1
|
Giammarile F, Paez D, Zimmermann R, Cutler CS, Jalilian A, Korde A, Knoll P, Ayati N, Lewis JS, Lapi SE, Delgado Bolton RC, Kunikowska J, Estrada Lobato E, Urbain JL, Holmberg O, Abdel-Wahab M, Scott AM. Production and regulatory issues for theranostics. Lancet Oncol 2024; 25:e260-e269. [PMID: 38821100 PMCID: PMC11325260 DOI: 10.1016/s1470-2045(24)00041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 06/02/2024]
Abstract
Theranostics has become a major area of innovation and progress in cancer care over the last decade. In view of the introduction of approved therapeutics in neuroendocrine tumours and prostate cancer in the last 10 years, the ability to provide access to these treatments has emerged as a key factor in ensuring global benefits from this cancer therapy approach. In this Series paper we explore the issues that affect access to and availability of theranostic radiopharmaceuticals, including supply and regulatory issues that might affect the availability of theranostic treatments for patients with cancer.
Collapse
Affiliation(s)
- Francesco Giammarile
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Diana Paez
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Richard Zimmermann
- Chrysalium Consulting, Lalaye, France; MEDraysintell, Louvain la Neuve, Belgium; Oncidium Foundation, Auderghem, Belgium
| | - Cathy S Cutler
- Isotope Research and Production Department, Brookhaven National Laboratory Upton, New York City, NY, USA
| | - Amirreza Jalilian
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Aruna Korde
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Peter Knoll
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Nayyereh Ayati
- Centre for Health Economics, Monash Business School, Monash University, Melbourne, VIC, Australia
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, Upton, NY, USA; Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York City, NY, USA
| | - Suzanne E Lapi
- Departments of Radiology and Chemistry, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja, Logroño, Spain; Servico Cántabro de Salud, Santander, Spain
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Enrique Estrada Lobato
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | | | - Ola Holmberg
- Department of Nuclear Science and Applications, and Division of Radiation, Transport and Waste Safety, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - May Abdel-Wahab
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Department of Molecular Imaging and Therapy, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Giammarile F, Knoll P, Kunikowska J, Paez D, Estrada Lobato E, Mikhail-Lette M, Wahl R, Holmberg O, Abdel-Wahab M, Scott AM, Delgado Bolton RC. Guardians of precision: advancing radiation protection, safety, and quality systems in nuclear medicine. Eur J Nucl Med Mol Imaging 2024; 51:1498-1505. [PMID: 38319322 PMCID: PMC11043166 DOI: 10.1007/s00259-024-06633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND In the rapidly evolving field of nuclear medicine, the paramount importance of radiation protection, safety, and quality systems cannot be overstated. This document provides a comprehensive analysis of the intricate regulatory frameworks and guidelines, meticulously crafted and updated by national and international regulatory bodies to ensure the utmost safety and efficiency in the practice of nuclear medicine. METHODS We explore the dynamic nature of these regulations, emphasizing their adaptability in accommodating technological advancements and the integration of nuclear medicine with other medical and scientific disciplines. RESULTS Audits, both internal and external, are spotlighted for their pivotal role in assessing and ensuring compliance with established standards, promoting a culture of continuous improvement and excellence. We delve into the significant contributions of entities like the International Atomic Energy Agency (IAEA) and relevant professional societies in offering universally applicable guidelines that amalgamate the latest in scientific research, ethical considerations, and practical applicability. CONCLUSIONS The document underscores the essence of international collaborations in pooling expertise, resources, and insights, fostering a global community of practice where knowledge and innovations are shared. Readers will gain an in-depth understanding of the practical applications, challenges, and opportunities presented by these regulatory frameworks and audit processes. The ultimate goal is to inspire and inform ongoing efforts to enhance safety, quality, and effectiveness in nuclear medicine globally.
Collapse
Affiliation(s)
- Francesco Giammarile
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria.
| | - Peter Knoll
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Diana Paez
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Enrique Estrada Lobato
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Miriam Mikhail-Lette
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Richard Wahl
- Washington University in St Louis School of Medicine, St. Louis, USA
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ola Holmberg
- Department of Nuclear Safety and Security, Radiation Safety and Monitoring Section, International Atomic Energy Agency, Vienna, Austria
| | - May Abdel-Wahab
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), La Rioja, Logroño, Spain
- Servicio Cántabro de Salud, Santander, Spain
| |
Collapse
|
3
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Dieudonné A, Bailly C, Cachin F, Edet-Sanson A, Kraeber-Bodéré F, Hapdey S, Merlin C, Robin P, Salaun PY, Schwartz P, Tonnelet D, Vera P, Courbon F, Carlier T. Dosimetry for targeted radionuclide therapy in routine clinical practice: experts advice vs. clinical evidence. Eur J Nucl Med Mol Imaging 2024; 51:947-950. [PMID: 38110711 PMCID: PMC10881593 DOI: 10.1007/s00259-023-06568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Affiliation(s)
- Arnaud Dieudonné
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France.
- Service de Médecine Nucléaire, Centre Henri Becquerel, 76000, Rouen, France.
| | - Clément Bailly
- Department of Nuclear Medicine, University Hospital, Nantes, France
| | - Florent Cachin
- Department of Nuclear Medicine, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | - Agathe Edet-Sanson
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | | | - Sébastien Hapdey
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Charles Merlin
- Department of Nuclear Medicine, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | - Philippe Robin
- Department of Nuclear Medicine, University Hospital, Brest, France
| | | | - Paul Schwartz
- Department of Nuclear Medicine, University Hospital, Bordeaux, France
| | - David Tonnelet
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Pierre Vera
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Frédéric Courbon
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Thomas Carlier
- Department of Nuclear Medicine, University Hospital, Nantes, France
| |
Collapse
|
5
|
Cicone F, Sjögreen Gleisner K, Sarnelli A, Indovina L, Gear J, Gnesin S, Kraeber-Bodéré F, Bischof Delaloye A, Valentini V, Cremonesi M. The contest between internal and external-beam dosimetry: The Zeno's paradox of Achilles and the tortoise. Phys Med 2024; 117:103188. [PMID: 38042710 DOI: 10.1016/j.ejmp.2023.103188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023] Open
Abstract
Radionuclide therapy, also called molecular radiotherapy (MRT), has come of age, with several novel radiopharmaceuticals being approved for clinical use or under development in the last decade. External beam radiotherapy (EBRT) is a well-established treatment modality, with about half of all oncologic patients expected to receive at least one external radiation treatment over their disease course. The efficacy and the toxicity of both types of treatment rely on the interaction of radiation with biological tissues. Dosimetry played a fundamental role in the scientific and technological evolution of EBRT, and absorbed doses to the target and to the organs at risk are calculated on a routine basis. In contrast, in MRT the usefulness of internal dosimetry has long been questioned, and a structured path to include absorbed dose calculation is missing. However, following a similar route of development as EBRT, MRT treatments could probably be optimized in a significant proportion of patients, likely based on dosimetry and radiobiology. In the present paper we describe the differences and the similarities between internal and external-beam dosimetry in the context of radiation treatments, and we retrace the main stages of their development over the last decades.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy; Nuclear Medicine Unit, "Mater Domini" University Hospital, Catanzaro, Italy.
| | | | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luca Indovina
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden NHSFT & Institute of Cancer Research, Sutton, UK
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland; University of Lausanne, Lausanne, Switzerland
| | - Françoise Kraeber-Bodéré
- Nantes Université, Université Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Médecine Nucléaire, F-44000 Nantes, France
| | | | - Vincenzo Valentini
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
6
|
Gustafsson J, Taprogge J. Future trends for patient-specific dosimetry methodology in molecular radiotherapy. Phys Med 2023; 115:103165. [PMID: 37880071 DOI: 10.1016/j.ejmp.2023.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Molecular radiotherapy is rapidly expanding, and new radiotherapeutics are emerging. The majority of treatments is still performed using empirical fixed activities and not tailored for individual patients. Molecular radiotherapy dosimetry is often seen as a promising candidate that would allow personalisation of treatments as outcome should ultimately depend on the absorbed doses delivered and not the activities administered. The field of molecular radiotherapy dosimetry has made considerable progress towards the feasibility of routine clinical dosimetry with reasonably accurate absorbed-dose estimates for a range of molecular radiotherapy dosimetry applications. A range of challenges remain with respect to the accurate quantification, assessment of time-integrated activity and absorbed dose estimation. In this review, we summarise a range of technological and methodological advancements, mainly focussed on beta-emitting molecular radiotherapeutics, that aim to improve molecular radiotherapy dosimetry to achieve accurate, reproducible, and streamlined dosimetry. We describe how these new technologies can potentially improve the often time-consuming considered process of dosimetry and provide suggestions as to what further developments might be required.
Collapse
Affiliation(s)
| | - Jan Taprogge
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton SM2 5PT, United Kingdom; The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| |
Collapse
|
7
|
Gear J. Milestones in dosimetry for nuclear medicine therapy. Br J Radiol 2022; 95:20220056. [PMID: 35451857 PMCID: PMC10996314 DOI: 10.1259/bjr.20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022] Open
Abstract
Nuclear Medicine therapy has reached a critical juncture with an unprecedented number of patients being treated and an extensive list of new radiopharmaceuticals under development. Since the early applications of these treatments dosimetry has played a vital role in their development, in both aiding optimisation and enhancing safety and efficacy. To inform the future direction of this field, it is useful to reflect on the scientific and technological advances that have occurred since those early uses. In this review, we explore how dosimetry has evolved over the years and discuss why such initiatives were conceived and the importance of maintaining standards within our practise. Specific milestones and landmark publications are highlighted and a thematic review and significant outcomes during each decade are presented.
Collapse
Affiliation(s)
- Jonathan Gear
- The Joint Department of Physics, The Royal Marsden NHS
Foundation Trust & Institute of Cancer Research,
Sutton, United Kingdom
| |
Collapse
|
8
|
PET imaging of lung and pleural cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Cicone F, Gnesin S, Cremonesi M. Dosimetry of nuclear medicine therapies: current controversies and impact on treatment optimization. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:327-332. [PMID: 34881850 DOI: 10.23736/s1824-4785.21.03418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear medicine therapeutic procedures have considerably expanded over the last few years, and their number is expected to grow exponentially in the future. Internal dosimetry has significantly developed as well, but has not yet been uniformly accepted as a valuable tool for prediction of therapeutic efficacy and toxicity. In this paper, we briefly summarize some of the arguments about the implementation of internal dosimetry in clinical practice. In addition, we provide a few examples of radionuclide anticancer therapies for which internal dosimetry demonstrated a significant impact on treatment optimization and patient outcome.
Collapse
Affiliation(s)
- Francesco Cicone
- PET/RM Unit, Department of Experimental and Clinical Medicine, and Neuroscience Research Center, Magna Graecia University of Catanzaro, Catanzaro, Italy - .,Unit of Nuclear Medicine, Mater Domini University Hospital, Catanzaro, Italy - .,University of Lausanne, Lausanne, Switzerland -
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Marta Cremonesi
- Unit of Radiation Research, Department of Medical Imaging and Radiation Sciences, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
10
|
Gear J, McGowan D, Rojas B, Craig AJ, Smith AL, Scott CJ, Scuffam J, Aldridge M, Tipping J. The internal dosimetry user group position statement on molecular radiotherapy. Br J Radiol 2021; 94:20210547. [PMID: 34433005 PMCID: PMC9328072 DOI: 10.1259/bjr.20210547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Internal Dosimetry User Group (IDUG) is an independent, non-profit group of medical professionals dedicated to the promotion of dosimetry in molecular radiotherapy (www.IDUG.org.uk). The Ionising Radiation (Medical Exposure) Regulations 2017, IR(ME)R, stipulate a requirement for optimisation and verification of molecular radiotherapy treatments, ensuring doses to non-target organs are as low as reasonably practicable. For many molecular radiotherapy treatments currently undertaken within the UK, this requirement is not being fully met. The growth of this field is such that we risk digressing further from IR(ME)R compliance potentially delivering suboptimal therapies that are not in the best interest of our patients. For this purpose, IDUG proposes ten points of action to aid in the successful implementation of this legislation. We urge stakeholders to support these proposals and ensure national provision is sufficient to meet the criteria necessary for compliance, and for the future advancement of molecular radiotherapy within the UK.
Collapse
Affiliation(s)
- Jonathan Gear
- The Internal Dosimetry User Group, England, United Kingdom.,The Joint Department of Physics, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Sutton, United Kingdom
| | - Daniel McGowan
- The Internal Dosimetry User Group, England, United Kingdom.,Radiation Physics and Protection, Oxford University Hospitals NHS Foundation Trust, England, United Kingdom
| | - Bruno Rojas
- The Internal Dosimetry User Group, England, United Kingdom.,The Joint Department of Physics, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Sutton, United Kingdom
| | - Allison J Craig
- The Internal Dosimetry User Group, England, United Kingdom.,The Joint Department of Physics, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Sutton, United Kingdom
| | - April-Louise Smith
- The Internal Dosimetry User Group, England, United Kingdom.,Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catherine J Scott
- The Internal Dosimetry User Group, England, United Kingdom.,Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - James Scuffam
- The Internal Dosimetry User Group, England, United Kingdom.,Nuclear Medicine Physics, The Royal Surrey NHS Foundation Trust, England, United Kingdom
| | - Matthew Aldridge
- The Internal Dosimetry User Group, England, United Kingdom.,Maidstone and Royal Tunbridge Wells NHS Trust, England, United Kingdom
| | - Jill Tipping
- The Internal Dosimetry User Group, England, United Kingdom.,Nuclear Medicine, The Christie NHS Foundation Trust, England, United Kingdom
| |
Collapse
|
11
|
Corroyer-Dulmont A, Jaudet C, Frelin AM, Fantin J, Weyts K, Vallis KA, Falzone N, Sibson NR, Chérel M, Kraeber-Bodéré F, Batalla A, Bardet S, Bernaudin M, Valable S. Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice. Front Oncol 2021; 11:714514. [PMID: 34504791 PMCID: PMC8423367 DOI: 10.3389/fonc.2021.714514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Brain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue. New targeted therapies, for an earlier and/or more specific treatment of the tumor and its microenvironment, are needed. Radioimmunotherapy (RIT), a combination of a radionuclide to a specific antibody, appears to be a promising tool. Inflammation, which is involved in multiple steps, including the early phase, of BM development is attractive as a relevant target for RIT. This review will focus on the (1) early biomarkers of inflammation in BM pertinent for RIT, (2) state of the art studies on RIT for BM, and (3) the importance of dosimetry to RIT in BM. These two last points will be addressed in comparison to the conventional EBRT treatment, particularly with respect to the balance between tumor control and healthy tissue complications. Finally, because new diagnostic imaging techniques show a potential for the detection of BM at an early stage of the disease, we focus particularly on this therapeutic window.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Medical Physics Department, CLCC François Baclesse, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Cyril Jaudet
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Anne-Marie Frelin
- Grand accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - Jade Fantin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Kathleen Weyts
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Katherine A. Vallis
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Nicola R. Sibson
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michel Chérel
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Françoise Kraeber-Bodéré
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Alain Batalla
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Stéphane Bardet
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| |
Collapse
|
12
|
Verburg FA, Nonnekens J, Konijnenberg MW, de Jong M. To go where no one has gone before: the necessity of radiobiology studies for exploration beyond the limits of the "Holy Gray" in radionuclide therapy. Eur J Nucl Med Mol Imaging 2021; 48:2680-2682. [PMID: 33392716 DOI: 10.1007/s00259-020-05147-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Frederik A Verburg
- Departments of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Netherlands.
| | - Julie Nonnekens
- Departments of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Netherlands.,Departments of Molecular Genetics, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Netherlands.,Oncode Institute, Rotterdam, Netherlands
| | - Mark W Konijnenberg
- Departments of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Netherlands.,Department of Medical Imaging, Radboud UMC, Nijmegen, Netherlands
| | - Marion de Jong
- Departments of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Netherlands
| |
Collapse
|
13
|
Estorch Cabrera M. Metabolic therapy and internal dosimetry: A difficult but necessary encounter. Rev Esp Med Nucl Imagen Mol 2021. [DOI: 10.1016/j.remnie.2021.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Estorch Cabrera M. Metabolic therapy and internal dosimetry: A difficult but necessary encounter. Rev Esp Med Nucl Imagen Mol 2021; 40:137-138. [PMID: 33820750 DOI: 10.1016/j.remn.2021.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Wadsley J, Flux G. Molecular Radiotherapy Comes of Age. Clin Oncol (R Coll Radiol) 2021; 33:65-67. [PMID: 33341332 DOI: 10.1016/j.clon.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Affiliation(s)
- J Wadsley
- Weston Park Cancer Centre, Sheffield, UK.
| | - G Flux
- Royal Marsden NHS Foundation Trust, Sutton, UK
| |
Collapse
|
16
|
Bardiès M, Gear JI. Scientific Developments in Imaging and Dosimetry for Molecular Radiotherapy. Clin Oncol (R Coll Radiol) 2020; 33:117-124. [PMID: 33281018 DOI: 10.1016/j.clon.2020.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022]
Abstract
Molecular radiotherapy is a rapidly developing field with new vector and isotope combinations continually added to market. As with any radiotherapy treatment, it is vital that the absorbed dose and toxicity profile are adequately characterised. Methodologies for absorbed dose calculations for radiopharmaceuticals were generally developed to characterise stochastic effects and not suited to calculations on a patient-specific basis. There has been substantial scientific and technological development within the field of molecular radiotherapy dosimetry to answer this challenge. The development of imaging systems and advanced processing techniques enable the acquisition of accurate measurements of radioactivity within the body. Activity assessment combined with dosimetric models and radiation transport algorithms make individualised absorbed dose calculations not only feasible, but commonplace in a variety of commercially available software packages. The development of dosimetric parameters beyond the absorbed dose has also allowed the possibility to characterise the effect of irradiation by including biological parameters that account for radiation absorbed dose rates, gradients and spatial and temporal energy distribution heterogeneities. Molecular radiotherapy is in an exciting time of its development and the application of dosimetry in this field can only have a positive influence on its continued progression.
Collapse
Affiliation(s)
- M Bardiès
- Centre de Recherches en Cancérologie de Toulouse UMR 1037, Toulouse, France; INSERM UMR 1037 Université Toulouse III Paul Sabatier, Toulouse, France
| | - J I Gear
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey, UK.
| |
Collapse
|
17
|
González García F, Peinado Montes M. Dosimetry in therapeutic nuclear medicine: can we do it better? Rev Esp Med Nucl Imagen Mol 2020. [DOI: 10.1016/j.remnie.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
González García F, Peinado Montes M. Dosimetría en medicina nuclear terapéutica: ¿Podemos hacerlo mejor? Rev Esp Med Nucl Imagen Mol 2020; 39:269-272. [DOI: 10.1016/j.remn.2020.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 11/25/2022]
|
19
|
Jafargholi Rangraz E, Tang X, Van Laeken C, Maleux G, Dekervel J, Van Cutsem E, Verslype C, Baete K, Nuyts J, Deroose CM. Quantitative comparison of pre-treatment predictive and post-treatment measured dosimetry for selective internal radiation therapy using cone-beam CT for tumor and liver perfusion territory definition. EJNMMI Res 2020; 10:94. [PMID: 32797332 PMCID: PMC7427681 DOI: 10.1186/s13550-020-00675-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Background Selective internal radiation therapy (SIRT) is a promising treatment for unresectable hepatic malignancies. Predictive dose calculation based on a simulation using 99mTc-labeled macro-aggregated albumin (99mTc-MAA) before the treatment is considered as a potential tool for patient-specific treatment planning. Post-treatment dose measurement is mainly performed to confirm the planned absorbed dose to the tumor and non-tumor liver volumes. This study compared the predicted and measured absorbed dose distributions. Methods Thirty-one patients (67 tumors) treated by SIRT with resin microspheres were analyzed. Predicted and delivered absorbed dose was calculated using 99mTc-MAA-SPECT and 90Y-TOF-PET imaging. The voxel-level dose distribution was derived using the local deposition model. Liver perfusion territories and tumors have been delineated on contrast-enhanced CBCT images, which have been acquired during the 99mTc-MAA work-up. Several dose-volume histogram (DVH) parameters together with the mean dose for liver perfusion territories and non-tumoral and tumoral compartments were evaluated. Results A strong correlation between the predicted and measured mean dose for non-tumoral volume was observed (r = 0.937). The ratio of measured and predicted mean dose to this volume has a first, second, and third interquartile range of 0.83, 1.05, and 1.25. The difference between the measured and predicted mean dose did not exceed 11 Gy. The correlation between predicted and measured mean dose to the tumor was moderate (r = 0.623) with a mean difference of − 9.3 Gy. The ratio of measured and predicted tumor mean dose had a median of 1.01 with the first and third interquartile ranges of 0.58 and 1.59, respectively. Our results suggest that 99mTc-MAA-based dosimetry could predict under or over dosing of the non-tumoral liver parenchyma for almost all cases. For more than two thirds of the tumors, a predictive absorbed dose correctly indicated either good tumor dose coverage or under-dosing of the tumor. Conclusion Our results highlight the predictive value of 99mTc-MAA-based dose estimation to predict non-tumor liver irradiation, which can be applied to prescribe an optimized activity aiming at avoiding liver toxicity. Compared to non-tumoral tissue, a poorer agreement between predicted and measured absorbed dose is observed for tumors.
Collapse
Affiliation(s)
- Esmaeel Jafargholi Rangraz
- Nuclear Medicine, University Hospitals Leuven, Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, Leuven, Belgium.
| | - Xikai Tang
- Nuclear Medicine, University Hospitals Leuven, Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, Leuven, Belgium
| | | | - Geert Maleux
- Radiology Section, University Hospitals Leuven, Department of Imaging and Pathology, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kristof Baete
- Nuclear Medicine, University Hospitals Leuven, Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, Leuven, Belgium
| | - Johan Nuyts
- Nuclear Medicine, University Hospitals Leuven, Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals Leuven, Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, Leuven, Belgium
| |
Collapse
|
20
|
Castillo Seoane D, de Saint-Hubert M, Crabbe M, Struelens L, Koole M. Targeted alpha therapy: a critical review of translational dosimetry research with emphasis on actinium-225. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:265-277. [PMID: 32441067 DOI: 10.23736/s1824-4785.20.03266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review provides a general overview of the current achievements and challenges in translational dosimetry for targeted alpha therapy (TAT). The concept of targeted radionuclide therapy (TRNT) is described with an overview of its clinical applicability and the added value of TAT is discussed. For TAT, we focused on actinium-225 (225Ac) as an example for alpha particle emitting radionuclides and their features, such as limited range within tissue and high linear energy transfer, which make alpha particle emissions more effective in targeted killing of tumour cells compared to beta radiation. Starting with the state-of-the-art dosimetry for TRNT and TAT, we then describe the challenges that still need to be met in order to move to a personalized dosimetry approach for TAT. Specifically for 225Ac, we discuss the recoiled daughter effect which may provoke significant damage to healthy tissue or organs and should be considered. Next, a broad overview is given of the pre-clinical research on 225Ac-TAT with an extensive description of tools which are only available in a pre-clinical setting and their added value. In addition, we review the preclinical biodistribution and dosimetry studies that have been performed on TAT-agents and more specifically of 225Ac and its multiple progeny, and describe their potential role to better characterize the pharmacokinetic (PK) profile of TAT-agents and to optimize the use of theranostic approaches for dosimetry. Finally, we discuss the support pre-clinical studies may provide in understanding dose-effect relationships, linking radiation dose quantities to biological endpoints and even moving away from macro- to microdosimetry. As such, the translation of pre-clinical findings may provide valuable information and new approaches for improved clinical dosimetry, thus paving the way to personalized TAT.
Collapse
Affiliation(s)
- Dayana Castillo Seoane
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium - .,Research Unit in Dosimetric Applications, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium -
| | - Marijke de Saint-Hubert
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Melissa Crabbe
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Lara Struelens
- Research Unit in Dosimetric Applications, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Michel Koole
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
| |
Collapse
|
21
|
Freedman N, Sandström M, Kuten J, Shtraus N, Ospovat I, Schlocker A, Even-Sapir E. Personalized radiation dosimetry for PRRT-how many scans are really required? EJNMMI Phys 2020; 7:26. [PMID: 32394075 PMCID: PMC7214583 DOI: 10.1186/s40658-020-00293-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Over recent years, peptide receptor radiotherapy (PRRT) has been recognized as an effective treatment for patients with metastatic neuroendocrine tumors (NETs). Personalized dosimetry can contribute to improve the outcome of peptide receptor radiotherapy (PRRT) in patients with metastatic NETs. Dosimetry can aid treatment planning, ensuring that absorbed dose to vulnerable normal organs (kidneys and bone marrow) does not exceed safe limits over serial treatments, and that absorbed dose to tumor is sufficient. Absorbed dose is estimated from a series of post-treatment SPECT/CT images. Total self-dose is proportional to the integral under the time activity concentration curve (TACC). Method dependence of image-based absorbed dose calculations has been previously investigated, and we set out here to extend previous work by examining implications of number of data points in the TACC and the numerical integration methods used in estimating absorbed dose. Methods In this retrospective study, absorbed dose estimates and effective half-lives were calculated by fitting curves to TACCs for normal organs and tumors in 30 consecutive patients who underwent a series of 4 post-treatment SPECT/CT scans at 4 h, 24 h, 4–5 days, and 1 week following 177Lu-DOTATATE PRRT. We examined the effects of including only 2 or 3 rather than all 4 data points in the TACC, and the effect of numerical integration method (mono-exponential alone or in combination with trapezoidal rule) on the absorbed dose and half-life estimates. Our current method is the combination of trapezoidal rule over the first 24 h, with mono-exponential fit thereafter extrapolated to infinity. The other methods were compared to this current method. Results Differences in absorbed dose and effective half-life between the current method and estimates based only on the second, third, and fourth scans were very small (mean differences < 2.5%), whereas differences between the current method and 4-point mono-exponential fit were higher (mean differences < 5%) with a larger range. It appears that in a 4-point mono-exponential fit the early (4 h) time point may skew results, causing some large errors. Differences between the current method and values based on only 2 time points were relatively small (mean differences < 3.5%) when the 24 h and 1 week scans were used, but when the 24 h and 4–5 days scans, or the 4–5 days and 1 week scans were used, differences were greater. Conclusion This study indicates that for 177Lu-DOTATATE PRRT, accurate estimates of absorbed dose for organs and tumors may be estimated from scans at 24 h, 72 h, and 1 week post-treatment without an earlier scan. It may even be possible to cut out the 72 h scan, though the uncertainty increases. However, further work on more patients is required to validate this.
Collapse
Affiliation(s)
- Nanette Freedman
- Institute of Nuclear Medicine, Tel Aviv Sourasky Medical Center, 6 Weizman Street, 64239, Tel Aviv, Israel.
| | - Mattias Sandström
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonathan Kuten
- Institute of Nuclear Medicine, Tel Aviv Sourasky Medical Center, 6 Weizman Street, 64239, Tel Aviv, Israel
| | - Natan Shtraus
- Institute of Radiotherapy, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inna Ospovat
- Institute of Radiotherapy, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Albert Schlocker
- Institute of Radiotherapy, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Einat Even-Sapir
- Institute of Nuclear Medicine, Tel Aviv Sourasky Medical Center, 6 Weizman Street, 64239, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Kunikowska J, Charzyńska I, Kuliński R, Pawlak D, Maurin M, Królicki L. Tumor uptake in glioblastoma multiforme after IV injection of [ 177Lu]Lu-PSMA-617. Eur J Nucl Med Mol Imaging 2020; 47:1605-1606. [PMID: 32040612 PMCID: PMC7188710 DOI: 10.1007/s00259-020-04715-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/03/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, ul. Banacha 1 a, 02-097, Warsaw, Poland.
| | - Ingeborga Charzyńska
- Department of Nuclear Medicine, Medical University of Warsaw, ul. Banacha 1 a, 02-097, Warsaw, Poland
| | - Radosław Kuliński
- Department of Nuclear Medicine, Medical University of Warsaw, ul. Banacha 1 a, 02-097, Warsaw, Poland
| | - Dariusz Pawlak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Michał Maurin
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, ul. Banacha 1 a, 02-097, Warsaw, Poland
| |
Collapse
|
23
|
Chiesa C, Bardiès M, Zaidi H. Voxel‐based dosimetry is superior to mean absorbed dose approach for establishing dose‐effect relationship in targeted radionuclide therapy. Med Phys 2019; 46:5403-5406. [DOI: 10.1002/mp.13851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Division Foundation IRCCS Istituto Nazionale Tumori 20133Milan Italy
| | - Manuel Bardiès
- Centre de Recherches en Cancérologie de Toulouse Université Paul Sabatier UMR 1037 INSERM Toulouse France
| | | |
Collapse
|
24
|
Hosono M. Perspectives for Concepts of Individualized Radionuclide Therapy, Molecular Radiotherapy, and Theranostic Approaches. Nucl Med Mol Imaging 2019; 53:167-171. [PMID: 31231436 PMCID: PMC6554368 DOI: 10.1007/s13139-019-00586-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022] Open
Abstract
Radionuclide therapy (RNT) stands on the delivery of radiation to tumors or non-tumor target organs using radiopharmaceuticals that are designed to have specific affinity to targets. RNT is recently called molecular radiotherapy (MRT) by some advocators in order to emphasize its characteristics as radiotherapy and the relevance of dosimetry-guided optimization of treatment. Moreover, RNT requires relevant radiation protection standards because it employs unsealed radionuclides and gives therapeutic radiation doses in humans. On the basis of these radiation protection standards, the development and use of radiopharmaceuticals for combined application through diagnostics and therapeutics lead to theranostic approaches that will enhance the efficacy and safety of treatment by implementing dosimetry-based individualization.
Collapse
Affiliation(s)
- Makoto Hosono
- Institute of Advanced Clinical Medicine and Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511 Japan
| |
Collapse
|
25
|
Jafargholi Rangraz E, Coudyzer W, Maleux G, Baete K, Deroose CM, Nuyts J. Multi-modal image analysis for semi-automatic segmentation of the total liver and liver arterial perfusion territories for radioembolization. EJNMMI Res 2019; 9:19. [PMID: 30788640 PMCID: PMC6382918 DOI: 10.1186/s13550-019-0485-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose We have developed a multi-modal imaging approach for SIRT, combining 99mTc-MAA SPECT/CT and/or 90Y PET, 18F-FDG PET/CT, and contrast-enhanced CBCT for voxel-based dosimetry, as a tool for treatment planning and verification. For radiation dose prediction calculations, a segmentation of the total liver volume and of the liver perfusion territories is required. Method In this paper, we proposed a procedure for multi-modal image analysis to assist SIRT treatment planning. The pre-treatment 18F-FDG PET/CT, 99mTc-MAA SPECT/CT, and contrast-enhanced CBCT images were registered to a common space using an initial rigid, followed by a deformable registration. The registration was scored by an expert using Likert scores. The total liver was segmented semi-automatically based on the PET/CT and SPECT/CT images, and the liver perfusion territories were determined based on the CBCT images. The segmentations of the liver and liver lobes were compared to the manual segmentations by an expert on a CT image. Result Our methodology showed that multi-modal image analysis can be used for determination of the liver and perfusion territories using CBCT in SIRT using all pre-treatment studies. The results for image registration showed acceptable alignment with limited impact on dosimetry. The image registration performs well according to the expert reviewer (scored as perfect or with little misalignment in 94% of the cases). The semi-automatic liver segmentation agreed well with manual liver segmentation (dice coefficient of 0.92 and an average Hausdorff distance of 3.04 mm). The results showed disagreement between lobe segmentation using CBCT images compared to lobe segmentation based on CT images (average Hausdorff distance of 14.18 mm), with a high impact on the dosimetry (differences up to 9 Gy for right and 21 Gy for the left liver lobe). Conclusion This methodology can be used for pre-treatment dosimetry and for SIRT planning including the determination of the activity that should be administered to achieve the therapeutical goal. The inclusion of perfusion CBCT enables perfusion-based definition of the liver lobes, which was shown to be markedly different from the anatomical definition in some of the patients.
Collapse
Affiliation(s)
| | - Walter Coudyzer
- Radiology Section, Department of imaging and pathology, UZ Leuven, Leuven, Belgium
| | - Geert Maleux
- Radiology Section, Department of imaging and pathology, UZ & KU Leuven, Leuven, Belgium
| | - Kristof Baete
- Nuclear Medicine, Department of imaging and pathology, UZ & KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine, Department of imaging and pathology, UZ & KU Leuven, Leuven, Belgium
| | - Johan Nuyts
- Nuclear Medicine, Department of imaging and pathology, UZ & KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Hammes J, van Heek L, Hohberg M, Reifegerst M, Stockter S, Dietlein M, Wild M, Drzezga A, Schmidt M, Kobe C. Impact of different approaches to calculation of treatment activities on achieved doses in radioiodine therapy of benign thyroid diseases. EJNMMI Phys 2018; 5:32. [PMID: 30539323 PMCID: PMC6289932 DOI: 10.1186/s40658-018-0231-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 01/18/2023] Open
Abstract
Purpose Radioiodine has been used for the treatment of benign thyroid diseases for over 70 years. However, internationally, there is no common standard for pretherapeutic dosimetry to optimally define the individual therapy activity. Here, we analyze how absorbed tissue doses are influenced by different approaches to pretherapeutic activity calculation of varying complexity. Methods Pretherapeutic determination of treatment activity was retrospectively recalculated in 666 patients who had undergone radioiodine therapy for benign thyroid diseases (Graves’ disease, non-toxic goiter, and uni- and multinodular goiter). Approaches considering none, some, or all of a set of individual factors, including target volume, maximum radioiodine uptake, and effective half-life, were applied. Assuming individually stable radioiodine kinetics, which had been monitored twice a day under therapy, hypothetically achieved tissue doses based on hypothetically administered activities resulting from the different methods of activity calculation were compared to intended target doses. Results The Marinelli formula yields the smallest deviations of hypothetically achieved doses from intended target doses. Approaches taking individual target volume into consideration perform better than fixed therapy activities, which lead to high variances in achieved doses and high deviations of hypothetically achieved doses from intended target doses. Conclusion Elaborate pretherapeutic dose planning, taking individual radioiodine uptake, half-life, and target volume into consideration, should be used whenever possible. The use of disease-specific fixed activities cannot be recommended. Deviations of achieved tissue doses from target doses can already be significantly lowered by application of volume-adapted treatment activities if more elaborate means are not available.
Collapse
Affiliation(s)
- Jochen Hammes
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Lutz van Heek
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Melanie Hohberg
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Manuel Reifegerst
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Simone Stockter
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Markus Dietlein
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Markus Wild
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Matthias Schmidt
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
27
|
Ljungberg M, Sjogreen Gleisner K. 3-D Image-Based Dosimetry in Radionuclide Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2860563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Affiliation(s)
- Makoto Hosono
- Department of Radiology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
29
|
Turner JH. An introduction to the clinical practice of theranostics in oncology. Br J Radiol 2018; 91:20180440. [PMID: 30179054 DOI: 10.1259/bjr.20180440] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
"Those who cannot remember the past are condemned to repeat it." George Santayana 1905 "If men could learn from history, what lessons it might teach us! But passion and party blind our eyes, and the light which experience gives is a lantern on the stern, which shines only on the waves behind us!" Samuel Taylor Coleridge 1835 The medical speciality of theranostic nuclear oncology has taken three-quarters of a century to move the stern light cast retrospectively by single-centre clinical reports, to the forepeak in the bow of our theranostic craft, where prospective randomised controlled multicentre clinical trials now illuminate the way forward. This recent reorientation of nuclear medicine clinical research practice to align with that of standard medical and radiation oncology protocols, reflects the paradigm shift toward individualised molecular oncology and precision medicine. Theranostics is the epitome of personalised medicine. The specific tumour biomarker is quantitatively imaged on positron emission tomography (PET)/CT or single photon emission computed tomography (SPECT)/CT. If it is clearly demonstrated that a tumoricidal radiation absorbed dose can be delivered, the theranostic beta or alpha-emitting radionuclide pair, coupled to the same targeted molecule, is then administered, to control advanced metastatic cancer in that individual patient. This prior selection of patients who may benefit from theranostic treatment is in direct contrast to the evolving oncological indirect treatments using immune-check point inhibitors, where there is an urgent need to define biomarkers which can reliably predict response, and thus avoid the high cost and toxicity of these agents in patients who are unlikely to benefit. The immune and molecular treatment approaches of oncology are a recent phenomenon and the efficacy and safety of immune-check point blockade and chimeric antigen receptor T-cell therapies are currently under evaluation in multicentre randomised controlled trials. Such objective evaluation is compromised by the inadequacy of conventional response evaluation criteria in solid tumour (RECIST) CT/MR anatomical/functional imaging to define tumour response, in both immune-oncology and theranostic nuclear oncology. This introduction to the clinical practice of theranostics explores ways in which nuclear physicians can learn from the lessons of history, and join with their medical, surgical and radiation oncology colleagues to establish a symbiotic collaboration to realise the potential of personalised molecular medicine to control advanced cancer and actually enhance quality of life whilst prolonging survival.
Collapse
Affiliation(s)
- J Harvey Turner
- School of Medicine and Pharmacology, The University of Western Australia , Perth , Australia
| |
Collapse
|
30
|
Huizing DMV, de Wit-van der Veen BJ, Verheij M, Stokkel MPM. Dosimetry methods and clinical applications in peptide receptor radionuclide therapy for neuroendocrine tumours: a literature review. EJNMMI Res 2018; 8:89. [PMID: 30159614 PMCID: PMC6115319 DOI: 10.1186/s13550-018-0443-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022] Open
Abstract
Background The main challenge for systemic radiation therapy using radiopharmaceuticals (SRT) is to optimise the dose delivered to the tumour, while minimising normal tissue irradiation. Dosimetry could help to increase therapy response and decrease toxicity after SRT by individual treatment planning. Peptide receptor radionuclide therapy (PRRT) is an accepted SRT treatment option for irresectable and metastatic neuroendocrine tumours (NET). However, dosimetry in PRRT is not routinely performed, mainly due to the lack of evidence in literature and clinical implementation difficulties. The goal of this review is to provide insight in dosimetry methods and requirements and to present an overview of clinical aspects of dosimetry in PRRT for NET. Methods A PubMed query including the search criteria dosimetry, radiation dose, peptide receptor radionuclide therapy, and radionuclide therapy was performed. Articles were selected based on title and abstract, and description of dosimetric approach. Results A total of 288 original articles were included. The most important dosimetry methods, their main advantages and limitations, and implications in the clinical setting are discussed. An overview of dosimetry in clinical studies regarding PRRT treatment for NET is provided. Conclusion Clinical dosimetry in PRRT is feasible and can result in improved treatment outcomes. Current clinical dosimetry studies focus on safety and apply non-voxel-based dosimetry methods. Personalised treatment using sophisticated dosimetry methods to assess tumour and normal tissue uptake in clinical trials is the next step towards routine dosimetry in PRRT for NET. Electronic supplementary material The online version of this article (10.1186/s13550-018-0443-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daphne Merel Valerie Huizing
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | - Marcel Verheij
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Abstract
Theranostic nuclear oncology is on the cusp of adoption into routine clinical management of neuroendocrine tumours (NETs) following publication of the Phase 3 randomised controlled trial, NETTER-1. For the first time, level 1b evidence of efficacy and safety of 68-gallium/177-lutetium-DOTA-octreotate peptide receptor radionuclide therapy, of mid-gut neuroendocrine tumours was established. Multicentre Phase 2 studies of 68-gallium/177-lutetium-prostate specific membrane antigen theranostic approaches to management of end-stage metastatic castrate-resistant prostate cancer, are also very encouraging. However, the retrospective uncontrolled data currently available are inadmissible for formal regulatory agency evaluation. The challenge is to engage with oncologists and urologists, and to collaborate with the pharmaceutical industry, to design and perform the controlled clinical trials required for regulatory approval, and eventual reimbursement for theranostic nuclear oncology procedures. Strategies to facilitate timely establishment of an evidence base are considered in this review of theranostic advances over the past year. The prime objective is the provision of novel, effective, safe, personalised, tumour-targeted molecular theranostic management of metastatic castrate-resistant prostate cancer, and other cancers, such as non-Hodgkin lymphoma, which express the appropriate molecular receptor tumour targets. It would also be desirable to offer theranostic treatments at an earlier stage of malignant disease when the benefit is likely to be greater. The ultimate goal of theranostic nuclear oncology is to prolong survival and to improve quality of life for cancer patients worldwide. This may only be achieved through close collaboration between oncologists, nuclear physicians, radiologists, dosimetric physicists, Pharma, and, above all, with the patients themselves, in ways which are explored in this review.
Collapse
Affiliation(s)
- J Harvey Turner
- 1 Faculty of Health and Medical Sciences, The University of Western Australia , Perth, WA , Australia
| |
Collapse
|
32
|
Delgado Bolton RC, Giammarile F. Bone radionuclide therapy and increased survival with radium-223 is the way to go for nuclear medicine: the offer that oncologists cannot refuse. Eur J Nucl Med Mol Imaging 2018; 45:822-823. [PMID: 29333576 DOI: 10.1007/s00259-017-3913-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/10/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Roberto C Delgado Bolton
- Department of Diagnostic Imaging and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain.
| | - Francesco Giammarile
- International Atomic Energy Agency (IAEA), Nuclear Medicine and Diagnostic Imaging Section, Vienna, Austria
| |
Collapse
|
33
|
Flux GD, Sjogreen Gleisner K, Chiesa C, Lassmann M, Chouin N, Gear J, Bardiès M, Walrand S, Bacher K, Eberlein U, Ljungberg M, Strigari L, Visser E, Konijnenberg MW. From fixed activities to personalized treatments in radionuclide therapy: lost in translation? Eur J Nucl Med Mol Imaging 2018; 45:152-154. [PMID: 29080096 PMCID: PMC5700228 DOI: 10.1007/s00259-017-3859-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 11/02/2022]
Affiliation(s)
- G D Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Downs Road, Sutton, Surrey, UK.
| | | | - C Chiesa
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - N Chouin
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
- Oniris, AMaROC Unit, Nantes, France
| | - J Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Downs Road, Sutton, Surrey, UK
| | - M Bardiès
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037 INSERM Université Paul Sabatier, Toulouse, France
| | - S Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - K Bacher
- Department of Basic Medical Sciences, Division of Medical Physics, Ghent University, Ghent, Belgium
| | - U Eberlein
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M Ljungberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - L Strigari
- Laboratory of Medical Physics and Expert Systems, National Cancer Institute Regina Elena, Rome, Italy
| | - E Visser
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre (RadboudUMC), Nijmegen, The Netherlands
| | - M W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Fenwick AJ, Wevrett JL, Ferreira KM, Denis-Bacelar AM, Robinson AP. Quantitative imaging, dosimetry and metrology; Where do National Metrology Institutes fit in? Appl Radiat Isot 2017; 134:74-78. [PMID: 29158037 DOI: 10.1016/j.apradiso.2017.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
In External Beam Radiotherapy, National Metrology Institutes (NMIs) play a critical role in the delivery of accurate absorbed doses to patients undergoing treatment. In contrast for nuclear medicine the role of the NMI is less clear and although significant work has been done in order to establish links for activity measurement, the calculation of administered absorbed doses is not traceable in the same manner as EBRT. Over recent decades the use of novel radiolabelled pharmaceuticals has increased dramatically. The limitation of secondary complications due to radiation damage to non-target tissue has historically been achieved by the use of activity escalation studies during clinical trials and this in turn has led to a chronic under dosing of the majority of patients. This paper looks to address the difficulties in combining clinical everyday practice with the grand challenges laid out by national metrology institutes to improve measurement capability in all walks of life. In the life sciences it can often be difficult to find the correct balance between pure research and practical solutions to measurement problems, and this paper is a discussion regarding these difficulties and how some NMIs have chosen to tackle these issues. The necessity of establishing strong links to underlying standards in the field of quantitative nuclear medicine imaging is highlighted. The difficulties and successes of current methods for providing traceability in nuclear medicine are discussed.
Collapse
Affiliation(s)
- A J Fenwick
- National Physical Laboratory, Hampton Road, Teddington, UK; Cardiff University, Cardiff, UK.
| | - J L Wevrett
- National Physical Laboratory, Hampton Road, Teddington, UK; University of Surrey, Guildford, UK; Royal Surrey County Hospital, Guildford, UK
| | - K M Ferreira
- National Physical Laboratory, Hampton Road, Teddington, UK
| | | | - A P Robinson
- National Physical Laboratory, Hampton Road, Teddington, UK; The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|