmax (G:D) correlated positively with HK2 (Spearman's ρ = 0.86, P < 0.0001) and negatively with DDC (ρ = −0.58, P = 0.02) gene expression levels, which might suggest higher glycolytic activity and less catecholaminergic differentiation in NB tumors taking up higher FDG and lower FDOPA. In conclusion, the intensity of FDG and FDOPA uptake on diagnostic PET scans may predict the tumor behavior and complement the current risk stratification systems of NB.
Collapse
|
37
|
Abstract
Neuroblastoma is an embryonic tumor of the peripheral sympathetic nervous system, and is metastatic or otherwise high risk for relapse in nearly 50% of cases, with a long-term survival of <40%. Therefore, exact staging with radiological and nuclear medicine imaging methods is crucial for finding the adequate therapeutic choice. The tumor cells express the norepinephrine transporter, which makes metaiodobenzylguanidine (MIBG), an analogue of norepinephrine, an ideal tumor-specific agent for imaging. On the contrary, MIBG imaging has several disadvantages such as limited spatial resolution, limited sensitivity in small lesions, need for two or even more acquisition sessions, and a delay between the start of the examination and result. Most of these limitations can be overcome with positron emission tomography (PET) using different radiotracers. Furthermore, for operative or biopsy planning, a combination with morphological imaging methods is indispensable. This article would discuss the therapeutic strategy for primary and follow-up diagnosis in neuroblastoma using MIBG scintigraphy and different new PET tracers as well as multimodality imaging.
Collapse
Affiliation(s)
- Thomas Pfluger
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | |
Collapse
|
38
|
Breton M, Jehanno N, Lebon V, Alberini J, Wartski M. Imagerie fonctionnelle et métabolique du neuroblastome en 2016. MÉDECINE NUCLÉAIRE 2016; 40:349-363. [DOI: 10.1016/j.mednuc.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Ability of (18)F-DOPA PET/CT and fused (18)F-DOPA PET/MRI to assess striatal involvement in paediatric glioma. Eur J Nucl Med Mol Imaging 2016; 43:1664-72. [PMID: 26911489 DOI: 10.1007/s00259-016-3333-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/07/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To assess the diagnostic performance of (18)F-DOPA PET/CT and fused (18)F-DOPA PET/MRI in detecting striatal involvement in children with gliomas. METHODS This retrospective study included 28 paediatric patients referred to our institution for the presence of primary, residual or recurrent glioma (12 boys, 16 girls; mean age 10.7 years) and investigated with (18)F-DOPA PET/CT and brain MRI. Fused (18)F-DOPA PET/MR images were obtained and compared with PET/CT and MRI images. Accuracy, sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) for striatal involvement were calculated for each diagnostic tool. Univariate and multivariate logistic analyses were applied to evaluate the associations between (18)F-DOPA PET/CT and fused (18)F-DOPA PET/MRI diagnostic results and tumour uptake outside the striatum, grade, dimension and site of striatal involvement (ventral and/or dorsal). RESULTS Accuracy, sensitivity, specificity, PPV, and NPV were 100 % for MRI, 93 %, 89 %, 100 %, 100 % and 82 % for (18)F-DOPA PET/MRI, and 75 %, 74 %, 78 %, 88 % and 58 % for (18)F-DOPA PET/CT, respectively. (18)F-DOPA PET/MRI showed a trend towards higher accuracy compared with (18)F-DOPA PET/CT (p = 0.06). MRI showed significantly higher accuracy compared with (18)F-DOPA PET/CT (p = 0.01), but there was no significant difference between MRI and (18)F-DOPA PET/MRI. Both univariate and multivariate logistic analyses showed a significant association (OR 8.0 and 7.7, respectively) between the tumour-to-normal striatal uptake (T/S) ratio and the diagnostic ability of (18)F-DOPA PET/CT (p = 0.03). A strong significant association was also found between involvement of the dorsal striatum and the (18)F-DOPA PET/CT results (p = 0.001), with a perfect prediction of involvement of the dorsal striatum by (18)F-DOPA PET/MRI. CONCLUSION Physiological striatal (18)F-DOPA uptake does not appear to be a main limitation in the evaluation of basal ganglia involvement.(18)F-DOPA PET/CT correctly detected involvement of the dorsal striatum in lesions with a T/S ratio >1, but appeared to be less suitable for evaluation of the ventral striatum. The use of fused (18)F-DOPA PET/MRI further improves the accuracy and is essential for evaluation of the ventral striatum.
Collapse
|
40
|
|
41
|
Piccardo A, Morana G, Massollo M, Pescetto M, Conte M, Garaventa A. Brain Metastasis from Neuroblastoma Depicted by (18)F-DOPA PET/CT. Nucl Med Mol Imaging 2015; 49:241-2. [PMID: 26279699 DOI: 10.1007/s13139-015-0322-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Arnoldo Piccardo
- Nuclear Medicine Department, Galliera Hospital, Mura delle Cappuccine 14, 16128 Genoa, Italy
| | - Giovanni Morana
- Neuroradiology Unit, G. Gaslini Children's Hospital, Genoa, Italy
| | - Michela Massollo
- Nuclear Medicine Department, Galliera Hospital, Mura delle Cappuccine 14, 16128 Genoa, Italy
| | - Marco Pescetto
- Anaesthesiology Department, Galliera Hospital, Genoa, Italy
| | - Massimo Conte
- Department of Haematology-Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Alberto Garaventa
- Department of Haematology-Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| |
Collapse
|
42
|
Huang YY, Tzen KY, Liu YL, Chiu CH, Tsai CL, Wen HP, Tang KH, Liu CC, Shiue CY. Impact of residual 18F-fluoride in 18F-FDOPA for the diagnosis of neuroblastoma. Ann Nucl Med 2015; 29:489-98. [DOI: 10.1007/s12149-015-0970-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 01/11/2023]
|
43
|
Affiliation(s)
- Anna-Liisa Brownell
- Experimental PET Laboratory, Athinoula A Martinos Biomedical Imaging Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA,
| |
Collapse
|