1
|
Kelleher AC, Richardson B, Kumar Banka V, Kazior A, Tan C, Chan S, Khastgir R, Hu H, Youss Z, Mishkit O, Ding YS. Feasibility of F-18 radiolabeled brain-penetrable bi-specific antibody radioligands for in vivo PET imaging of tauopathy. RSC Med Chem 2025:d4md00866a. [PMID: 40008191 PMCID: PMC11848619 DOI: 10.1039/d4md00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
PET imaging offers promise for earlier detection and prognostication of Alzheimer's disease. Recently, antibody-based constructs that penetrate the CNS via the transferrin receptor (TfR) have improved tau-selectivity, something that currently limits small molecule tau PET radiotracers. However, it remains unclear if the slow pharmacokinetics of these constructs (MW >50 kDa) limit target binding detection within the time window available for an F-18 based radiotracer. We synthesized three radio-probes by conjugating [18F]SFB with individual bi-specific antibody constructs: 1) a full-size IgG tau antibody conjugated with a TfR fragment (TAUb), 2) a tau-scFv bispecific antibody (TAUs), and 3) an Aβ-scFv bispecific antibody (Aβs). We scanned a series of sex- and age-matched wild-type (WT) and transgenic mice with tauopathy (PS19). Each paired study consisted of three sets of PET/CT scans: an initial low dose dynamic scan followed by two static scans at 8 h and 12 h after injection of a high dose of the same probe. For TAUs probes, the whole brain uptake was higher in PS19 mice (0.0684 ± 0.0273% ID cc-1, n = 5) compared to WT (0.0513 ± 0.0197% ID cc-1, n = 4) though the difference did not reach statistical significance (p = 0.56). Regional quantification analysis provides supporting evidence that TAUs displayed higher specific binding over Aβs in brain regions of PS19 mice. There was net accumulation of all three probes between 8 h and 12 h, suggesting that F-18 radiolabeled bi-specific antibody constructs may not adequately quantitate deposition of tau aggregates within the available time window for F-18, limited by slow pharmacokinetics and lack of a suitable reference region.
Collapse
Affiliation(s)
- Andrew C Kelleher
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | | | - Vinay Kumar Banka
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Alex Kazior
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Cathy Tan
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Sabrina Chan
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Rumaish Khastgir
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Hao Hu
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Zakia Youss
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Orin Mishkit
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Yu-Shin Ding
- Departments of Radiology, NYU Grossman School of Medicine New York USA
- Departments of Psychiatry, NYU Grossman School of Medicine New York USA
| |
Collapse
|
2
|
Mohr P, van Sluis J, Lub-de Hooge MN, Lammertsma AA, Brouwers AH, Tsoumpas C. Advances and challenges in immunoPET methodology. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1360710. [PMID: 39355220 PMCID: PMC11440922 DOI: 10.3389/fnume.2024.1360710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 10/03/2024]
Abstract
Immuno-positron emission tomography (immunoPET) enables imaging of specific targets that play a role in targeted therapy and immunotherapy, such as antigens on cell membranes, targets in the disease microenvironment, or immune cells. The most common immunoPET applications use a monoclonal antibody labeled with a relatively long-lived positron emitter such as 89Zr (T 1/2 = 78.4 h), but smaller antibody-based constructs labeled with various other positron emitting radionuclides are also being investigated. This molecular imaging technique can thus guide the development of new drugs and may have a pivotal role in selecting patients for a particular therapy. In early phase immunoPET trials, multiple imaging time points are used to examine the time-dependent biodistribution and to determine the optimal imaging time point, which may be several days after tracer injection due to the slow kinetics of larger molecules. Once this has been established, usually only one static scan is performed and semi-quantitative values are reported. However, total PET uptake of a tracer is the sum of specific and nonspecific uptake. In addition, uptake may be affected by other factors such as perfusion, pre-/co-administration of the unlabeled molecule, and the treatment schedule. This article reviews imaging methodologies used in immunoPET studies and is divided into two parts. The first part summarizes the vast majority of clinical immunoPET studies applying semi-quantitative methodologies. The second part focuses on a handful of studies applying pharmacokinetic models and includes preclinical and simulation studies. Finally, the potential and challenges of immunoPET quantification methodologies are discussed within the context of the recent technological advancements provided by long axial field of view PET/CT scanners.
Collapse
Affiliation(s)
- Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Abstract
The translation of laboratory science into effective clinical cancer therapy is gaining momentum more rapidly than any other time in history. Understanding cancer cell-surface receptors, cancer cell growth, and cancer metabolic pathways has led to many promising molecular-targeted therapies and cancer gene therapies. These same targets may also be exploited for optical imaging of cancer. Theoretically, any antibody or small molecule targeting cancer can be labeled with bioluminescent or fluorescent agents. In the laboratory setting, fluorescence imaging (FI) and bioluminescence imaging (BLI) have long been used in preclinical research for quantification of tumor bulk, assessment of targeting of tumors by experimental agents, and discrimination between primary and secondary effects of cancer treatments. Many of these laboratory techniques are now moving to clinical trials. Imageable engineered fluorescent probes that are highly specific for cancer are being advanced. This will allow for the identification of tumors for staging, tracking novel therapeutic agents, assisting in adequate surgical resection, and allowing image-guided biopsies. The critical components of FI include (1) a fluorescent protein that is biologically safe, stable, and distinctly visible with a high target to background ratio and (2) highly sensitive optical detectors. This review will summarize the most promising optical imaging agents and detection devices for cancer clinical research and clinical care.
Collapse
|
5
|
Murer P, Plüss L, Neri D. A novel human monoclonal antibody specific to the A33 glycoprotein recognizes colorectal cancer and inhibits metastasis. MAbs 2021; 12:1714371. [PMID: 31928310 PMCID: PMC6999842 DOI: 10.1080/19420862.2020.1714371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer represents the second most common cause of cancer-related death. The human A33 transmembrane glycoprotein is a validated tumor-associated antigen, expressed in 95% of primary and metastatic colorectal cancers. Using phage display technology, we generated a human monoclonal antibody (termed A2) specific to human A33 and we compared its epitope and performance to those of previously described clinical-stage anti-human A33 antibodies. All antibodies recognized a similar immunodominant epitope, located in the V-domain of A33, as revealed by SPOT analysis. The A2 antibody homogenously stained samples of poorly, moderately, and well differentiated colon adenocarcinomas. All antibodies also exhibited an intense staining of healthy human colon sections. The A2 antibody, reformatted in murine IgG2a format, preferentially localized to A33-transfected CT26 murine colon adenocarcinomas in immunocompetent mice with a homogenous distribution within the tumor mass, while other antibodies exhibited a patchy uptake in neoplastic lesions. A2 efficiently induced killing of A33-expressing cells through antibody-dependent cell-mediated cytotoxicity in vitro and was able to inhibit the growth of A33-positive murine CT26 and C51 lung metastases in vivo. Anti-A33 antibodies may thus represent useful vehicles for the selective delivery of bioactive payloads to colorectal cancer, or may be used in IgG format in a setting of minimal residual disease.
Collapse
Affiliation(s)
- Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Louis Plüss
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| |
Collapse
|
6
|
Kumar K, Ghosh A. Radiochemistry, Production Processes, Labeling Methods, and ImmunoPET Imaging Pharmaceuticals of Iodine-124. Molecules 2021; 26:E414. [PMID: 33466827 PMCID: PMC7830191 DOI: 10.3390/molecules26020414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
Target-specific biomolecules, monoclonal antibodies (mAb), proteins, and protein fragments are known to have high specificity and affinity for receptors associated with tumors and other pathological conditions. However, the large biomolecules have relatively intermediate to long circulation half-lives (>day) and tumor localization times. Combining superior target specificity of mAbs and high sensitivity and resolution of the PET (Positron Emission Tomography) imaging technique has created a paradigm-shifting imaging modality, ImmunoPET. In addition to metallic PET radionuclides, 124I is an attractive radionuclide for radiolabeling of mAbs as potential immunoPET imaging pharmaceuticals due to its physical properties (decay characteristics and half-life), easy and routine production by cyclotrons, and well-established methodologies for radioiodination. The objective of this report is to provide a comprehensive review of the physical properties of iodine and iodine radionuclides, production processes of 124I, various 124I-labeling methodologies for large biomolecules, mAbs, and the development of 124I-labeled immunoPET imaging pharmaceuticals for various cancer targets in preclinical and clinical environments. A summary of several production processes, including 123Te(d,n)124I, 124Te(d,2n)124I, 121Sb(α,n)124I, 123Sb(α,3n)124I, 123Sb(3He,2n)124I, natSb(α, xn)124I, natSb(3He,n)124I reactions, a detailed overview of the 124Te(p,n)124I reaction (including target selection, preparation, processing, and recovery of 124I), and a fully automated process that can be scaled up for GMP (Good Manufacturing Practices) production of large quantities of 124I is provided. Direct, using inorganic and organic oxidizing agents and enzyme catalysis, and indirect, using prosthetic groups, 124I-labeling techniques have been discussed. Significant research has been conducted, in more than the last two decades, in the development of 124I-labeled immunoPET imaging pharmaceuticals for target-specific cancer detection. Details of preclinical and clinical evaluations of the potential 124I-labeled immunoPET imaging pharmaceuticals are described here.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH 43212, USA;
| | | |
Collapse
|
7
|
Katsukura N, Watanabe S, Shirasaki T, Hibiya S, Kano Y, Akahoshi K, Tanabe M, Kirimura S, Akashi T, Kitagawa M, Okamoto R, Watanabe M, Tsuchiya K. Intestinal phenotype is maintained by Atoh1 in the cancer region of intraductal papillary mucinous neoplasm. Cancer Sci 2020; 112:932-944. [PMID: 33275808 PMCID: PMC7894004 DOI: 10.1111/cas.14755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a precancerous lesion of pancreatic cancer. Although there are 4 types of IPMN, among which intestinal-type IPMN is likely to progress into invasive cancer known as colloid carcinoma, no information regarding the involvement of the intestinal phenotype in the carcinogenesis of IPMN exists. The present study was conducted to explore how the intestinal differentiation system is maintained during the tumor progression of intestinal-type IPMN using surgical resection specimens. Results showed that Atoh1, a critical transcriptional factor for intestinal differentiation toward the secretory lineages of intestinal epithelial cells, was expressed in an invasive-grade IPMN. To determine the function of Atoh1 in pancreatic cancer, we generated a pancreatic ductal adenocarcinoma (PDAC) cell line overexpressing Atoh1. In a xenograft model, we successfully induced an IPMN phenotype in PDAC cells via Atoh1 induction. Finally, for the first time, we discovered that GPA33 is expressed in intestinal-type IPMN, thereby suggesting a novel target for cancer therapy. In conclusion, the intestinal differentiation system might be maintained during tumor progression of intestinal-type IPMN. Further analysis of the function of Atoh1 in IPMN might be useful for understanding the molecular mechanism underlying the malignant potential during the tumor progression of IPMN.
Collapse
Affiliation(s)
- Nobuhiro Katsukura
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoaki Shirasaki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Hibiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Precision Cancer Medicine, Graduate School, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Kirimura
- Department of Surgical Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Akashi
- Department of Surgical Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Stem Cell and Regenerative Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Advanced Research Institute, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Ottemann BM, Helmink AJ, Zhang W, Mukadam I, Woldstad C, Hilaire JR, Liu Y, McMillan JM, Edagwa BJ, Mosley RL, Garrison JC, Kevadiya BD, Gendelman HE. Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities. Biomaterials 2018; 185:174-193. [PMID: 30245386 PMCID: PMC6556898 DOI: 10.1016/j.biomaterials.2018.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Abstract
Antiretroviral therapy (ART) has changed the outcome of human immunodeficiency virus type one (HIV-1) infection from certain death to a life free of disease co-morbidities. However, infected people must remain on life-long daily ART. ART reduces but fails to eliminate the viral reservoir. In order to improve upon current treatment regimens, our laboratory created long acting slow effective release (LASER) ART nanoformulated prodrugs from native medicines. LASER ART enables antiretroviral drugs (ARVs) to better reach target sites of HIV-1 infection while, at the same time, improve ART's half-life and potency. However, novel ARV design has been slowed by prolonged pharmacokinetic testing requirements. To such ends, tri-modal theranostic nanoparticles were created with single-photon emission computed tomography (SPECT/CT), magnetic resonance imaging (MRI) and fluorescence capabilities to predict LASER ART biodistribution. The created theranostic ARV probes were then employed to monitor drug tissue distribution and potency. Intrinsically 111Indium (111In) radiolabeled, europium doped cobalt-ferrite particles and rilpivirine were encased in a polycaprolactone core surrounded by a lipid shell (111InEuCF-RPV). Particle cell and tissue distribution, and antiretroviral activities were sustained in macrophage tissue depots. 111InEuCF-PCL/RPV particles injected into mice demonstrated co-registration of MRI and SPECT/CT tissue signals with RPV and cobalt. Cell and animal particle biodistribution paralleled ARV activities. We posit that particle selection can predict RPV distribution and potency facilitated by multifunctional theranostic nanoparticles.
Collapse
Affiliation(s)
- Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Austin J Helmink
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - James R Hilaire
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Burvenich IJG, Parakh S, Parslow AC, Lee ST, Gan HK, Scott AM. Receptor Occupancy Imaging Studies in Oncology Drug Development. AAPS JOURNAL 2018. [DOI: 10.1208/s12248-018-0203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Carrasquillo JA, O'Donoghue JA, Beylergil V, Ruan S, Pandit-Taskar N, Larson SM, Smith-Jones PM, Lyashchenko SK, Ohishi N, Ohtomo T, Abou-Alfa GK. I-124 codrituzumab imaging and biodistribution in patients with hepatocellular carcinoma. EJNMMI Res 2018; 8:20. [PMID: 29508107 PMCID: PMC5838028 DOI: 10.1186/s13550-018-0374-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/22/2018] [Indexed: 01/03/2023] Open
Abstract
Background I-124 codrituzumab (aka GC33), an antibody directed at Glypican 3, was evaluated in patients with hepatocellular carcinoma (HCC). Fourteen patients with HCC underwent baseline imaging with I-124 codrituzumab (~ 185 MBq, 10 mg). Seven of these patients undergoing sorafenib/immunotherapy with 2.5 or 5 mg/kg of cold codrituzumab had repeat imaging, with co-infusion of I-124 codrituzumab, as part of their immunotherapy treatment. Three patients who progressed while on sorafenib/immunotherapy were re-imaged after a 4-week washout period to assess for the presence of antigen. Serial positron emission tomography (PET) imaging and pharmacokinetics were performed following I-124 codrituzumab. An ELISA assay was used to determine “cold” codrituzumab serum pharmacokinetics and compare it to that of I-124 codrituzumab. Correlation of imaging results was performed with IHC. Short-term safety assessment was also evaluated. Results Thirteen patients had tumor localization on baseline I-124 codrituzumab; heterogeneity in tumor uptake was noted. In three patients undergoing repeat imaging while on immunotherapy/sorafenib, evidence of decreased I-124 codrituzumab uptake was noted. All three patients who underwent imaging after progression while on immunotherapy continued to have I-124 codrituzumab tumor uptake. Pharmacokinetics of I-124 codrituzumab was similar to that of other intact IgG. No significant adverse events were observed related to the I-124 codrituzumab. Conclusions I-124 codrituzumab detected tumor localization in most patients with HCC. Pharmacokinetics was similar to that of other intact iodinated humanized IgG. No visible cross-reactivity with normal organs was observed. Electronic supplementary material The online version of this article (10.1186/s13550-018-0374-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge A Carrasquillo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Volkan Beylergil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Shutian Ruan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Peter M Smith-Jones
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Psychiatry and Behavioral Science, Stony Brook University Hospital, 101 Nicolls Road, Stony Brook, NY, 11794, USA.,Department of Radiology, Stony Brook University Hospital, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Norihisa Ohishi
- Chugai Pharmaceutical Co., Ltd., 1-1 Nihonbashi-Muromachi 2-Chome Chuo-ku, Tokyo, 103-8324, Japan
| | - Toshihiko Ohtomo
- Chugai Pharmaceutical Co., Ltd., 1-1 Nihonbashi-Muromachi 2-Chome Chuo-ku, Tokyo, 103-8324, Japan
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
11
|
Radioimmunotherapy in Oncology. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Fung EK, Cheal SM, Fareedy SB, Punzalan B, Beylergil V, Amir J, Chalasani S, Weber WA, Spratt DE, Veach DR, Bander NH, Larson SM, Zanzonico PB, Osborne JR. Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling. EJNMMI Res 2016; 6:7. [PMID: 26801327 PMCID: PMC4723373 DOI: 10.1186/s13550-016-0164-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
Background We applied a non-linear immunokinetic model to quantitatively compare absolute antibody uptake and turnover in subcutaneous LNCaP human prostate cancer (PCa) xenografts of two radiolabeled forms of the humanized anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (124I-J591 and 89Zr-J591). Using the model, we examined the impact of dose on the tumor and plasma positron emission tomography (PET)-derived time-activity curves. We also sought to predict the optimal targeting index (ratio of integrated-tumor-to-integrated-plasma activity concentrations) for radioimmunotherapy. Methods The equilibrium rates of antibody internalization and turnover in the tumors were derived from PET images up to 96 h post-injection using compartmental modeling with a non-linear transfer rate. In addition, we serially imaged groups of LNCaP tumor-bearing mice injected with 89Zr-J591 antibody doses ranging from antigen subsaturating to saturating to examine the suitability of using a non-linear approach and derived the time-integrated concentration (in μM∙hours) of administered tracer in tumor as a function of the administered dose of antibody. Results The comparison of 124I-J591 and 89Zr-J591 yielded similar model-derived values of the total antigen concentration and internalization rate. The association equilibrium constant (ka) was twofold higher for 124I, but there was a ~tenfold greater tumoral efflux rate of 124I from tumor compared to that of 89Zr. Plots of surface-bound and internalized radiotracers indicate similar behavior up to 24 h p.i. for both 124I-J591 and 89Zr-J591, with the effect of differential clearance rates becoming apparent after about 35 h p.i. Estimates of J591/PSMA complex turnover were 3.9–90.5 × 1012 (for doses from 60 to 240 μg) molecules per hour per gram of tumor (20 % of receptors internalized per hour). Conclusions Using quantitative compartmental model methods, surface binding and internalization rates were shown to be similar for both 124I-J591 and 89Zr-J591 forms, as expected. The large difference in clearance rates of the radioactivity from the tumor is likely due to differential trapping of residualizing zirconium versus non-residualizing iodine. Our non-linear model was found to be superior to a conventional linear model. This finding and the calculated activity persistence time in tumor have important implications for radioimmunotherapy and other antibody-based therapies in patients.
Collapse
Affiliation(s)
- Edward K Fung
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Sarah M Cheal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Shoaib B Fareedy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Blesida Punzalan
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Volkan Beylergil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Jawaria Amir
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Sandhya Chalasani
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Daniel E Spratt
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Neil H Bander
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Cheal SM, Xu H, Guo HF, Lee SG, Punzalan B, Chalasani S, Fung EK, Jungbluth A, Zanzonico PB, Carrasquillo JA, O'Donoghue J, Smith-Jones PM, Wittrup KD, Cheung NKV, Larson SM. Theranostic pretargeted radioimmunotherapy of colorectal cancer xenografts in mice using picomolar affinity ⁸⁶Y- or ¹⁷⁷Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific immunoconjugates. Eur J Nucl Med Mol Imaging 2015; 43:925-937. [PMID: 26596724 DOI: 10.1007/s00259-015-3254-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE GPA33 is a colorectal cancer (CRC) antigen with unique retention properties after huA33-mediated tumor targeting. We tested a pretargeted radioimmunotherapy (PRIT) approach for CRC using a tetravalent bispecific antibody with dual specificity for GPA33 tumor antigen and DOTA-Bn-(radiolanthanide metal) complex. METHODS PRIT was optimized in vivo by titrating sequential intravenous doses of huA33-C825, the dextran-based clearing agent, and the C825 haptens (177)Lu-or (86)Y-DOTA-Bn in mice bearing the SW1222 subcutaneous (s.c.) CRC xenograft model. RESULTS Using optimized PRIT, therapeutic indices (TIs) for tumor radiation-absorbed dose of 73 (tumor/blood) and 12 (tumor/kidney) were achieved. Estimated absorbed doses (cGy/MBq) to tumor, blood, liver, spleen, and kidney for single-cycle PRIT were 65.8, 0.9 (TI 73), 6.3 (TI 10), 6.6 (TI 10), and 5.3 (TI 12), respectively. Two cycles of PRIT (66.6 or 111 MBq (177)Lu-DOTA-Bn) were safe and effective, with a complete response of established s.c. tumors (100 - 700 mm(3)) in nine of nine mice, with two mice alive without recurrence at >140 days. Tumor log kill in this model was estimated to be 2.1 - 3.0 based on time to 500-mm(3) tumor recurrence. In addition, PRIT dosimetry/diagnosis was performed by PET imaging of the positron-emitting DOTA hapten (86)Y-DOTA-Bn. CONCLUSION We have developed anti-GPA33 PRIT as a triple-step theranostic strategy for preclinical detection, dosimetry, and safe targeted radiotherapy of established human colorectal mouse xenografts.
Collapse
Affiliation(s)
- Sarah M Cheal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 415 E. 68th Street, Z-2064, New York, NY, 10065, USA
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sang-Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 415 E. 68th Street, Z-2064, New York, NY, 10065, USA
| | - Blesida Punzalan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 415 E. 68th Street, Z-2064, New York, NY, 10065, USA
| | - Sandhya Chalasani
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward K Fung
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 415 E. 68th Street, Z-2064, New York, NY, 10065, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge A Carrasquillo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter M Smith-Jones
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY, USA.,Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nai-Kong V Cheung
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 415 E. 68th Street, Z-2064, New York, NY, 10065, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 415 E. 68th Street, Z-2064, New York, NY, 10065, USA.
| |
Collapse
|