1
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Najdian A, Beiki D, Abbasi M, Gholamrezanezhad A, Ahmadzadehfar H, Amani AM, Ardestani MS, Assadi M. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24:127. [PMID: 39304961 DOI: 10.1186/s40644-024-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Multimodal imaging unfolds as an innovative approach that synergistically employs a spectrum of imaging techniques either simultaneously or sequentially. The integration of computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (OI) results in a comprehensive and complementary understanding of complex biological processes. This innovative approach combines the strengths of each method and overcoming their individual limitations. By harmoniously blending data from these modalities, it significantly improves the accuracy of cancer diagnosis and aids in treatment decision-making processes. Nanoparticles possess a high potential for facile functionalization with radioactive isotopes and a wide array of contrast agents. This strategic modification serves to augment signal amplification, significantly enhance image sensitivity, and elevate contrast indices. Such tailored nanoparticles constructs exhibit a promising avenue for advancing imaging modalities in both preclinical and clinical setting. Furthermore, nanoparticles function as a unified nanoplatform for the co-localization of imaging agents and therapeutic payloads, thereby optimizing the efficiency of cancer management strategies. Consequently, radiolabeled nanoparticles exhibit substantial potential in driving forward the realms of multimodal imaging and theranostic applications. This review discusses the potential applications of molecular imaging in cancer diagnosis, the utilization of nanotechnology-based radiolabeled materials in multimodal imaging and theranostic applications, as well as recent advancements in this field. It also highlights challenges including cytotoxicity and regulatory compliance, essential considerations for effective clinical translation of nanoradiopharmaceuticals in multimodal imaging and theranostic applications.
Collapse
Affiliation(s)
- Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
| | - Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, Klinikum Westfalen, Dortmund, Germany
- Department of Nuclear Medicine, Institute of Radiology, Neuroradiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
3
|
Clore J, Scott PJH. [ 68Ga]PSMA-11 for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA)-positive lesions in men with prostate cancer. Expert Rev Mol Diagn 2024; 24:565-582. [PMID: 39054633 DOI: 10.1080/14737159.2024.2383439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Theranostics targeting prostate-specific membrane antigen (PSMA) represent a new targeted approach for prostate cancer care that combines diagnostic and therapeutic radiopharmaceuticals to diagnose and treat the disease. Positron emission tomography (PET) is the imaging method of choice and several diagnostic radiopharmaceuticals for quantifying PSMA have received FDA approval and are in clinical use. [68Ga]Ga-PSMA-11 is one such imaging agent and the focus of this article. One beta-emitting radioligand therapy ([177Lu]Lu-PSMA-617) has also received FDA approval for prostate cancer treatment, and several other alpha- and beta-emitting radioligand therapies are in clinical trials. AREAS COVERED Theranostics targeting PSMA in men with prostate cancer are discussed with a focus on use of [68Ga]Ga-PSMA-11 for imaging PSMA-positive lesions in men with prostate cancer. The review covers [68Ga]Ga-PSMA-11 manufacture, current regulatory status, comparison of [68Ga]Ga-PSMA-11 to other imaging techniques, clinical updates, and emerging applications of artificial intelligence for [68Ga]Ga-PSMA-11 PET. EXPERT OPINION [68Ga]Ga-PSMA-11 is used in conjunction with a PET/CT scan to image PSMA positive lesions in men with prostate cancer. It is manufactured by chelating precursor with68Ga, either from a generator or cyclotron, and has regulatory approval around the world. It is widely used clinically in conjunction with radioligand therapies like [177Lu]Lu-PSMA-617.
Collapse
Affiliation(s)
- Jessica Clore
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Dalm S, Duan H, Iagaru A. Gastrin Releasing Peptide Receptors-targeted PET Diagnostics and Radionuclide Therapy for Prostate Cancer Management: Preclinical and Clinical Developments of the Past 5 Years. PET Clin 2024; 19:401-415. [PMID: 38644111 DOI: 10.1016/j.cpet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Each tumor has its own distinctive molecular identity. Treatment, therefore, should be tailored to this unique cancer phenotype. Theragnostics uses the same compound for targeted imaging and treatment, radiolabeled to an appropriate radionuclide, respectively. Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, and radiolabeled GRPR antagonists have shown high diagnostic performance at staging and biochemical recurrence. Several GRPR-targeting theragnostic compounds have been developed preclinically. Their translation into clinics is underway with 4 clinical trials recruiting participants with GRPR-expressing tumors.
Collapse
Affiliation(s)
- Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Heying Duan
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Song H, Sgouros G. Alpha and Beta Radiation for Theragnostics. PET Clin 2024; 19:307-323. [PMID: 38688775 DOI: 10.1016/j.cpet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Targeted radionuclide therapy (TRT) has significantly evolved from its beginnings with iodine-131 to employing carrier molecules with beta emitting isotopes like lutetium-177. With the success of Lu-177-DOTATATE for neuroendocrine tumors and Lu-177-PSMA-617 for prostate cancer, several other beta emitting radioisotopes, such as Cu-67 and Tb-161, are being explored for TRT. The field has also expanded into targeted alpha therapy (TAT) with agents like radium-223 for bone metastases in prostate cancer, and several other alpha emitter radioisotopes with carrier molecules, such as Ac-225, and Pb-212 under clinical trials. Despite these advancements, the scope of TRT in treating diverse solid tumors and integration with other therapies like immunotherapy remains under investigation. The success of antibody-drug conjugates further complements treatments with TRT, though challenges in treatment optimization continue.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - George Sgouros
- Division of Radiological Physics, Department of Radiology and Radiological Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Sallam M, Nguyen NT, Sainsbury F, Kimizuka N, Muyldermans S, Benešová-Schäfer M. PSMA-targeted radiotheranostics in modern nuclear medicine: then, now, and what of the future? Theranostics 2024; 14:3043-3079. [PMID: 38855174 PMCID: PMC11155394 DOI: 10.7150/thno.92612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
In 1853, the perception of prostate cancer (PCa) as a rare ailment prevailed, was described by the eminent Londoner surgeon John Adams. Rapidly forward to 2018, the landscape dramatically altered. Currently, men face a one-in-nine lifetime risk of PCa, accentuated by improved diagnostic methods and an ageing population. With more than three million men in the United States alone grappling with this disease, the overall risk of succumbing to stands at one in 39. The intricate clinical and biological diversity of PCa poses serious challenges in terms of imaging, ongoing monitoring, and disease management. In the field of theranostics, diagnostic and therapeutic approaches that harmoniously merge targeted imaging with treatments are integrated. A pivotal player in this arena is radiotheranostics, employing radionuclides for both imaging and therapy, with prostate-specific membrane antigen (PSMA) at the forefront. Clinical milestones have been reached, including FDA- and/or EMA-approved PSMA-targeted radiodiagnostic agents, such as [18F]DCFPyL (PYLARIFY®, Lantheus Holdings), [18F]rhPSMA-7.3 (POSLUMA®, Blue Earth Diagnostics) and [68Ga]Ga-PSMA-11 (Locametz®, Novartis/ ILLUCCIX®, Telix Pharmaceuticals), as well as PSMA-targeted radiotherapeutic agents, such as [177Lu]Lu-PSMA-617 (Pluvicto®, Novartis). Concurrently, ligand-drug and immune therapies designed to target PSMA are being advanced through rigorous preclinical research and clinical trials. This review delves into the annals of PSMA-targeted radiotheranostics, exploring its historical evolution as a signature molecule in PCa management. We scrutinise its clinical ramifications, acknowledge its limitations, and peer into the avenues that need further exploration. In the crucible of scientific inquiry, we aim to illuminate the path toward a future where the enigma of PCa is deciphered and where its menace is met with precise and effective countermeasures. In the following sections, we discuss the intriguing terrain of PCa radiotheranostics through the lens of PSMA, with the fervent hope of advancing our understanding and enhancing clinical practice.
Collapse
Affiliation(s)
- Mohamed Sallam
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Frank Sainsbury
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024; 14:2969-2992. [PMID: 38773983 PMCID: PMC11103494 DOI: 10.7150/thno.96403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA-94107, USA
| |
Collapse
|
8
|
Mattana F, Muraglia L, Barone A, Colandrea M, Saker Diffalah Y, Provera S, Cascio AS, Omodeo Salè E, Ceci F. Prostate-Specific Membrane Antigen-Targeted Therapy in Prostate Cancer: History, Combination Therapies, Trials, and Future Perspective. Cancers (Basel) 2024; 16:1643. [PMID: 38730595 PMCID: PMC11083597 DOI: 10.3390/cancers16091643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In the last decades, the development of PET/CT radiopharmaceuticals, targeting the Prostate-Specific Membrane Antigen (PSMA), changed the management of prostate cancer (PCa) patients thanks to its higher diagnostic accuracy in comparison with conventional imaging both in staging and in recurrence. Alongside molecular imaging, PSMA was studied as a therapeutic agent targeted with various isotopes. In 2021, results from the VISION trial led to the Food and Drug Administration (FDA) approval of [177Lu]Lu-PSMA-617 as a novel therapy for metastatic castration-resistant prostate cancer (mCRPC) and set the basis for a radical change in the future perspectives of PCa treatment and the history of Nuclear Medicine. Despite these promising results, primary resistance in patients treated with single-agent [177Lu]Lu-PSMA-617 remains a real issue. Emerging trials are investigating the use of [177Lu]Lu-PSMA-617 in combination with other PCa therapies in order to cover the multiple oncologic resistance pathways and to overcome tumor heterogeneity. In this review, our aim is to retrace the history of PSMA-targeted therapy from the first preclinical studies to its future applications in PCa.
Collapse
Affiliation(s)
- Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Lorenzo Muraglia
- Division of Nuclear Medicine, Humanitas IRCCS, 20141 Milan, Italy;
| | - Antonio Barone
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Marzia Colandrea
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Yasmina Saker Diffalah
- Division of Nuclear Medicine, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain;
| | - Silvia Provera
- Division of Pharmacy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.P.); (E.O.S.)
| | - Alfio Severino Cascio
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Emanuela Omodeo Salè
- Division of Pharmacy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.P.); (E.O.S.)
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
9
|
Lee D, Li M, Liu D, Baumhover NJ, Sagastume EA, Marks BM, Rastogi P, Pigge FC, Menda Y, Johnson FL, Schultz MK. Structural modifications toward improved lead-203/lead-212 peptide-based image-guided alpha-particle radiopharmaceutical therapies for neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2024; 51:1147-1162. [PMID: 37955792 PMCID: PMC10881741 DOI: 10.1007/s00259-023-06494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The lead-203 (203Pb)/lead-212 (212Pb) elementally identical radionuclide pair has gained significant interest in the field of image-guided targeted alpha-particle therapy for cancer. Emerging evidence suggests that 212Pb-labeled peptide-based radiopharmaceuticals targeting somatostatin receptor subtype 2 (SSTR2) may provide improved effectiveness compared to beta-particle-based therapies for neuroendocrine tumors (NETs). This study aims to improve the performance of SSTR2-targeted radionuclide imaging and therapy through structural modifications to Tyr3-octreotide (TOC)-based radiopharmaceuticals. METHODS New SSTR2-targeted peptides were designed and synthesized with the goal of optimizing the incorporation of Pb isotopes through the use of a modified cyclization technique; the introduction of a Pb-specific chelator (PSC); and the insertion of polyethylene glycol (PEG) linkers. The binding affinity of the peptides and the cellular uptake of 203Pb-labeled peptides were evaluated using pancreatic AR42J (SSTR2+) tumor cells and the biodistribution and imaging of the 203Pb-labeled peptides were assessed in an AR42J tumor xenograft mouse model. A lead peptide was identified (i.e., PSC-PEG2-TOC), which was then further evaluated for efficacy in 212Pb therapy studies. RESULTS The lead radiopeptide drug conjugate (RPDC) - [203Pb]Pb-PSC-PEG2-TOC - significantly improved the tumor-targeting properties, including receptor binding and tumor accumulation and retention as compared to [203Pb]Pb-DOTA0-Tyr3-octreotide (DOTATOC). Additionally, the modified RPDC exhibited faster renal clearance than the DOTATOC counterpart. These advantageous characteristics of [212Pb]Pb-PSC-PEG2-TOC resulted in a dose-dependent therapeutic effect with minimal signs of toxicity in the AR42J xenograft model. Fractionated administrations of 3.7 MBq [212Pb]Pb-PSC-PEG2-TOC over three doses further improved anti-tumor effectiveness, resulting in 80% survival (70% complete response) over 120 days in the mouse model. CONCLUSION Structural modifications to chelator and linker compositions improved tumor targeting and pharmacokinetics (PK) of 203/212Pb peptide-based radiopharmaceuticals for NET theranostics. These findings suggest that PSC-PEG2-TOC is a promising candidate for Pb-based targeted radionuclide therapy for NETs and other types of cancers that express SSTR2.
Collapse
Affiliation(s)
- Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul, Republic of Korea
| | - Mengshi Li
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | - Dijie Liu
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | | | | | | | - Prerna Rastogi
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - F Christopher Pigge
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA
| | - Yusuf Menda
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Michael K Schultz
- Perspective Therapeutics, Inc., Coralville, IA, USA.
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA.
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
- Department of Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
10
|
Thakral P, Sen IB, Das SS, Schultz MK, Kumari J, Virupakshappa CB, Malik D. Lead-203 VMT-α-Neuroendocrine Tumor Scintigraphy: A Promising Theranostics Agent. Indian J Nucl Med 2024; 39:142-143. [PMID: 38989305 PMCID: PMC11232724 DOI: 10.4103/ijnm.ijnm_2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 07/12/2024] Open
Abstract
Targeted alpha therapy (TAT) using lead-212 (Pb-212)-labeled peptides presents an attractive option for the treatment of metastatic neuroendocrine tumors (NETs). As Pb-203 presents an accurate diagnostic surrogate to Pb-212, imaging with Pb-203-labelled peptides can be an important prerequisite to assess the feasibility of TAT with Pb-212-labelled agents. Here, we present the imaging data of a patient with metastatic NET with Pb-203 VMT-α-NET, a somatostatin receptor targeting agent, and demonstrate the matching distribution of Pb-203 VMT-α-NET with Ga-68 DOTANOC.
Collapse
Affiliation(s)
- Parul Thakral
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, Haryana, India
| | - Ishita Barat Sen
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, Haryana, India
| | - Subha Shankar Das
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, Haryana, India
| | | | - Jyotsna Kumari
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, Haryana, India
| | - C B Virupakshappa
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, Haryana, India
| | - Dharmender Malik
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, Haryana, India
| |
Collapse
|
11
|
Randhawa P, Carbo-Bague I, Davey PRWJ, Chen S, Merkens H, Uribe CF, Zhang C, Tosato M, Bénard F, Radchenko V, Ramogida CF. Exploration of commercial cyclen-based chelators for mercury-197 m/g incorporation into theranostic radiopharmaceuticals. Front Chem 2024; 12:1292566. [PMID: 38389726 PMCID: PMC10881723 DOI: 10.3389/fchem.2024.1292566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
A comprehensive investigation of the Hg2+ coordination chemistry and 197m/gHg radiolabeling capabilities of cyclen-based commercial chelators, namely, DOTA and DOTAM (aka TCMC), along with their bifunctional counterparts, p-SCN-Bn-DOTA and p-SCN-Bn-TCMC, was conducted to assess the suitability of these frameworks as bifunctional chelators for the 197m/gHg2+ theranostic pair. Radiolabeling studies revealed that TCMC and DOTA exhibited low radiochemical yields (0%-6%), even when subjected to harsh conditions (80°C) and high ligand concentrations (10-4 M). In contrast, p-SCN-Bn-TCMC and p-SCN-Bn-DOTA demonstrated significantly higher 197m/gHg radiochemical yields (100% ± 0.0% and 70.9% ± 1.1%, respectively) under the same conditions. The [197 m/gHg]Hg-p-SCN-Bn-TCMC complex was kinetically inert when challenged against human serum and glutathione. To understand the differences in labeling between the commercial chelators and their bifunctional counterparts, non-radioactive natHg2+ complexes were assessed using NMR spectroscopy and DFT calculations. The NMR spectra of Hg-TCMC and Hg-p-SCN-Bn-TCMC suggested binding of the Hg2+ ion through the cyclen backbone framework. DFT studies indicated that binding of the Hg2+ ion within the backbone forms a thermodynamically stable product. However, competition can form between isothiocyanate binding and binding through the macrocycle, which was experimentally observed. The isothiocyanate bound coordination product was dominant at the radiochemical scale as, in comparison, the macrocycle bound product was seen at the NMR scale, agreeing with the DFT result. Furthermore, a bioconjugate of TCMC (TCMC-PSMA) targeting prostate-specific membrane antigen was synthesized and radiolabeled, resulting in an apparent molar activity of 0.089 MBq/nmol. However, the complex demonstrated significant degradation over 24 h when exposed to human serum and glutathione. Subsequently, cell binding assays were conducted, revealing a Ki value ranging from 19.0 to 19.6 nM. This research provides crucial insight into the effectiveness of current commercial chelators in the context of 197m/gHg2+ radiolabeling. It underscores the necessity for the development of specific and customized chelators to these unique "soft" radiometals to advance 197m/gHg2+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Parmissa Randhawa
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Imma Carbo-Bague
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Patrick R W J Davey
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Shaohuang Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Carlos F Uribe
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marianna Tosato
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
12
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Tosato M, Randhawa P, Lazzari L, McNeil BL, Dalla Tiezza M, Zanoni G, Mancin F, Orian L, Ramogida CF, Di Marco V. Tuning the Softness of the Pendant Arms and the Polyazamacrocyclic Backbone to Chelate the 203Pb/ 212Pb Theranostic Pair. Inorg Chem 2024; 63:1745-1758. [PMID: 38230993 PMCID: PMC10828988 DOI: 10.1021/acs.inorgchem.3c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Marianna Tosato
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Radiopharmaceutical
Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Parmissa Randhawa
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Luca Lazzari
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Brooke L. McNeil
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Marco Dalla Tiezza
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Giordano Zanoni
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Laura Orian
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Caterina F. Ramogida
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Valerio Di Marco
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
14
|
Miederer M, Benešová-Schäfer M, Mamat C, Kästner D, Pretze M, Michler E, Brogsitter C, Kotzerke J, Kopka K, Scheinberg DA, McDevitt MR. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:76. [PMID: 38256909 PMCID: PMC10821197 DOI: 10.3390/ph17010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Jörg Kotzerke
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Michael R. McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
15
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
16
|
Nelson BJB, Wilson J, Andersson JD, Wuest F. Theranostic Imaging Surrogates for Targeted Alpha Therapy: Progress in Production, Purification, and Applications. Pharmaceuticals (Basel) 2023; 16:1622. [PMID: 38004486 PMCID: PMC10674391 DOI: 10.3390/ph16111622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It evaluates the strengths and limitations of each potential imaging surrogate. Thirteen surrogates for TAT are explored: 133La, 132La, 134Ce/134La, and 226Ac for 225Ac TAT; 203Pb for 212Pb TAT; 131Ba for 223Ra and 224Ra TAT; 123I, 124I, 131I and 209At for 211At TAT; 134Ce/134La for 227Th TAT; and 155Tb and 152Tb for 149Tb TAT.
Collapse
Affiliation(s)
- Bryce J. B. Nelson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - John Wilson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - Jan D. Andersson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
17
|
Pretze M, Michler E, Runge R, Wetzig K, Tietze K, Brandt F, Schultz MK, Kotzerke J. Influence of the Molar Activity of 203/212Pb-PSC-PEG 2-TOC on Somatostatin Receptor Type 2-Binding and Cell Uptake. Pharmaceuticals (Basel) 2023; 16:1605. [PMID: 38004470 PMCID: PMC10675797 DOI: 10.3390/ph16111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: In neuroendocrine tumors (NETs), somatostatin receptor subtype 2 is highly expressed, which can be targeted by a radioactive ligand such as [177Lu]Lu-1,4,7,10-tetraazacyclododecane-N,N',N″,N‴,-tetraacetic acid-[Tyr3,Thr8]-octreotide (177Lu-DOTA-TOC) and, more recently, by a lead specific chelator (PSC) containing 203/212Pb-PSC-PEG2-TOC (PSC-TOC). The molar activity (AM) can play a crucial role in tumor uptake, especially in receptor-mediated uptake, such as in NETs. Therefore, an investigation of the influence of different molar activities of 203/212Pb-PSC-TOC on cell uptake was investigated. (2) Methods: Optimized radiolabeling of 203/212Pb-PSC-TOC was performed with 50 µg of precursor in a NaAc/AcOH buffer at pH 5.3-5.5 within 15-45 min at 95° C. Cell uptake was studied in AR42 J, HEK293 sst2, and ZR75-1 cells. (3) Results: 203/212Pb-PSC-TOC was radiolabeled with high radiochemical purity >95% and high radiochemical yield >95%, with AM ranging from 0.2 to 61.6 MBq/nmol. The cell uptake of 203Pb-PSC-TOC (AM = 38 MBq/nmol) was highest in AR42 J (17.9%), moderate in HEK293 sstr (9.1%) and lowest in ZR75-1 (0.6%). Cell uptake increased with the level of AM. (4) Conclusions: A moderate AM of 15-40 MBq/nmol showed the highest cell uptake. No uptake limitation was found in the first 24-48 h. Further escalation experiments with even higher AM should be performed in the future. It was shown that AM plays an important role because of its direct dependence on the cellular uptake levels, possibly due to less receptor saturation with non-radioactive ligands at higher AM.
Collapse
Affiliation(s)
- Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Roswitha Runge
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Kerstin Wetzig
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Katja Tietze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Florian Brandt
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| | - Michael K. Schultz
- Department of Radiology, University of Iowa, Iowa City, IA 52240, USA;
- Viewpoint Molecular Targeting, Inc. (DBA Perspective Therapeutics), Coralville, IA 52241, USA
- Department of Chemistry, University of Iowa, Iowa City, IA 52241, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (E.M.); (R.R.); (K.W.); (K.T.); (F.B.); (J.K.)
| |
Collapse
|
18
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
19
|
Zaid NRR, Kletting P, Beer AJ, Stallons TAR, Torgue JJ, Glatting G. Mathematical Modeling of In Vivo Alpha Particle Generators and Chelator Stability. Cancer Biother Radiopharm 2023; 38:528-535. [PMID: 33481653 DOI: 10.1089/cbr.2020.4112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Targeted α particle therapy using long-lived in vivo α particle generators is cytotoxic to target tissues. However, the redistribution of released radioactive daughters through the circulation should be considered. A mathematical model was developed to describe the physicochemical kinetics of 212Pb-labeled pharmaceuticals and its radioactive daughters. Materials and Methods: A bolus of 212Pb-labeled pharmaceuticals injected in a developed compartmental model was simulated. The contributions of chelated and free radionuclides to the total released energy were investigated for different dissociation fractions of 212Bi for different chelators, for example, 36% for DOTA. The compartmental model was applied to describe a 212Bi retention study and to assess the stability of the 212Bi-1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (212Bi-DOTAM) complex after β- decay of 212Pb. Results: The simulation of the injection showed that α emissions contribute 75% to the total released energy, mostly from 212Po (72%). The simulation of the 212Bi retention study showed that (16 ± 5)% of 212Bi atoms dissociate from the 212Bi-DOTAM complexes. The fractions of energies released by free radionuclides were 21% and 38% for DOTAM and DOTA chelators, respectively. Conclusion: The developed α particle generator model allows for simulating the radioactive kinetics of labeled and unlabeled pharmaceuticals being released from the chelating system due to a preceding disintegration.
Collapse
Affiliation(s)
- Nouran R R Zaid
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
- Department of Biomedical Sciences, Biophysics and Medical Imaging Program, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Peter Kletting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | | | | | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
20
|
Alati S, Singh R, Pomper MG, Rowe SP, Banerjee SR. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin Nucl Med 2023; 53:663-686. [PMID: 37468417 DOI: 10.1053/j.semnuclmed.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment. Therapeutic radiopharmaceuticals are composed of a therapeutic radionuclide and a high-affinity, tumor-targeting carrier molecule. Therapeutic radionuclides used in preclinical prostate cancer studies are primarily α-, β--, or Auger-electron-emitting radiometals or radiohalogens. Monoclonal antibodies, antibody-derived fragments, peptides, and small molecules are frequently used as tumor-targeting molecules. Over the years, several important membrane-associated proteases and receptors have been identified, validated, and subsequently used for preclinical radiotherapeutic development for prostate cancer. Prostate-specific membrane antigen (PSMA) is the most well-studied prostate cancer-associated protease in preclinical literature. PSMA-targeting radiotherapeutic agents are being investigated using high-affinity antibody- and small-molecule-based agents for safety and efficacy. Early generations of such agents were developed simply by replacing radionuclides of the imaging agents with therapeutic ones. Later, extensive structure-activity relationship studies were conducted to address the safety and efficacy issues obtained from initial patient data. Recent regulatory approval of the 177Lu-labeled low-molecular-weight agent, 177Lu-PSMA-617, is a significant accomplishment. Current preclinical experiments are focused on the structural modification of 177Lu-PSMA-617 and relevant investigational agents to increase tumor targeting and reduce off-target binding and toxicity in healthy organs. While lutetium-177 (177Lu) remains the most widely used radionuclide, radiolabeled analogs with iodine-131 (128I), yttrium-90 (89Y), copper-67 (67Cu), and terbium-161 (161Tb) have been evaluated as potential alternatives in recent years. In addition, agents carrying the α-particle-emitting radiohalogen, astatine-211 (211At), or radiometals, actinium-225 (225Ac), lead-212 (212Pb), radium-223 (223Ra), and thorium-227 (227Th), have been increasingly investigated in preclinical research. Besides PSMA-based radiotherapeutics, other prominent prostate cancer-related proteases, for example, human kallikrein peptidases (HK2 and HK3), have been explored using monoclonal-antibody-(mAb)-based targeting platforms. Several promising mAbs targeting receptors overexpressed on the different stages of prostate cancer have also been developed for radiopharmaceutical therapy, for example, Delta-like ligand 3 (DLL-3), CD46, and CUB domain-containing protein 1 (CDCP1). Progress is also being made using peptide-based targeting platforms for the gastrin-releasing peptide receptor (GRPR), a well-established membrane-associated receptor expressed in localized and metastatic prostate cancers. Furthermore, mechanism-driven combination therapies appear to be a burgeoning area in the context of preclinical prostate cancer radiotherapeutics. Here, we review the current developments related to the preclinical radiopharmaceutical therapy of prostate cancer. These are summarized in two major topics: (1) therapeutic radionuclides and (2) tumor-targeting approaches using monoclonal antibodies, small molecules, and peptides.
Collapse
Affiliation(s)
- Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
21
|
Kvassheim M, Tornes AJK, Juzeniene A, Stokke C, Revheim MER. Imaging of 212Pb in mice with a clinical SPECT/CT. EJNMMI Phys 2023; 10:47. [PMID: 37603123 PMCID: PMC10442031 DOI: 10.1186/s40658-023-00571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION 212Pb is a promising radionuclide for targeted alpha therapy. Here, the feasibility of visualising the tumour uptake and biodistribution of 212Pb-NG001 in mice with a clinical SPECT/CT scanner was investigated. METHODS A mouse phantom with 212Pb was imaged with a clinical- and a preclinical SPECT/CT scanner. Different acquisition and reconstruction settings were investigated on the clinical system (Siemens Symbia Intevo Bold). Two athymic nude mice carrying PC-3 PIP prostate cancer tumours of 235-830 μl received 1.44 MBq of 212Pb-NG001 and were imaged 2, 6, and 24 h post-injection on the clinical SPECT/CT with a Medium Energy collimator and a 40% energy window centred on 79 keV. All acquisition times were 30 min, except the mouse imaging 24 h post-injection which was 60 min. After the final imaging, the organs were harvested and measured on a gamma counter to give an indication of how much activity was present in organs of interest at the last imaging time point. RESULTS Four volumes in the mouse phantom of ~ 300 μl with 246-303 kBq/ml of 212Pb were distinguishable on images acquired with the clinical SPECT/CT with a high number of reconstruction updates. With the preclinical SPECT, the same volumes were easily distinguished with 49 kBq/ml of 212Pb. Clinical SPECT/CT images of the mice revealed uptake in tumours and bladders 2 h after injection and in tumours containing down to approximately 15 kBq/ml at 6 and 24 h after injection. CONCLUSION Although the preclinical scanner should be used preferentially in biodistribution studies in mice, the clinical SPECT/CT confirmed uptake in small volumes (e.g. ~ 300 μl volume with ~ 250 kBq/ml). Regardless of system, the resolution and sensitivity limits should be carefully determined, otherwise false negative or too low uptakes can be wrongly interpreted.
Collapse
Affiliation(s)
- Monika Kvassheim
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Anna Julie Kjøl Tornes
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- ARTBIO AS, Oslo, Norway
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Mona-Elisabeth R Revheim
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Jiao R, Allen KJH, Malo ME, Yilmaz O, Wilson J, Nelson BJB, Wuest F, Dadachova E. A Theranostic Approach to Imaging and Treating Melanoma with 203Pb/ 212Pb-Labeled Antibody Targeting Melanin. Cancers (Basel) 2023; 15:3856. [PMID: 37568672 PMCID: PMC10416844 DOI: 10.3390/cancers15153856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Metastatic melanoma is a deadly disease that claims thousands of lives each year despite the introduction of several immunotherapeutic agents into the clinic over the past decade, inspiring the development of novel therapeutics and the exploration of combination therapies. Our investigations target melanin pigment with melanin-specific radiolabeled antibodies as a strategy to treat metastatic melanoma. In this study, a theranostic approach was applied by first labeling a chimeric antibody targeting melanin, c8C3, with the SPECT radionuclide 203Pb for microSPECT/CT imaging of C57Bl6 mice bearing B16-F10 melanoma tumors. Imaging was followed by radioimmunotherapy (RIT), whereby the c8C3 antibody is radiolabeled with a 212Pb/212Bi "in vivo generator", which emits cytotoxic alpha particles. Using microSPECT/CT, we collected sequential images of B16-F10 murine tumors to investigate antibody biodistribution. Treatment with the 212Pb/212Bi-labeled c8C3 antibody demonstrated a dose-response in tumor growth rate in the 5-10 µCi dose range when compared to the untreated and radiolabeled control antibody and a significant prolongation in survival. No hematologic or systemic toxicity of the treatment was observed. However, administration of higher doses resulted in a biphasic tumor dose response, with the efficacy of treatment decreasing when the administered doses exceeded 10 µCi. These results underline the need for more pre-clinical investigation of targeting melanin with 212Pb-labeled antibodies before the clinical utility of such an approach can be assessed.
Collapse
Affiliation(s)
- Rubin Jiao
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| | - Kevin J. H. Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| | - Mackenzie E. Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| | - Orhan Yilmaz
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| | - John Wilson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (J.W.); (B.J.B.N.); (F.W.)
| | - Bryce J. B. Nelson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (J.W.); (B.J.B.N.); (F.W.)
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (J.W.); (B.J.B.N.); (F.W.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| |
Collapse
|
23
|
Chapeau D, Koustoulidou S, Handula M, Beekman S, de Ridder C, Stuurman D, de Blois E, Buchatskaya Y, van der Schilden K, de Jong M, Konijnenberg MW, Seimbille Y. [ 212Pb]Pb-eSOMA-01: A Promising Radioligand for Targeted Alpha Therapy of Neuroendocrine Tumors. Pharmaceuticals (Basel) 2023; 16:985. [PMID: 37513897 PMCID: PMC10384862 DOI: 10.3390/ph16070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has been applied to the treatment of neuroendocrine tumors (NETs) for over two decades. However, improvement is still needed, and targeted alpha therapy (TAT) with alpha emitters such as lead-212 (212Pb) represents a promising avenue. A series of ligands based on octreotate was developed. Lead-203 was used as an imaging surrogate for the selection of the best candidate for the studies with lead-212. 203/212Pb radiolabeling and in vitro assays were carried out, followed by SPECT/CT imaging and ex vivo biodistribution in NCI-H69 tumor-bearing mice. High radiochemical yields (≥99%) and purity (≥96%) were obtained for all ligands. [203Pb]Pb-eSOMA-01 and [203Pb]Pb-eSOMA-02 showed high stability in PBS and mouse serum up to 24 h, whereas [203Pb]Pb-eSOMA-03 was unstable in those conditions. All compounds exhibited a nanomolar affinity (2.5-3.1 nM) for SSTR2. SPECT/CT images revealed high tumor uptake at 1, 4, and 24 h post-injection of [203Pb]Pb-eSOMA-01/02. Ex vivo biodistribution studies confirmed that the highest uptake in tumors was observed with [212Pb]Pb-eSOMA-01. [212Pb]Pb-eESOMA-01 displayed the highest absorbed dose in the tumor (35.49 Gy/MBq) and the lowest absorbed dose in the kidneys (121.73 Gy/MBq) among the three tested radioligands. [212Pb]Pb-eSOMA-01 is a promising candidate for targeted alpha therapy of NETs. Further investigations are required to confirm its potential.
Collapse
Affiliation(s)
- Dylan Chapeau
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Sofia Koustoulidou
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Maryana Handula
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Savanne Beekman
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Corrina de Ridder
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Debra Stuurman
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Erik de Blois
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Yulia Buchatskaya
- Nuclear Research & Consultancy Group, 1755 LE Petten, The Netherlands
| | | | - Marion de Jong
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Yann Seimbille
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- TRIUMF, Life Sciences Division, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
24
|
Deshayes E, Fersing C, Thibault C, Roumiguie M, Pourquier P, Houédé N. Innovation in Radionuclide Therapy for the Treatment of Prostate Cancers: Radiochemical Perspective and Recent Therapeutic Practices. Cancers (Basel) 2023; 15:3133. [PMID: 37370743 DOI: 10.3390/cancers15123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer represents the second cause of death by cancer in males in western countries. While early-stage diseases are accessible to surgery and/or external radiotherapy, advanced metastatic prostate cancers are primarily treated with androgen deprivation therapy, to which new generation androgen receptor antagonists or taxane-based chemotherapies are added in the case of tumor relapse. Nevertheless, patients become invariably resistant to castration with a median survival that rarely exceeds 3 years. This fostered the search for alternative strategies, independent of the androgen receptor signaling pathway. In this line, radionuclide therapies may represent an interesting option as they could target either the microenvironment of sclerotic bone metastases with the use of radiopharmaceuticals containing samarium-153, strontium-89 or radium-223 or tumor cells expressing the prostate-specific membrane antigen (PSMA), a protein found at the surface of prostate cancer cells. This review gives highlights the chemical properties of radioligands targeting prostate cancer cells and recapitulates the clinical trials evaluating the efficacy of radionuclide therapies, alone or in combination with other approved treatments, in patients with castration-resistant prostate tumors. It discusses some of the encouraging results obtained, especially the benefit on overall survival that was reported with [177Lu]-PSMA-617. It also addresses the specific requirements for the use of this particular class of drugs, both in terms of medical staff coordination and adapted infrastructures for efficient radioprotection.
Collapse
Affiliation(s)
- Emmanuel Deshayes
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Constance Thibault
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP Centre, 75015 Paris, France
| | - Mathieu Roumiguie
- Urology Department, Andrology and Renal Transplantation, CHU Rangueil, 31059 Toulouse, France
| | - Philippe Pourquier
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
| | - Nadine Houédé
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Medical Oncology Department, Institute de Cancérologie du Gard-CHU Caremeau, 30009 Nîmes, France
| |
Collapse
|
25
|
Li M, Baumhover NJ, Liu D, Cagle BS, Boschetti F, Paulin G, Lee D, Dai Z, Obot ER, Marks BM, Okeil I, Sagastume EA, Gabr M, Pigge FC, Johnson FL, Schultz MK. Preclinical Evaluation of a Lead Specific Chelator (PSC) Conjugated to Radiopeptides for 203Pb and 212Pb-Based Theranostics. Pharmaceutics 2023; 15:414. [PMID: 36839736 PMCID: PMC9966725 DOI: 10.3390/pharmaceutics15020414] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023] Open
Abstract
203Pb and 212Pb have emerged as promising theranostic isotopes for image-guided α-particle radionuclide therapy for cancers. Here, we report a cyclen-based Pb specific chelator (PSC) that is conjugated to tyr3-octreotide via a PEG2 linker (PSC-PEG-T) targeting somatostatin receptor subtype 2 (SSTR2). PSC-PEG-T could be labeled efficiently to purified 212Pb at 25 °C and also to 212Bi at 80 °C. Efficient radiolabeling of mixed 212Pb and 212Bi in PSC-PEG-T was also observed at 80 °C. Post radiolabeling, stable Pb(II) and Bi(III) radiometal complexes in saline were observed after incubating [203Pb]Pb-PSC-PEG-T for 72 h and [212Bi]Bi-PSC-PEG-T for 5 h. Stable [212Pb]Pb-PSC-PEG-T and progeny [212Bi]Bi-PSC-PEG-T were identified after storage in saline for 24 h. In serum, stable radiometal/radiopeptide were observed after incubating [203Pb]Pb-PSC-PEG-T for 55 h and [212Pb]Pb-PSC-PEG-T for 24 h. In vivo biodistribution of [212Pb]Pb-PSC-PEG-T in tumor-free CD-1 Elite mice and athymic mice bearing AR42J xenografts revealed rapid tumor accumulation, excellent tumor retention and fast renal clearance of both 212Pb and 212Bi, with no in vivo redistribution of progeny 212Bi. Single-photon emission computed tomography (SPECT) imaging of [203Pb]Pb-PSC-PEG-T and [212Pb]Pb-PSC-PEG-T in mice also demonstrated comparable accumulation in AR42J xenografts and renal clearance, confirming the theranostic potential of the elementally identical 203Pb/212Pb radionuclide pair.
Collapse
Affiliation(s)
- Mengshi Li
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | | | - Dijie Liu
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Brianna S. Cagle
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | | | | | - Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, Republic of Korea
| | - Zhiming Dai
- Department of Chemistry, The University of Iowa, Iowa City, IA 52240, USA
| | - Ephraim R. Obot
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Brenna M. Marks
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Ibrahim Okeil
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Edwin A. Sagastume
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Frances L. Johnson
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Michael K. Schultz
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
- Department of Radiology, The University of Iowa, Iowa City, IA 52246, USA
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
26
|
Müller D, Herrmann H, Schultz MK, Solbach C, Ettrich T, Prasad V. 203 Pb-VMT-α-NET Scintigraphy of a Patient With Neuroendocrine Tumor. Clin Nucl Med 2023; 48:54-55. [PMID: 36257061 PMCID: PMC9762701 DOI: 10.1097/rlu.0000000000004464] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT In an end-stage midgut neuroendocrine tumor patient with carcinoid heart disease, right ventricular dysfunction, mildly reduced renal function, and refractory to 6 cycles of 177 Lu-HA-DOTATATE therapy, planar, and 22 hours SPECT/CT images were acquired after injection of 224 MBq of 203 Pb-VMT-α-NET to assess the feasibility of performing 212 Pb-VMT-α-NET therapy. A comparison of the 1.5 and 22 hours SPECT/CT images with 68 Ga-HA-DOTATATE PET/CT showed high uptake of 203 Pb-VMT-α-NET in liver metastases matching with the results of the PET/CT investigation.
Collapse
Affiliation(s)
- Dirk Müller
- From the Department of Nuclear Medicine, University of Ulm, Ulm, Germany
| | - Hendrik Herrmann
- From the Department of Nuclear Medicine, University of Ulm, Ulm, Germany
| | | | - Christoph Solbach
- From the Department of Nuclear Medicine, University of Ulm, Ulm, Germany
| | - Thomas Ettrich
- Clinic of Internal Medicine, University of Ulm, Ulm, Germany
| | - Vikas Prasad
- From the Department of Nuclear Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
27
|
Nelson BJB, Wilson J, Schultz MK, Andersson JD, Wuest F. High-yield cyclotron production of 203Pb using a sealed 205Tl solid target. Nucl Med Biol 2023; 116-117:108314. [PMID: 36708660 DOI: 10.1016/j.nucmedbio.2023.108314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION 203Pb (t1/2 = 51.9 h, 279 keV (81 %)) is a diagnostic SPECT imaging radionuclide ideally suited for theranostic applications in combination with 212Pb for targeted alpha particle therapy. Our objectives were to develop a high-yield solid target 203Pb cyclotron production route using isotopically enriched 205Tl target material and the 205Tl(p,3n)203Pb reaction as an alternative to lower energy production via the 203Tl(p,n)203Pb reaction. METHODS 250 mg 205Tl metal (99.9 % isotopic enrichment) was pressed using a hardened stainless steel die. Aluminum target discs were machined with a central depression and annulus groove. The flattened 205Tl pellet was placed into the central depression of the Al disc and a circle of indium wire was laid in the machined annulus surrounding the pellet. An aluminum foil cover was then pressed onto the target disc to create an airtight bond. Targets were irradiated at 23.3 MeV for up to 516 min on a TR-24 cyclotron at currents up to 60 μA to produce 203Pb via the 205Tl(p,3n)203Pb nuclear reaction. Following a cool-down period of >12 h, the target was removed and 205Tl dissolved in 4 M HNO3. A NEPTIS Mosaic-LC synthesis unit performed automated separation using Eichrom Pb resin, and 203Pb was eluted using 8 M HCl or 1 M NH4OAc. 205Tl was diverted to a vial for recovery in an electrolytic cell. 203Pb product radionuclidic purity was assessed by HPGe gamma spectroscopy, while elemental purity was assessed by ICP-OES. Radiolabeling and stability studies were performed with PSC, TCMC, and DOTA chelators, and 203Pb incorporation was verified by radio-TLC analysis. RESULTS Cyclotron irradiations performed at 60 μA proton beam current and 23.3 MeV (205Tl incident energy) had a 203Pb saturated yield of 4658 ± 62 MBq/μA (n = 3). Automated NEPTIS separation took <4 h from the start of target dissolution to product elution, yielding >85 % decay-corrected [203Pb]PbCl2 with a radionuclidic purity of >99.9 %. Purified [203Pb]PbCl2 yields of up to 12 GBq 203Pb were attained (15.8 GBq at EOB). The [203Pb]PbCl2 and [203Pb]Pb(OAc)2 products contained no detectable radionuclidic impurities besides 201Pb (<0.1 %), and <0.4 ppm stable Pb. 205Tl metal was recovered with a 92 % batch yield. Aliquots of 100 μL [203Pb]Pb(OAc)2 were used for radiolabeling PSC-Bn-NCS, TCMC-NCS, and DOTA-NCS chelators at pH 4.5 and 22 °C for 30 min, with maximum respective molar activities of 461 ± 30 GBq/μmol, 195 ± 37 GBq/μmol, and 83 ± 12 GBq/μmol. PSC, TCMC, and DOTA chelators exhibited >99.9 % incorporation after a 120-hour incubation in human serum at 37 °C. CONCLUSIONS Nuclear medicine centers with access to higher energy cyclotrons can produce large 203Pb activities sufficient for clinical applications, with a convenient separation technique producing highly pure [203Pb]PbCl2 or [203Pb]Pb(OAc)2 for direct radiolabeling. This represents an attractive route to produce 203Pb for diagnostic SPECT imaging alongside 212Pb targeted alpha particle therapy. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Our high-yield 203Pb production technique significantly enhances 203Pb production capabilities to meet the growing preclinical and clinical demand for 203Pb radiopharmaceuticals alongside 212Pb target alpha particle therapy.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - John Wilson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Michael K Schultz
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; Department of Radiology, The University of Iowa, Iowa City, IA 52240, USA
| | - Jan D Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
28
|
Wang L, Song L, Ma L, Zhang H, Wang Y, Ma Y, Dai X. A method for determining 212Bi by TDCR Cherenkov counting. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
30
|
Tornes AJK, Stenberg VY, Larsen RH, Bruland ØS, Revheim ME, Juzeniene A. Targeted alpha therapy with the 224Ra/ 212Pb-TCMC-TP-3 dual alpha solution in a multicellular tumor spheroid model of osteosarcoma. Front Med (Lausanne) 2022; 9:1058863. [PMID: 36507500 PMCID: PMC9727293 DOI: 10.3389/fmed.2022.1058863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Osteosarcoma patients with overt metastases at primary diagnosis have a 5-year survival rate of less than 20%. TP-3 is a murine IgG2b monoclonal antibody with high affinity for an epitope residing on the p80 osteosarcoma cell surface membrane antigen. The tumor-associated antigen p80 is overexpressed in osteosarcomas, and has very low normal tissue expression. We propose a novel dual alpha targeting solution containing two radionuclides from the same decay chain, including the bone-seeking 224Ra, and cancer cell-surface seeking 212Pb-TCMC-TP-3 for the treatment of osteoblastic bone cancers, circulating cancer cells and micrometastases. In this in vitro study, the cytotoxic effects of 212Pb-TCMC-TP-3 (single alpha solution) and 224Ra/212Pb-TCMC-TP-3 (dual alpha solution) were investigated in a multicellular spheroid model mimicking micrometastatic disease in osteosarcoma. OHS spheroids with diameters of 253 ± 98 μm treated with 4.5, 2.7, and 3.3 kBq/ml of 212Pb-TCMC-TP-3 for 1, 4, and 24 h, respectively, were disintegrated within 3 weeks. The 212Pb-TCMC-TP-3 induced a 7-fold delay in spheroid doubling time compared to a 28-times higher dose with the non-specific 212Pb-TCMC-rituximab. The 224Ra/212Pb-TCMC-TP-3 completely disintegrated spheroids with diameters of 218-476 μm within 3 and 2 weeks after 4 and 24 h incubation with 5 kBq/ml, respectively. Treatment with 1 kBq/ml of 224Ra/212Pb-TCMC-TP-3 for 24 h caused an 11.4-fold reduction in spheroid viability compared with unconjugated 224Ra/212Pb. The single and dual alpha solutions with TP-3 showed cytotoxicity in spheroids of clinically relevant size, which warrant further testing of the dual alpha solution using in vivo osteosarcoma models.
Collapse
Affiliation(s)
- Anna Julie Kjøl Tornes
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,ArtBio AS, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,*Correspondence: Anna Julie Kjøl Tornes,
| | - Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,ArtBio AS, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
O'Donoghue J, Zanzonico P, Humm J, Kesner A. Dosimetry in Radiopharmaceutical Therapy. J Nucl Med 2022; 63:1467-1474. [PMID: 36192334 DOI: 10.2967/jnumed.121.262305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
The application of radiopharmaceutical therapy for the treatment of certain diseases is well established, and the field is expanding. New therapeutic radiopharmaceuticals have been developed in recent years, and more are in the research pipeline. Concurrently, there is growing interest in the use of internal dosimetry as a means of personalizing, and potentially optimizing, such therapy for patients. Internal dosimetry is multifaceted, and the current state of the art is discussed in this continuing education article. Topics include the context of dosimetry, internal dosimetry methods, the advantages and disadvantages of incorporating dosimetry calculations in radiopharmaceutical therapy, a description of the workflow for implementing patient-specific dosimetry, and future prospects in the field.
Collapse
Affiliation(s)
- Joe O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
32
|
Albumin-Mediated Size Exclusion Chromatography: The Apparent Molecular Weight of PSMA Radioligands as Novel Parameter to Estimate Their Blood Clearance Kinetics. Pharmaceuticals (Basel) 2022; 15:ph15091161. [PMID: 36145382 PMCID: PMC9500755 DOI: 10.3390/ph15091161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A meticulously adjusted pharmacokinetic profile and especially fine-tuned blood clearance kinetics are key characteristics of therapeutic radiopharmaceuticals. We, therefore, aimed to develop a method that allowed the estimation of blood clearance kinetics in vitro. For this purpose, 177Lu-labeled PSMA radioligands were subjected to a SEC column with human serum albumin (HSA) dissolved in a mobile phase. The HSA-mediated retention time of each PSMA ligand generated by this novel 'albumin-mediated size exclusion chromatography' (AMSEC) was converted to a ligand-specific apparent molecular weight (MWapp), and a normalization accounting for unspecific interactions between individual radioligands and the SEC column matrix was applied. The resulting normalized MWapp,norm. could serve to estimate the blood clearance of renally excreted radioligands by means of their influence on the highly size-selective process of glomerular filtration (GF). Based on the correlation between MW and the glomerular sieving coefficients (GSCs) of a set of plasma proteins, GSCcalc values were calculated to assess the relative differences in the expected GF/blood clearance kinetics in vivo and to select lead candidates among the evaluated radioligands. Significant differences in the MWapp,norm. and GSCcalc values, even for stereoisomers, were found, indicating that AMSEC might be a valuable and high-resolution tool for the preclinical selection of therapeutic lead compounds for clinical translation.
Collapse
|
33
|
Orcutt KD, Henry KE, Habjan C, Palmer K, Heimann J, Cupido JM, Gottumukkala V, Cissell DD, Lyon MC, Hussein AI, Liu D, Li M, Johnson FL, Schultz MK. Dosimetry of [ 212Pb]VMT01, a MC1R-Targeted Alpha Therapeutic Compound, and Effect of Free 208Tl on Tissue Absorbed Doses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185831. [PMID: 36144563 PMCID: PMC9504749 DOI: 10.3390/molecules27185831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
[212Pb]VMT01 is a melanocortin 1 receptor (MC1R) targeted theranostic ligand in clinical development for alpha particle therapy for melanoma. 212Pb has an elementally matched gamma-emitting isotope 203Pb; thus, [203Pb]VMT01 can be used as an imaging surrogate for [212Pb]VMT01. [212Pb]VMT01 human serum stability studies have demonstrated retention of the 212Bi daughter within the chelator following beta emission of parent 212Pb. However, the subsequent alpha emission from the decay of 212Bi into 208Tl results in the generation of free 208Tl. Due to the 10.64-hour half-life of 212Pb, accumulation of free 208Tl in the injectate will occur. The goal of this work is to estimate the human dosimetry for [212Pb]VMT01 and the impact of free 208Tl in the injectate on human tissue absorbed doses. Human [212Pb]VMT01 tissue absorbed doses were estimated from murine [203Pb]VMT01 biodistribution data, and human biodistribution values for 201Tl chloride (a cardiac imaging agent) from published data were used to estimate the dosimetry of free 208Tl. Results indicate that the dose-limiting tissues for [212Pb]VMT01 are the red marrow and the kidneys, with estimated absorbed doses of 1.06 and 8.27 mGyRBE = 5/MBq. The estimated percent increase in absorbed doses from free 208Tl in the injectate is 0.03% and 0.09% to the red marrow and the kidneys, respectively. Absorbed doses from free 208Tl result in a percent increase of no more than 1.2% over [212Pb]VMT01 in any organ or tissue. This latter finding indicates that free 208Tl in the [212Pb]VMT01 injectate will not substantially impact estimated tissue absorbed doses in humans.
Collapse
Affiliation(s)
- Kelly D. Orcutt
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA
| | | | | | | | | | | | | | | | | | | | - Dijie Liu
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA
| | - Mengshi Li
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA
| | | | - Michael K. Schultz
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
- Departments of Radiology and Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)-335-8017
| |
Collapse
|
34
|
Stokke C, Kvassheim M, Blakkisrud J. Radionuclides for Targeted Therapy: Physical Properties. Molecules 2022; 27:5429. [PMID: 36080198 PMCID: PMC9457625 DOI: 10.3390/molecules27175429] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
A search in PubMed revealed that 72 radionuclides have been considered for molecular or functional targeted radionuclide therapy. As radionuclide therapies increase in number and variations, it is important to understand the role of the radionuclide and the various characteristics that can render it either useful or useless. This review focuses on the physical characteristics of radionuclides that are relevant for radionuclide therapy, such as linear energy transfer, relative biological effectiveness, range, half-life, imaging properties, and radiation protection considerations. All these properties vary considerably between radionuclides and can be optimised for specific targets. Properties that are advantageous for some applications can sometimes be drawbacks for others; for instance, radionuclides that enable easy imaging can introduce more radiation protection concerns than others. Similarly, a long radiation range is beneficial in targets with heterogeneous uptake, but it also increases the radiation dose to tissues surrounding the target, and, hence, a shorter range is likely more beneficial with homogeneous uptake. While one cannot select a collection of characteristics as each radionuclide comes with an unchangeable set, all the 72 radionuclides investigated for therapy-and many more that have not yet been investigated-provide numerous sets to choose between.
Collapse
Affiliation(s)
- Caroline Stokke
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4959 Nydalen, 0424 Oslo, Norway
- Department of Physics, University of Oslo, Problemveien 7, 0315 Oslo, Norway
| | - Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4959 Nydalen, 0424 Oslo, Norway
- Division of Clinical Medicine, University of Oslo, Problemveien 7, 0315 Oslo, Norway
| | - Johan Blakkisrud
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4959 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
35
|
Kvassheim M, Revheim MER, Stokke C. Quantitative SPECT/CT imaging of lead-212: a phantom study. EJNMMI Phys 2022; 9:52. [PMID: 35925521 PMCID: PMC9352840 DOI: 10.1186/s40658-022-00481-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background Lead-212 (212Pb) is a promising radionuclide for targeted therapy, as it decays to α-particle emitter bismuth-212 (212Bi) via β-particle emission. This extends the problematic short half-life of 212Bi. In preparation for upcoming clinical trials with 212Pb, the feasibility of quantitative single photon-emission computed tomography/computed tomography (SPECT/CT) imaging of 212Pb was studied, with the purpose to explore the possibility of individualised patient dosimetric estimation. Results Both acquisition parameters (combining two different energy windows and two different collimators) and iterative reconstruction parameters (varying the iterations x subsets between 10 × 1, 15 × 1, 30 × 1, 30 × 2, 30 × 3, 30 × 4, and 30 × 30) were investigated to evaluate visual quality and quantitative uncertainties based on phantom images. Calibration factors were determined using a homogeneous phantom and were stable when the total activity imaged exceeded 1 MBq for all the imaging protocols studied, but they increased sharply as the activity decayed below 1 MBq. Both a 20% window centred on 239 keV and a 40% window on 79 keV, with dual scatter windows of 5% and 20%, respectively, could be used. Visual quality at the lowest activity concentrations was improved with the High Energy collimator and the 79 keV energy window. Fractional uncertainty in the activity quantitation, including uncertainties from calibration factors and small volume effects, in spheres of 2.6 ml in the NEMA phantom was 16–21% for all protocols with the 30 × 4 filtered reconstruction except the High Energy collimator with the 239 keV energy window. Quantitative analysis was possible both with and without filters, but the visual quality of the images improved with a filter. Conclusions Only minor differences were observed between the imaging protocols which were all determined suitable for quantitative imaging of 212Pb. As uncertainties generally decreased with increasing iterative updates in the reconstruction and recovery curves did not converge with few iterations, a high number of reconstruction updates are recommended for quantitative imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00481-z.
Collapse
Affiliation(s)
- Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mona-Elisabeth R Revheim
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Piwowarska-Bilska H, Kurkowska S, Birkenfeld B. Individualization of Radionuclide Therapies: Challenges and Prospects. Cancers (Basel) 2022; 14:cancers14143418. [PMID: 35884478 PMCID: PMC9316481 DOI: 10.3390/cancers14143418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Currently, patient-specific treatment plans and dosimetry calculations are not routinely performed for radionuclide therapies. In external beam radiotherapy, it is quite the opposite. As a result, a small fraction of patients receives optimal radioactivity. This conservative approach provides “radiation safety” to healthy tissues but delivers a lower than indicated absorbed dose to the tumors, resulting in a lower response rate and a higher disease relapse rate. Evidence shows that better and more predictable outcomes can be achieved with patient-individualized dose assessment. Therefore, the incorporation of individual planning into radionuclide therapies is a high priority for nuclear medicine physicians and medical physicists alike. Internal dosimetry is used in tumor therapy to optimize the absorbed dose to the target tissue. The main reasons for the difficulties in incorporating patients’ internal dosimetry into routine clinical practice are discussed. The article presents the prospects for the routine implementation of personalized radionuclide therapies. Abstract The article presents the problems of clinical implementation of personalized radioisotope therapy. The use of radioactive drugs in the treatment of malignant and benign diseases is rapidly expanding. Currently, in the majority of nuclear medicine departments worldwide, patients receive standard activities of therapeutic radiopharmaceuticals. Intensively conducted clinical trials constantly provide more evidence of a close relationship between the dose of radiopharmaceutical absorbed in pathological tissues and the therapeutic effect of radioisotope therapy. Due to the lack of individual internal dosimetry (based on the quantitative analysis of a series of diagnostic images) before or during the treatment, only a small fraction of patients receives optimal radioactivity. The vast majority of patients receive too-low doses of ionizing radiation to the target tissues. This conservative approach provides “radiation safety” to healthy tissues, but also delivers lower radiopharmaceutical activity to the neoplastic tissue, resulting in a low level of response and a higher relapse rate. The article presents information on the currently used radionuclides in individual radioisotope therapies and on radionuclides newly introduced to the therapeutic market. It discusses the causes of difficulties with the implementation of individualized radioisotope therapies as well as possible changes in the current clinical situation.
Collapse
|
37
|
Ingham A, Wharton L, El Sayed T, Southcott L, McNeil BL, Ezhova MB, Patrick BO, Jaraquemada-Peláez MDG, Orvig C. H 2ampa─Versatile Chelator for [ 203Pb]Pb 2+, [ 213Bi]Bi 3+, and [ 225Ac]Ac 3. Inorg Chem 2022; 61:9119-9137. [PMID: 35678752 DOI: 10.1021/acs.inorgchem.2c00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new decadentate chelator, H2ampa, was designed to be a potential radiopharmaceutical chelator component. The chelator involves both amide and picolinate functional groups on a large non-macrocyclic, ether-bridged backbone. With its large scaffold, H2ampa was paired with [nat/203Pb]Pb2+, [nat/213Bi]Bi3+, and natLa3+/[225Ac]Ac3+ ions. Nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry were used to study the non-radioactive metal complexes. A single crystal of [Bi(ampa)](NO3) was obtained; its asymmetric, 10-coordinate complex structure was revealed by X-ray diffraction. Optimal conformations of the metal complexes were assessed by density functional theory studies to provide further structural information. Solution studies providing thermodynamic insights into metal complex formation revealed H2ampa coordinated Bi3+, Pb2+, and La3+ ions to obtain pM values of 26, 14.8, and 15.1, respectively. Preliminary concentration-dependent radiolabeling experiments were carried out between H2ampa and three different radiometals to evaluate their compatibility for radiopharmaceutical applications. The chelator radiolabeled [203Pb]Pb2+, [213Bi]Bi3+, and [225Ac]Ac3+ in short reaction times (7-30 min), at dilute concentrations, and under mild conditions. Thus, H2ampa was proven to be a versatile chelator able to well coordinate a small range of radiometals frequently considered to be alpha therapeutic candidates.
Collapse
Affiliation(s)
- Aidan Ingham
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Luke Wharton
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Tarek El Sayed
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lily Southcott
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Brooke L McNeil
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada
| | - Maria B Ezhova
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
38
|
Stenberg VY, Tornes AJK, Nilsen HR, Revheim ME, Bruland ØS, Larsen RH, Juzeniene A. Factors Influencing the Therapeutic Efficacy of the PSMA Targeting Radioligand 212Pb-NG001. Cancers (Basel) 2022; 14:cancers14112784. [PMID: 35681766 PMCID: PMC9179904 DOI: 10.3390/cancers14112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a protein overexpressed in metastatic castration-resistant prostate cancer and a promising target for targeted radionuclide therapy. PSMA-targeted alpha therapy is of growing interest due to the high-emission energy and short range of alpha particles, resulting in a prominent cytotoxic potency. This study assesses the influence of various factors on the in vitro and in vivo therapeutic efficacy of the alpha particle generating PSMA-targeting radioligand 212Pb-NG001. Abstract This study aimed to determine the influence of cellular PSMA expression, radioligand binding and internalization, and repeated administrations on the therapeutic effects of the PSMA-targeting radioligand 212Pb-NG001. Cellular binding and internalization, cytotoxicity, biodistribution, and the therapeutic efficacy of 212Pb-NG001 were investigated in two human prostate cancer cell lines with different PSMA levels: C4-2 (PSMA+) and PC-3 PIP (PSMA+++). Despite 10-fold higher PSMA expression on PC-3 PIP cells, cytotoxicity and therapeutic efficacy of the radioligand was only 1.8-fold better than for the C4-2 model, possibly explained by lower cellular internalization and less blood-rich stroma in PC-3 PIP xenografts. Mice bearing subcutaneous PC-3 PIP xenografts were treated with 0.2, 0.4, and 0.8 MBq of 212Pb-NG001 that resulted in therapeutic indexes of 2.7, 3.0, and 3.5, respectively. A significant increase in treatment response was observed in mice that received repeated injections compared to the corresponding single dose (therapeutic indexes of 3.6 for 2 × 0.2 MBq and 4.4 for 2 × 0.4 MBq). The results indicate that 212Pb-NG001 can induce therapeutic effects at clinically transferrable doses, both in the C4-2 model that resembles solid tumors and micrometastases with natural PSMA expression and in the PC-3 PIP model that mimics poorly vascularized metastases.
Collapse
Affiliation(s)
- Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Correspondence: ; Tel.: +47-9012-8434
| | - Anna Julie Kjøl Tornes
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
| | - Hogne Røed Nilsen
- Department of Pathology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
| |
Collapse
|
39
|
Tronchin S, Forster JC, Hickson K, Bezak E. Dosimetry in targeted alpha therapy. A systematic review: current findings and what is needed. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fe0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Objective. A systematic review of dosimetry in Targeted Alpha Therapy (TAT) has been performed, identifying the common issues. Approach. The systematic review was performed in accordance with the PRISMA guidelines, and the literature was searched using the Scopus and PubMed databases. Main results. From the systematic review, three key points should be considered when performing dosimetry in TAT. (1) Biodistribution/Biokinetics: the accuracy of the biodistribution data is a limit to accurate dosimetry in TAT. The biodistribution of alpha-emitting radionuclides throughout the body is difficult to image directly, with surrogate radionuclide imaging, blood/faecal sampling, and animal studies able to provide information. (2) Daughter radionuclides: the decay energy of the alpha-emissions is sufficient to break the bond to the targeting vector, resulting in a release of free daughter radionuclides in the body. Accounting for daughter radionuclide migration is essential. (3) Small-scale dosimetry and microdosimetry: due to the short path length and heterogeneous distribution of alpha-emitters at the target site, small-scale/microdosimetry are important to account for the non-uniform dose distribution in a target region, organ or cell and for assessing the biological effect of alpha-particle radiation. Significance. TAT is a form of cancer treatment capable of delivering a highly localised dose to the tumour environment while sparing the surrounding healthy tissue. Dosimetry is an important part of treatment planning and follow up. Being able to accurately predict the radiation dose to the target region and healthy organs could guide the optimal prescribed activity. Detailed dosimetry models accounting for the three points mentioned above will help give confidence in and guide the clinical application of alpha-emitting radionuclides in targeted cancer therapy.
Collapse
|
40
|
Kokov KV, Egorova BV, German MN, Klabukov ID, Krasheninnikov ME, Larkin-Kondrov AA, Makoveeva KA, Ovchinnikov MV, Sidorova MV, Chuvilin DY. 212Pb: Production Approaches and Targeted Therapy Applications. Pharmaceutics 2022; 14:pharmaceutics14010189. [PMID: 35057083 PMCID: PMC8777968 DOI: 10.3390/pharmaceutics14010189] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Over the last decade, targeted alpha therapy has demonstrated its high effectiveness in treating various oncological diseases. Lead-212, with a convenient half-life of 10.64 h, and daughter alpha-emitter short-lived 212Bi (T1/2 = 1 h), provides the possibility for the synthesis and purification of complex radiopharmaceuticals with minimum loss of radioactivity during preparation. As a benefit for clinical implementation, it can be milked from a radionuclide generator in different ways. The main approaches applied for these purposes are considered and described in this review, including chromatographic, solution, and other techniques to isolate 212Pb from its parent radionuclide. Furthermore, molecules used for lead’s binding and radiochemical features of preparation and stability of compounds labeled with 212Pb are discussed. The results of preclinical studies with an estimation of therapeutic and tolerant doses as well as recently initiated clinical trials of targeted radiopharmaceuticals are presented.
Collapse
Affiliation(s)
- Konstantin V. Kokov
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Bayirta V. Egorova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: or
| | - Marina N. German
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Ilya D. Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249036 Obninsk, Russia;
| | - Michael E. Krasheninnikov
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Antonius A. Larkin-Kondrov
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Kseniya A. Makoveeva
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Michael V. Ovchinnikov
- Laboratory of Peptide Synthesis, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (M.V.O.); (M.V.S.)
| | - Maria V. Sidorova
- Laboratory of Peptide Synthesis, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (M.V.O.); (M.V.S.)
| | - Dmitry Y. Chuvilin
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| |
Collapse
|
41
|
Theranostic radiopharmacy for the nuclear medicine and molecular imaging. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Radiobiology of Targeted Alpha Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Barca C, Griessinger CM, Faust A, Depke D, Essler M, Windhorst AD, Devoogdt N, Brindle KM, Schäfers M, Zinnhardt B, Jacobs AH. Expanding Theranostic Radiopharmaceuticals for Tumor Diagnosis and Therapy. Pharmaceuticals (Basel) 2021; 15:13. [PMID: 35056071 PMCID: PMC8780589 DOI: 10.3390/ph15010013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Radioligand theranostics (RT) in oncology use cancer-type specific biomarkers and molecular imaging (MI), including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and planar scintigraphy, for patient diagnosis, therapy, and personalized management. While the definition of theranostics was initially restricted to a single compound allowing visualization and therapy simultaneously, the concept has been widened with the development of theranostic pairs and the combination of nuclear medicine with different types of cancer therapies. Here, we review the clinical applications of different theranostic radiopharmaceuticals in managing different tumor types (differentiated thyroid, neuroendocrine prostate, and breast cancer) that support the combination of innovative oncological therapies such as gene and cell-based therapies with RT.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Christoph M. Griessinger
- Roche Innovation Center, Early Clinical Development Oncology, Roche Pharmaceutical Research and Early Development, CH-4070 Basel, Switzerland;
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Dominic Depke
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, D-53127 Bonn, Germany;
| | - Albert D. Windhorst
- Department Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, B-1090 Brussel, Belgium;
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK;
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
- Biomarkers and Translational Technologies, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Geriatrics and Neurology, Johanniter Hospital, D-53113 Bonn, Germany
- Centre of Integrated Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
44
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|
45
|
King AP, Lin FI, Escorcia FE. Why bother with alpha particles? Eur J Nucl Med Mol Imaging 2021; 49:7-17. [PMID: 34175980 DOI: 10.1007/s00259-021-05431-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
The approval of 223RaCl2 for cancer therapy in 2013 has heralded a resurgence of interest in the development of α-particle emitting radiopharmaceuticals. In the last decade, over a dozen α-emitting radiopharmaceuticals have entered clinical trials, spawned by strong preclinical studies. In this article, we explore the potential role of α-particle therapy in cancer treatment. We begin by providing a background for the basic principles of therapy with α-emitters, and we explore recent breakthroughs in therapy with α-emitting radionuclides, including conjugates with small molecules and antibodies. Finally, we discuss some outstanding challenges to the clinical adoption of α-therapies and potential strategies to address them.
Collapse
Affiliation(s)
- A Paden King
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA
| | - Frank I Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20817, USA.
| |
Collapse
|
46
|
Durand-Panteix S, Monteil J, Sage M, Garot A, Clavel M, Saidi A, Torgue J, Cogne M, Quelven I. Preclinical study of 212Pb alpha-radioimmunotherapy targeting CD20 in non-Hodgkin lymphoma. Br J Cancer 2021; 125:1657-1665. [PMID: 34671126 DOI: 10.1038/s41416-021-01585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Despite therapeutic advances, Non-Hodgkin lymphoma (NHL) relapses can occur. The development of radioimmunotherapy (RIT) with α-emitters is an attractive alternative. In this study, we investigated the potential of α-RIT in conjunction with 212Pb-rituximab for the treatment of NHL. METHODS EL4-hCD20-Luc cells (mouse lymphoma cell line) were used for in vitro and in vivo studies. Biodistribution and efficacy studies were performed on C57BL/6 mice injected intravenously with 25 × 103 cells. RESULTS 212Pb-rituximab (0.925-7.4 kBq/mL) inhibit proliferation of EL4-hCD20-Luc cells in vitro. Biodistribution of 203/212Pb-rituximab in mice showed a significant tumour uptake and suggested that the liver, spleen, and kidneys were the organs at risk. For efficacy studies, mice were treated at either 11 days (early stage) or 20-30 days after injection of tumour cells (late stage). Treatment with 277.5 kBq 212Pb-rituximab significantly prolonged survival. Even at an advanced tumour stage, significant tumour regression occurred, with an increase in the median survival time to 28 days, compared with 9 days in the controls. CONCLUSIONS These results show the efficacy of 212Pb-rituximab in a murine syngeneic lymphoma model, in terms of significant tumour regression and increased survival, thereby highlighting the potency of α-RIT for the treatment of NHL.
Collapse
Affiliation(s)
- Stéphanie Durand-Panteix
- CNRS-UMR7276 - INSERM U1262, Contrôle de la réponse immune B et lymphoproliférations, Limoges University, Limoges, France
| | - Jacques Monteil
- CNRS-UMR7276 - INSERM U1262, Contrôle de la réponse immune B et lymphoproliférations, Limoges University, Limoges, France.,Nuclear Medicine Department, Limoges University Hospital, Limoges, France
| | - Magali Sage
- CNRS-UMR7276 - INSERM U1262, Contrôle de la réponse immune B et lymphoproliférations, Limoges University, Limoges, France
| | - Armand Garot
- Nuclear Medicine Department, Limoges University Hospital, Limoges, France
| | - Marie Clavel
- CNRS-UMR7276 - INSERM U1262, Contrôle de la réponse immune B et lymphoproliférations, Limoges University, Limoges, France
| | | | | | - Michel Cogne
- CNRS-UMR7276 - INSERM U1262, Contrôle de la réponse immune B et lymphoproliférations, Limoges University, Limoges, France.
| | - Isabelle Quelven
- CNRS-UMR7276 - INSERM U1262, Contrôle de la réponse immune B et lymphoproliférations, Limoges University, Limoges, France. .,Nuclear Medicine Department, Limoges University Hospital, Limoges, France. .,ToNIC, Toulouse NeuroImaging Center - INSERM U1214, Toulouse, France.
| |
Collapse
|
47
|
Miyahira AK, Soule HR. The History of Prostate-Specific Membrane Antigen as a Theranostic Target in Prostate Cancer: The Foundational Role of the Prostate Cancer Foundation. J Nucl Med 2021; 63:331-338. [PMID: 34675109 DOI: 10.2967/jnumed.121.262997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate-Specific Membrane Antigen (PSMA) is a credentialed imaging and therapy (theranostic) target for the detection and treatment of prostate cancer. PSMA-targeted positron emission tomography (PET) imaging and molecular radiotherapy (MRT) are promising evolving technologies that will improve the outcomes of prostate cancer patients. In anticipation of this new era in prostate cancer theranostics, this article will review the history of PSMA from discovery, through early and late stage clinical trials. Since 1993, the Prostate Cancer Foundation (PCF) has funded critical and foundational PSMA research that established this theranostic revolution. The history and role of PCF funding in this field will be discussed.
Collapse
|
48
|
Ingham A, Kostelnik TI, McNeil BL, Patrick BO, Choudhary N, Jaraquemada-Peláez MDG, Orvig C. Getting a lead on Pb 2+-amide chelators for 203/212Pb radiopharmaceuticals. Dalton Trans 2021; 50:11579-11595. [PMID: 34352061 DOI: 10.1039/d1dt01653a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amide-based chelators DTPAm, EGTAm and ampam were synthesized to investigate which chelator most ideally coordinates [nat/203Pb]Pb2+ ions for potential radiopharmaceutical applications. 1H NMR spectroscopy was used to study each metal-ligand complex in the solution state. The 1H NMR spectrum of [Pb(DTPAm)]2+ revealed minimal isomerization and fluxional behaviour compared to [Pb(EGTAm)]2+ and [Pb(ampam)]2+, both of which showed fewer spectral changes indicative of less static behaviour. The solid-state coordination properties of each complex were also examined from single crystal structures that were studied by X-ray diffraction (XRD). In the solid-state, octadentate DTPAm coordinated Pb2+ to form an eight-coordinate hemidirected complex; octadentate EGTAm coordinated Pb2+ forming a ten-coordinate holodirected complex with a bidentate NO3- ion also coordinated to the metal centre; decadentate ampam completely encapsulated the Pb2+ ion to form a ten-coordinate holodirected complex with a C2 axis of symmetry. Potentiometric titrations were carried out to assess the thermodynamic stability of each metal-ligand complex. The pM values obtained for [Pb(DTPAm)]2+, [Pb(EGTAm)]2+ and [Pb(ampam)]2+ were 9.7, 7.2 and 10.2, respectively. The affinity of each chelator for Pb2+ ions was tested by [203Pb]Pb2+ radiolabeling studies to evaluate their prospects as chelators for [203/212Pb]Pb2+-based radiopharmaceuticals. DTPAm radiolabeled [203Pb]Pb2+ ions achieving molar activities as high as 3.5 MBq μmol-1 within 15 minutes, at 25 °C, whereas EGTAm and ampam produced lower molar activities of 0.25 MBq μmol-1 within 30 minutes, at 37 °C. EGTAm and ampam were therefore deemed unsuitable for [203/212Pb]Pb2+-based radiopharmaceutical applications, while DTPAm warrants further studies.
Collapse
Affiliation(s)
- Aidan Ingham
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6 T 1Z1, Canada.
| | | | | | | | | | | | | |
Collapse
|
49
|
Corroyer-Dulmont A, Jaudet C, Frelin AM, Fantin J, Weyts K, Vallis KA, Falzone N, Sibson NR, Chérel M, Kraeber-Bodéré F, Batalla A, Bardet S, Bernaudin M, Valable S. Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice. Front Oncol 2021; 11:714514. [PMID: 34504791 PMCID: PMC8423367 DOI: 10.3389/fonc.2021.714514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Brain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue. New targeted therapies, for an earlier and/or more specific treatment of the tumor and its microenvironment, are needed. Radioimmunotherapy (RIT), a combination of a radionuclide to a specific antibody, appears to be a promising tool. Inflammation, which is involved in multiple steps, including the early phase, of BM development is attractive as a relevant target for RIT. This review will focus on the (1) early biomarkers of inflammation in BM pertinent for RIT, (2) state of the art studies on RIT for BM, and (3) the importance of dosimetry to RIT in BM. These two last points will be addressed in comparison to the conventional EBRT treatment, particularly with respect to the balance between tumor control and healthy tissue complications. Finally, because new diagnostic imaging techniques show a potential for the detection of BM at an early stage of the disease, we focus particularly on this therapeutic window.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Medical Physics Department, CLCC François Baclesse, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Cyril Jaudet
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Anne-Marie Frelin
- Grand accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - Jade Fantin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Kathleen Weyts
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Katherine A. Vallis
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Nicola R. Sibson
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michel Chérel
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Françoise Kraeber-Bodéré
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Alain Batalla
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Stéphane Bardet
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| |
Collapse
|
50
|
El Fakiri M, Geis NM, Ayada N, Eder M, Eder AC. PSMA-Targeting Radiopharmaceuticals for Prostate Cancer Therapy: Recent Developments and Future Perspectives. Cancers (Basel) 2021; 13:cancers13163967. [PMID: 34439121 PMCID: PMC8393521 DOI: 10.3390/cancers13163967] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary One of the most frequently diagnosed cancer in men is adenocarcinoma of the prostate. Once the disease is metastatic, only very limited treatment options are available, resulting in a very short median survival time of 13 months; however, this reality is gradually changing due to the discovery of prostate-specific membrane antigen (PSMA), a protein that is present in cancerous prostate tissue. Researchers have developed pharmaceuticals specific for PSMA, ranging from antibodies (mAb) to low-molecular weight molecules coupled to beta minus and alpha-emitting radionuclides for their use in targeted radionuclide therapy (TRT). TRT offers the possibility of selectively removing cancer tissue via the emission of radiation or radioactive particles within the tumour. In this article, the major milestones in PSMA ligand research and the therapeutic developments are summarised, together with a future perspective on the enhancement of current therapeutic approaches. Abstract Prostate cancer (PC) is the second most common cancer among men, with 1.3 million yearly cases worldwide. Among those cancer-afflicted men, 30% will develop metastases and some will progress into metastatic castration-resistant prostate cancer (mCRPC), which is associated with a poor prognosis and median survival time that ranges from nine to 13 months. Nevertheless, the discovery of prostate specific membrane antigen (PSMA), a marker overexpressed in the majority of prostatic cancerous tissue, revolutionised PC care. Ever since, PSMA-targeted radionuclide therapy has gained remarkable international visibility in translational oncology. Furthermore, on first clinical application, it has shown significant influence on therapeutic management and patient care in metastatic and hormone-refractory prostate cancer, a disease that previously had remained immedicable. In this article, we provide a general overview of the main milestones in the development of ligands for PSMA-targeted radionuclide therapy, ranging from the firstly developed monoclonal antibodies to the current state-of-the-art low molecular weight entities conjugated with various radionuclides, as well as potential future efforts related to PSMA-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nicolas M. Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-761-270-74220
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|