1
|
Vermeiren MR, Somsen J, Luurtsema G, Reesink FE, Verwey NA, Hempenius L, Tolboom N, Biessels GJ, Biesbroek JM, Vernooij MW, Veldhuijzen van Zanten SEM, Seelaar H, Coomans EM, Teunissen CE, Lemstra AW, van Harten AC, Visser LNC, van der Flier WM, van de Giessen E, Ossenkoppele R. The impact of tau-PET in a selected memory clinic cohort: rationale and design of the TAP-TAU study. Alzheimers Res Ther 2024; 16:230. [PMID: 39427210 PMCID: PMC11490118 DOI: 10.1186/s13195-024-01588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Tau-PET is a diagnostic tool with high sensitivity and specificity for discriminating Alzheimer's disease (AD) dementia from other neurodegenerative disorders in well-controlled research environments. The role of tau-PET in real-world clinical practice, however, remains to be established. The aim of the TAP-TAU study is therefore to investigate the impact of tau-PET in clinical practice. METHODS TAP-TAU is a prospective, longitudinal multi-center study in 300 patients (≥ 50 years old) with mild cognitive impairment or mild dementia across five Dutch memory clinics. Patients are eligible if diagnostic certainty is < 85% after routine dementia screening and if the differential diagnosis includes AD. More specifically, we will include patients who (i) are suspected of having mixed pathology (e.g., AD and vascular pathology), (ii) have an atypical clinical presentation, and/or (iii) show conflicting or inconclusive outcomes on other tests (e.g., magnetic resonance imaging or cerebrospinal fluid). Participants will undergo a [18F]flortaucipir tau-PET scan, blood-based biomarker sampling, and fill out questionnaires on patient reported outcomes and experiences. The primary outcomes are change (pre- versus post- tau-PET) in diagnosis, diagnostic certainty, patient management and patient anxiety and uncertainty. Secondary outcome measures are head-to-head comparisons between tau-PET and less invasive and lower cost diagnostic tools such as novel blood-based biomarkers and artificial intelligence-based classifiers. RESULTS TAP-TAU has been approved by the Medical Ethics Committee of the Amsterdam UMC. The first participant is expected to be included in October 2024. CONCLUSIONS In TAP-TAU, we will investigate the added clinical value of tau-PET in a real-world clinical setting, including memory clinic patients with diagnostic uncertainty after routine work-up. Findings of our study may contribute to recommendations regarding which patients would benefit most from assessment with tau-PET. This study is timely in the dawning era of disease modifying treatments as an accurate etiological diagnosis becomes increasingly important. TRIAL REGISTRATION This trial is registered and authorized on December 21st, 2023 in EU Clinical Trials with registration number 2023-505430-10-00.
Collapse
Affiliation(s)
- Marie R Vermeiren
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands.
| | - Joost Somsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fransje E Reesink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicolaas A Verwey
- Department of Neurology, Medical Center Leeuwarden, Leeuwarden, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | | | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Neurology, Diakonessenhuis Hospital, Utrecht, Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | | | - Afina W Lemstra
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Argonde C van Harten
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Leonie N C Visser
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Psychology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Epidemiology and Data Science, Amsterdam UMC, Amsterdam, Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands.
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Boccardi M, Gold M, Mahant V, Marincola FM, Gunn A. Why should academia care about the Target Product Profile? J Transl Med 2024; 22:716. [PMID: 39095839 PMCID: PMC11295361 DOI: 10.1186/s12967-024-05520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Affiliation(s)
- Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany.
| | - Michael Gold
- AriLex Life Sciences LLC, Deerfield, IL 60015, USA
| | | | | | | |
Collapse
|
3
|
O'Brien K, Coykendall C, Kleid M, Harkins K, Chin N, Clapp JT, Karlawish J. Determinants of Plasma Alzheimer's Disease Biomarker Use by Primary Care Providers and Dementia Specialists. J Gen Intern Med 2024; 39:1713-1720. [PMID: 38169023 PMCID: PMC11255148 DOI: 10.1007/s11606-023-08583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The efficiencies of plasma Alzheimer's disease (AD) biomarkers could facilitate early AD diagnosis. Unfortunately, limited knowledge exists about whether and how they would be used by clinicians. OBJECTIVE To identify and compare determinants of plasma AD biomarker use reported by primary care providers and dementia specialists. DESIGN Semi-structured interviews with clinicians organized using Rogers' Diffusion of Innovations theory and analyzed using an iterative coding approach. PARTICIPANTS The subjects were internal and family medicine, neurology, and geriatrics providers with varying degrees of expertise in dementia diagnosis and care. MAIN MEASURES Factors influencing a clinician's decision to use or not use plasma AD biomarkers in clinical practice. KEY RESULTS We interviewed 30 clinicians (16 family or internal medicine providers, 8 geriatricians, and 6 neurologists). Fifteen were dementia specialists. Hesitance to use plasma AD biomarkers was due to perceived lack of effective treatments for AD, limited access to supports, and stigma. Plasma AD biomarkers would be more readily adopted by clinicians with dementia expertise. CONCLUSIONS Several factors will influence clinical use of plasma AD biomarkers. Some of them may inform the design of interventions to promote the effective and appropriate clinical translation of these tests.
Collapse
Affiliation(s)
- Kyra O'Brien
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. kyra.o'
| | - Cameron Coykendall
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Melanie Kleid
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristin Harkins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nathaniel Chin
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Justin T Clapp
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jason Karlawish
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Fan X, Cai Y, Zhao L, Liu W, Luo Y, Au LWC, Shi L, Mok VCT. Machine Learning-Derived MRI-Based Neurodegeneration Biomarker for Alzheimer's Disease: A Multi-Database Validation Study. J Alzheimers Dis 2024; 97:883-893. [PMID: 38189749 DOI: 10.3233/jad-230574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Pilot study showed that Alzheimer's disease resemblance atrophy index (AD-RAI), a machine learning-derived MRI-based neurodegeneration biomarker of AD, achieved excellent diagnostic performance in diagnosing AD with moderate to severe dementia. OBJECTIVE The primary objective was to validate and compare the performance of AD-RAI with conventional volumetric hippocampal measures in diagnosing AD with mild dementia. The secondary objectives were 1) to investigate the association between imaging biomarkers with age and gender among cognitively unimpaired (CU) participants; 2) to analyze whether the performance of differentiating AD with mild dementia from CU will improve after adjustment for age/gender. METHODS AD with mild dementia (n = 218) and CU (n = 1,060) participants from 4 databases were included. We investigated the area under curve (AUC), sensitivity, specificity, and balanced accuracy of AD-RAI, hippocampal volume (HV), and hippocampal fraction (HF) in differentiating between AD and CU participants. Among amyloid-negative CU participants, we further analyzed correlation between the biomarkers with age/gender. We also investigated whether adjustment for age/gender will affect performance. RESULTS The AUC of AD-RAI (0.93) was significantly higher than that of HV (0.89) and HF (0.89). Subgroup analysis among A + AD and A- CU showed that AUC of AD-RAI (0.97) was also higher than HV (0.94) and HF (0.93). Diagnostic performance of AD-RAI and HF was not affected by age/gender while that of HV improved after age adjustment. CONCLUSIONS AD-RAI achieves excellent clinical validity and outperforms conventional volumetric hippocampal measures in aiding the diagnosis of AD mild dementia without the need for age adjustment.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yuan Cai
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Lei Zhao
- BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Wanting Liu
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yishan Luo
- BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Lisa Wing Chi Au
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Vincent Chung Tong Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
5
|
van Maurik IS, Bakker ED, van Unnik AAJM, Broulikova HM, Zwan MD, van de Giessen E, Berkhof J, Bouwman FH, Bosmans JE, van der Flier WM. How healthy participants value additional diagnostic testing with amyloid-PET in patients diagnosed with mild cognitive impairment - a bidding game experiment. Alzheimers Res Ther 2023; 15:208. [PMID: 38017549 PMCID: PMC10683285 DOI: 10.1186/s13195-023-01346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND To estimate the perceived value of additional testing with amyloid-PET in Euros in healthy participants acting as analogue patients with mild cognitive impairment (MCI). METHODS One thousand four hundred thirty-one healthy participants acting as analogue MCI patients (mean age 65 ± 8, 929 (75%) female) were recruited via the Dutch Brain Research Registry. Participants were asked to identify with a presented case (video vignette) of an MCI patient and asked whether they would prefer additional diagnostic testing with amyloid PET in this situation. If yes, respondents were asked how much they would be willing to pay for additional diagnostic testing. Monetary value was elicited via a bidding game in which participants were randomized over three conditions: (A) additional testing results in better patient management, (B) Same as condition A and a delay in institutionalization of 3 months, and (C) same as A and a delay in institutionalization of 6 months. Participants who were not willing to take a test were compared with participants who were willing to take a test using logit models. The highest monetary value per condition was analyzed using random-parameter mixed models. RESULTS The vast majority of participants acting as analogue MCI patients (87% (n = 1238)) preferred additional testing with amyloid PET. Participants who were not interested were more often female (OR = 1.61 95% CI [1.09-2.40]) and expressed fewer worries to get AD (OR = 0.64 [0.47-0.87]). The median "a priori" (i.e., before randomization) monetary value of additional diagnostic testing was €1500 (IQR 500-1500). If an additional amyloid PET resulted in better patient management (not further specified; condition A), participants were willing to pay a median price of €2000 (IQR = 1000-3500). Participants were willing to pay significantly more than condition A (better patient management) if amyloid-PET testing additionally resulted in a delay in institutionalization of 3 months (€530 [255-805] on top of €2000, condition B) or 6 months (€596 [187-1005] on top of €2000, condition C). CONCLUSIONS Members of the general population acting as MCI patients are willing to pay a substantial amount of money for amyloid-PET and this increases when diagnostic testing leads to better patient management and the prospect to live longer at home.
Collapse
Affiliation(s)
- I S van Maurik
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
| | - E D Bakker
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - A A J M van Unnik
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - H M Broulikova
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - M D Zwan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - E van de Giessen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - J Berkhof
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| | - F H Bouwman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - J E Bosmans
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Collij LE, Farrar G, Zwan M, van de Giessen E, Ossenkoppele R, Barkhof F, Rozemuller AJM, Pijnenburg YAL, van der Flier WM, Bouwman F. Clinical outcomes up to 9 years after [ 18F]flutemetamol amyloid-PET in a symptomatic memory clinic population. Alzheimers Res Ther 2023; 15:207. [PMID: 38012799 PMCID: PMC10680192 DOI: 10.1186/s13195-023-01351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Previous studies demonstrated increases in diagnostic confidence and change in patient management after amyloid-PET. However, studies investigating longitudinal outcomes over an extended period of time are limited. Therefore, we aimed to investigate clinical outcomes up to 9 years after amyloid-PET to support the clinical validity of the imaging technique. METHODS We analyzed longitudinal data from 200 patients (Mage = 61.8, 45.5% female, MMMSE = 23.3) suspected of early-onset dementia that underwent [18F]flutemetamol-PET. Baseline amyloid status was determined through visual read (VR). Information on mortality was available with a mean follow-up of 6.7 years (range = 1.1-9.3). In a subset of 108 patients, longitudinal cognitive scores and clinical etiological diagnosis (eDx) at least 1 year after amyloid-PET acquisition were available (M = 3.06 years, range = 1.00-7.02). VR - and VR + patients were compared on mortality rates with Cox Hazard's model, prevalence of stable eDx using chi-square test, and longitudinal cognition with linear mixed models. Neuropathological data was available for 4 patients (mean delay = 3.59 ± 1.82 years, range = 1.2-6.3). RESULTS At baseline, 184 (92.0%) patients were considered to have dementia. The majority of VR + patients had a primary etiological diagnosis of AD (122/128, 95.3%), while the VR - group consisted mostly of non-AD etiologies, most commonly frontotemporal lobar degeneration (30/72, 40.2%). Overall mortality rate was 48.5% and did not differ between VR - and VR + patients. eDx at follow-up was consistent with baseline diagnosis for 92/108 (85.2%) patients, with most changes observed in VR - cases (VR - = 14/35, 40% vs VR + = 2/73, 2.7%, χ2 = 26.03, p < 0.001), who at no time received an AD diagnosis. VR + patients declined faster than VR - patients based on MMSE (β = - 1.17, p = 0.004), episodic memory (β = - 0.78, p = 0.003), fluency (β = - 1.44, p < 0.001), and attention scores (β = 16.76, p = 0.03). Amyloid-PET assessment was in line with post-mortem confirmation in all cases; two cases were VR + and showed widespread AD pathology, while the other two cases were VR - and showed limited amyloid pathology. CONCLUSION In a symptomatic population, we observed that amyloid-status did not impact mortality rates, but is predictive of cognitive functioning over time across several domains. Also, we show particular validity for a negative amyloid-PET assessment, as these patients did not receive an AD diagnosis at follow-up.
Collapse
Affiliation(s)
- Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | | | - Marissa Zwan
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Centre for Medical Image Computing, and Queen Square Institute of Neurology, UCL, London, UK
| | | | - Yolande A L Pijnenburg
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
| | - Femke Bouwman
- Alzheimer Center and Department of Neurology, Amsterdam UMC - location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Wilson EN, Young CB, Ramos Benitez J, Swarovski MS, Feinstein I, Vandijck M, Le Guen Y, Kasireddy NM, Shahid M, Corso NK, Wang Q, Kennedy G, Trelle AN, Lind B, Channappa D, Belnap M, Ramirez V, Skylar-Scott I, Younes K, Yutsis MV, Le Bastard N, Quinn JF, van Dyck CH, Nairn A, Fredericks CA, Tian L, Kerchner GA, Montine TJ, Sha SJ, Davidzon G, Henderson VW, Longo FM, Greicius MD, Wagner AD, Wyss-Coray T, Poston KL, Mormino EC, Andreasson KI. Performance of a fully-automated Lumipulse plasma phospho-tau181 assay for Alzheimer's disease. Alzheimers Res Ther 2022; 14:172. [PMID: 36371232 PMCID: PMC9652927 DOI: 10.1186/s13195-022-01116-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The recent promise of disease-modifying therapies for Alzheimer's disease (AD) has reinforced the need for accurate biomarkers for early disease detection, diagnosis and treatment monitoring. Advances in the development of novel blood-based biomarkers for AD have revealed that plasma levels of tau phosphorylated at various residues are specific and sensitive to AD dementia. However, the currently available tests have shortcomings in access, throughput, and scalability that limit widespread implementation. METHODS We evaluated the diagnostic and prognostic performance of a high-throughput and fully-automated Lumipulse plasma p-tau181 assay for the detection of AD. Plasma from older clinically unimpaired individuals (CU, n = 463) and patients with mild cognitive impairment (MCI, n = 107) or AD dementia (n = 78) were obtained from the longitudinal Stanford University Alzheimer's Disease Research Center (ADRC) and the Stanford Aging and Memory Study (SAMS) cohorts. We evaluated the discriminative accuracy of plasma p-tau181 for clinical AD diagnosis, association with amyloid β peptides and p-tau181 concentrations in CSF, association with amyloid positron emission tomography (PET), and ability to predict longitudinal cognitive and functional change. RESULTS The assay showed robust performance in differentiating AD from control participants (AUC 0.959, CI: 0.912 to 0.990), and was strongly associated with CSF p-tau181, CSF Aβ42/Aβ40 ratio, and amyloid-PET global SUVRs. Associations between plasma p-tau181 with CSF biomarkers were significant when examined separately in Aβ+ and Aβ- groups. Plasma p-tau181 significantly increased over time in CU and AD diagnostic groups. After controlling for clinical diagnosis, age, sex, and education, baseline plasma p-tau181 predicted change in MoCA overall and change in CDR Sum of Boxes in the AD group over follow-up of up to 5 years. CONCLUSIONS This fully-automated and available blood-based biomarker assay therefore may be useful for early detection, diagnosis, prognosis, and treatment monitoring of AD.
Collapse
Affiliation(s)
- Edward N. Wilson
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA
| | - Christina B. Young
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Javier Ramos Benitez
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Michelle S. Swarovski
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Igor Feinstein
- grid.168010.e0000000419368956Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA USA
| | | | - Yann Le Guen
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Nandita M. Kasireddy
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Marian Shahid
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Nicole K. Corso
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Qian Wang
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Gabriel Kennedy
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Alexandra N. Trelle
- grid.168010.e0000000419368956Psychology, Stanford University, Stanford, CA USA
| | - Betty Lind
- grid.410404.50000 0001 0165 2383Neurology, Portland VA Medical Center, Portland, OR USA ,grid.5288.70000 0000 9758 5690Neurology, Oregon Health & Science University, Portland, OR USA
| | - Divya Channappa
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Pathology, Stanford University, Stanford, CA USA
| | - Malia Belnap
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Veronica Ramirez
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Irina Skylar-Scott
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Kyan Younes
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Maya V. Yutsis
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | | | - Joseph F. Quinn
- grid.410404.50000 0001 0165 2383Neurology, Portland VA Medical Center, Portland, OR USA ,grid.5288.70000 0000 9758 5690Neurology, Oregon Health & Science University, Portland, OR USA
| | | | - Angus Nairn
- grid.47100.320000000419368710Psychiatry, Yale University, New Haven, CT USA
| | - Carolyn A. Fredericks
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Lu Tian
- grid.168010.e0000000419368956Biomedical Data Science, Stanford University, Stanford, CA USA
| | - Geoffrey A. Kerchner
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Thomas J. Montine
- grid.168010.e0000000419368956Pathology, Stanford University, Stanford, CA USA
| | - Sharon J. Sha
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA
| | - Guido Davidzon
- grid.168010.e0000000419368956Radiology, Stanford University, Stanford, CA USA
| | - Victor W. Henderson
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Epidemiology & Population Health, Stanford University, Stanford, CA USA
| | - Frank M. Longo
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA
| | - Michael D. Greicius
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA
| | - Anthony D. Wagner
- grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Psychology, Stanford University, Stanford, CA USA
| | - Tony Wyss-Coray
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA
| | - Kathleen L. Poston
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA
| | - Elizabeth C. Mormino
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA
| | - Katrin I. Andreasson
- grid.168010.e0000000419368956Neurology & Neurological Sciences, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA ,grid.499295.a0000 0004 9234 0175Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
8
|
Boccardi M, Handels R, Gold M, Grazia A, Lutz MW, Martin M, Nosheny R, Robillard JM, Weidner W, Alexandersson J, Thyrian JR, Winblad B, Barbarino P, Khachaturian AS, Teipel S. Clinical research in dementia: A perspective on implementing innovation. Alzheimers Dement 2022; 18:2352-2367. [PMID: 35325508 DOI: 10.1002/alz.12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/31/2023]
Abstract
The increasing global prevalence of dementia demands concrete actions that are aimed strategically at optimizing processes that drive clinical innovation. The first step in this direction requires outlining hurdles in the transition from research to practice. The different parties needed to support translational processes have communication mismatches; methodological gaps hamper evidence-based decision-making; and data are insufficient to provide reliable estimates of long-term health benefits and costs in decisional models. Pilot projects are tackling some of these gaps, but appropriate methods often still need to be devised or adapted to the dementia field. A consistent implementation perspective along the whole translational continuum, explicitly defined and shared among the relevant stakeholders, should overcome the "research-versus-adoption" dichotomy, and tackle the implementation cliff early on. Concrete next steps may consist of providing tools that support the effective participation of heterogeneous stakeholders and agreeing on a definition of clinical significance that facilitates the selection of proper outcome measures.
Collapse
Affiliation(s)
- Marina Boccardi
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Rostock-Greifswald Standort, Rostock, Germany
| | - Ron Handels
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Division of Neurogeriatrics, Dept for Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - Alice Grazia
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Rostock-Greifswald Standort, Rostock, Germany.,Department of Psychosomatic Medicine, Rostock Universitätsmedizin, Rostock, Germany
| | - Michael W Lutz
- Department of Neurology Duke University School of Medicine, Durham, North Carolina, USA
| | - Mike Martin
- Gerontology Center, University of Zurich, Zürich, Switzerland
| | - Rachel Nosheny
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, USA.,San Francisco Veteran's Administration Medical Center, San Francisco, California, USA
| | - Julie M Robillard
- The University of British Columbia; BC Children's & Women's Hospitals, Vancouver, Canada
| | | | | | - Jochen René Thyrian
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Rostock-Greifswald Standort, Greifswald, Germany.,Institute for Community Medicine, Section Epidemiology of Healthcare, University Medicine of Greifswald, Greifswald, Germany
| | - Bengt Winblad
- Division of Neurogeriatrics, Dept for Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - Ara S Khachaturian
- Alzheimer's & Dementia: The Journal of the Alzheimer's Association, Rockville, Maryland, USA.,Campaign to Prevent Alzheimer's Disease, Rockville, Maryland, USA
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Rostock-Greifswald Standort, Rostock, Germany.,Department of Psychosomatic Medicine, Rostock Universitätsmedizin, Rostock, Germany
| |
Collapse
|
9
|
Mattioli P, Pardini M, Girtler N, Brugnolo A, Orso B, Andrea D, Calizzano F, Mancini R, Massa F, Michele T, Bauckneht M, Morbelli S, Sambuceti G, Flavio N, Arnaldi D. Cognitive and Brain Metabolism Profiles of Mild Cognitive Impairment in Prodromal Alpha-Synucleinopathy. J Alzheimers Dis 2022; 90:433-444. [DOI: 10.3233/jad-220653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Mild cognitive impairment (MCI) is a heterogeneous condition. Idiopathic REM sleep behavior disorder (iRBD) can be associated with MCI (MCI-RBD). Objective: To investigate neuropsychological and brain metabolism features of patients with MCI-RBD by comparison with matched MCI-AD patients. To explore their predictive value toward conversion to a full-blown neurodegenerative disease. Methods: Seventeen MCI-RBD patients (73.6±6.5 years) were enrolled. Thirty-four patients with MCI-AD were matched for age (74.8±4.4 years), Mini-Mental State Exam score and education with a case-control criterion. All patients underwent a neuropsychological assessment and brain 18F-FDG-PET. Images were compared between groups to identify hypometabolic volumes of interest (MCI-RBD-VOI and MCI-AD-VOI). The dependency of whole-brain scaled metabolism levels in MCI-RBD-VOI and MCI-AD-VOI on neuropsychological test scores was explored with linear regression analyses in both groups, adjusting for age and education. Survival analysis was performed to investigate VOIs phenoconversion prediction power. Results: MCI-RBD group scored lower in executive functions and higher in verbal memory compared to MCI-AD group. Also, compared with MCI-AD, MCI-RBD group showed relative hypometabolism in a posterior brain area including cuneus, precuneus, and occipital regions while the inverse comparison revealed relative hypometabolism in the hippocampus/parahippocampal areas in MCI-AD group. MCI-RBD-VOI metabolism directly correlated with executive functions in MCI-RBD (p = 0.04). MCI-AD-VOI metabolism directly correlated with verbal memory in MCI-AD (p = 0.001). MCI-RBD-VOI metabolism predicted (p = 0.03) phenoconversion to an alpha-synucleinopathy. MCI-AD-VOI metabolism showed a trend (p = 0.07) in predicting phenoconversion to dementia. Conclusion: MCI-RBD and MCI-AD showed distinct neuropsychological and brain metabolism profiles, that may be helpful for both diagnosis and prognosis purposes.
Collapse
Affiliation(s)
- Pietro Mattioli
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Beatrice Orso
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Donniaquio Andrea
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Raffaele Mancini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Terzaghi Michele
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nobili Flavio
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
10
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
11
|
Cummings J, Kinney J. Biomarkers for Alzheimer's Disease: Context of Use, Qualification, and Roadmap for Clinical Implementation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:952. [PMID: 35888671 PMCID: PMC9318582 DOI: 10.3390/medicina58070952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/30/2022]
Abstract
Background and Objectives: The US Food and Drug Administration (FDA) defines a biomarker as a characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention. Biomarkers may be used in clinical care or as drug development tools (DDTs) in clinical trials. The goal of this review and perspective is to provide insight into the regulatory guidance for the use of biomarkers in clinical trials and clinical care. Materials and Methods: We reviewed FDA guidances relevant to biomarker use in clinical trials and their transition to use in clinical care. We identified instructive examples of these biomarkers in Alzheimer's disease (AD) drug development and their application in clinical practice. Results: For use in clinical trials, biomarkers must have a defined context of use (COU) as a risk/susceptibility, diagnostic, monitoring, predictive, prognostic, pharmacodynamic, or safety biomarker. A four-stage process defines the pathway to establish the regulatory acceptance of the COU for a biomarker including submission of a letter of intent, description of the qualification plan, submission of a full qualification package, and acceptance through a qualification recommendation. Biomarkers used in clinical care may be companion biomarkers, in vitro diagnostic devices (IVDs), or laboratory developed tests (LDTs). A five-phase biomarker development process has been proposed to structure the biomarker development process. Conclusions: Biomarkers are increasingly important in drug development and clinical care. Adherence to regulatory guidance for biomarkers used in clinical trials and patient care is required to advance these important drug development and clinical tools.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Pam Quirk Brain Health and Biomarker Laboratory, Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | | |
Collapse
|
12
|
The associations of serum valine with mild cognitive impairment and Alzheimer's disease. Aging Clin Exp Res 2022; 34:1807-1817. [PMID: 35362856 DOI: 10.1007/s40520-022-02120-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/14/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The introduction of metabolomics makes it possible to study the characteristic changes of peripheral metabolism in Alzheimer's disease (AD). Recent studies have found that the levels of valine are related to mild cognitive impairment (MCI) and AD. AIMS This study aimed to further clarify the characteristics of valine levels in MCI and AD. METHODS A total of 786 participants from the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) cohort were selected to evaluate the relationships between serum valine and cerebrospinal fluid (CSF) biomarkers, brain structure (magnetic resonance imaging, MRI), cerebral glucose metabolism (18F-fluorodeoxyglucose-positron emission tomography, FDG-PET), and cognitive declines, through different cognitive subgroups. RESULTS Serum valine was decreased in patients with AD compared with cognitive normal (CN) and stable MCI (sMCI), and in progressive MCI (pMCI) compared with CN. Serum valine was negatively correlated with CSF total tau (t-tau) and phosphorylated tau (p-tau) in pMCI. Serum valine significantly predicted conversion from MCI to AD. In addition, serum valine was related to the rate of change of cerebral glucose metabolism during the follow-up period in pMCI. CONCLUSIONS Serum valine may be a peripheral biomarker of pMCI and AD, and its level predicts the progression of MCI to AD. Our study may help to reveal the metabolic changes during AD disease trajectory and its relationship to clinical phenotype.
Collapse
|
13
|
Gallucci M, Cenesi L, White C, Antuono P, Quaglio G, Bonanni L. Lights and Shadows of Cerebrospinal Fluid Biomarkers in the Current Alzheimer's Disease Framework. J Alzheimers Dis 2022; 86:1061-1072. [PMID: 35180122 PMCID: PMC9108561 DOI: 10.3233/jad-215432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The most significant biomarkers that are included in the Alzheimer's disease (AD) research framework are amyloid-β plaques deposition, p-tau, t-tau, and neurodegeneration.Although cerebrospinal fluid (CSF) biomarkers are included in the most recent AD research criteria, their use is increasing in the routine clinical practice and is applied also to the preclinical phases of AD, including mild cognitive impairment. The role of these biomarkers is still unclear concerning the preclinical stage of AD diagnosis, the CSF methodology, and the costs-benefits of the biomarkers' tests. The controversies regarding the use of biomarkers in the clinical practice are related to the concepts of analytical validity, clinical validity, and clinical utility and to the question of whether they are able to diagnose AD without the support of AD clinical phenotypes. OBJECTIVE The objective of the present work is to expose the strengths and weaknesses of the use of CSF biomarkers in the diagnosis of AD in a clinical context. METHODS We used PubMed as main source for articles published and the final reference list was generated on the basis of relevance to the topics covered in this work. RESULTS The use of CSF biomarkers for AD diagnosis is certainly important but its indication in routine clinical practice, especially for prodromal conditions, needs to be regulated and also contextualized considering the variety of possible clinical AD phenotypes. CONCLUSION We suggest that the diagnosis of AD should be understood both as clinical and pathological.
Collapse
Affiliation(s)
- Maurizio Gallucci
- Cognitive Impairment Center, Local Health Authority n. 2 Marca Trevigiana, Treviso, Italy.,Associazione Alzheimer Treviso Onlus, Treviso, Italy
| | - Leandro Cenesi
- Cognitive Impairment Center, Local Health Authority n. 2 Marca Trevigiana, Treviso, Italy
| | - Céline White
- Cognitive Impairment Center, Local Health Authority n. 2 Marca Trevigiana, Treviso, Italy
| | - Piero Antuono
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gianluca Quaglio
- Scientific Foresight Unit (STOA), European Parliamentary Research Service, European Parliament, Brussels, Belgium
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
14
|
Leuzy A, Mattsson‐Carlgren N, Palmqvist S, Janelidze S, Dage JL, Hansson O. Blood-based biomarkers for Alzheimer's disease. EMBO Mol Med 2022; 14:e14408. [PMID: 34859598 PMCID: PMC8749476 DOI: 10.15252/emmm.202114408] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) represent a mounting public health challenge. As these diseases are difficult to diagnose clinically, biomarkers of underlying pathophysiology are playing an ever-increasing role in research, clinical trials, and in the clinical work-up of patients. Though cerebrospinal fluid (CSF) and positron emission tomography (PET)-based measures are available, their use is not widespread due to limitations, including high costs and perceived invasiveness. As a result of rapid advances in the development of ultra-sensitive assays, the levels of pathological brain- and AD-related proteins can now be measured in blood, with recent work showing promising results. Plasma P-tau appears to be the best candidate marker during symptomatic AD (i.e., prodromal AD and AD dementia) and preclinical AD when combined with Aβ42/Aβ40. Though not AD-specific, blood NfL appears promising for the detection of neurodegeneration and could potentially be used to detect the effects of disease-modifying therapies. This review provides an overview of the progress achieved thus far using AD blood-based biomarkers, highlighting key areas of application and unmet challenges.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Niklas Mattsson‐Carlgren
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Department of NeurologySkåne University HospitalLundSweden
- Wallenberg Centre for Molecular MedicineLund UniversityLundSweden
| | - Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Shorena Janelidze
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Jeffrey L Dage
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisINUSA
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalLundSweden
| |
Collapse
|
15
|
Achard V, Ceyzériat K, Tournier BB, Frisoni GB, Garibotto V, Zilli T. Biomarkers to Evaluate Androgen Deprivation Therapy for Prostate Cancer and Risk of Alzheimer's Disease and Neurodegeneration: Old Drugs, New Concerns. Front Oncol 2022; 11:734881. [PMID: 34970480 PMCID: PMC8712866 DOI: 10.3389/fonc.2021.734881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a standard treatment for prostate cancer patients, routinely used in the palliative or in the curative setting in association with radiotherapy. Among the systemic long-term side effects of ADT, growing data suggest a potentially increased risk of dementia/Alzheimer’s disease in prostate cancer patients treated with hormonal manipulation. While pre-clinical data suggest that androgen ablation may have neurotoxic effects due to Aβ accumulation and increased tau phosphorylation in small animal brains, clinical studies have measured the impact of ADT on long-term cognitive function, with conflicting results, and studies on biological changes after ADT are still lacking. The aim of this review is to report on the current evidence on the association between the ADT use and the risk of cognitive impairment in prostate cancer patients. We will focus on the contribution of Alzheimer’s disease biomarkers, namely through imaging, to investigate potential ADT-induced brain modifications. The evidence from these preliminary studies shows brain changes in gray matter volume, cortical activation and metabolism associated with ADT, however with a large variability in biomarker selection, ADT duration and cognitive outcome. Importantly, no study investigated yet biomarkers of Alzheimer’s disease pathology, namely amyloid and tau. These preliminary data emphasize the need for larger targeted investigations.
Collapse
Affiliation(s)
- Vérane Achard
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Giovanni B Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
16
|
Wolters EE, Dodich A, Boccardi M, Corre J, Drzezga A, Hansson O, Nordberg A, Frisoni GB, Garibotto V, Ossenkoppele R. Clinical validity of increased cortical uptake of [ 18F]flortaucipir on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase biomarker development framework. Eur J Nucl Med Mol Imaging 2021; 48:2097-2109. [PMID: 33547556 PMCID: PMC8175307 DOI: 10.1007/s00259-020-05118-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE In 2017, the Geneva Alzheimer's disease (AD) Biomarker Roadmap initiative adapted the framework of the systematic validation of oncological diagnostic biomarkers to AD biomarkers, with the aim to accelerate their development and implementation in clinical practice. With this work, we assess the maturity of [18F]flortaucipir PET and define its research priorities. METHODS The level of maturity of [18F]flortaucipir was assessed based on the AD Biomarker Roadmap. The framework assesses analytical validity (phases 1-2), clinical validity (phases 3-4), and clinical utility (phase 5). RESULTS The main aims of phases 1 (rationale for use) and 2 (discriminative ability) have been achieved. [18F]Flortaucipir binds with high affinity to paired helical filaments of tau and has favorable kinetic properties and excellent discriminative accuracy for AD. The majority of secondary aims of phase 2 were fully achieved. Multiple studies showed high correlations between ante-mortem [18F]flortaucipir PET and post-mortem tau (as assessed by histopathology), and also the effects of covariates on tracer binding are well studied. The aims of phase 3 (early detection ability) were only partially or preliminarily achieved, and the aims of phases 4 and 5 were not achieved. CONCLUSION Current literature provides partial evidence for clinical utility of [18F]flortaucipir PET. The aims for phases 1 and 2 were mostly achieved. Phase 3 studies are currently ongoing. Future studies including representative MCI populations and a focus on healthcare outcomes are required to establish full maturity of phases 4 and 5.
Collapse
Affiliation(s)
- E E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Centre for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - M Boccardi
- Late Translational Dementia Studies Group, German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany
| | - J Corre
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- CURIC, Centre Universitaire Romand d'Implants Cochléaires, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - A Drzezga
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Research Center Jülich, Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - O Hansson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
| | - R Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Ashton NJ, Leuzy A, Karikari TK, Mattsson-Carlgren N, Dodich A, Boccardi M, Corre J, Drzezga A, Nordberg A, Ossenkoppele R, Zetterberg H, Blennow K, Frisoni GB, Garibotto V, Hansson O. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur J Nucl Med Mol Imaging 2021; 48:2140-2156. [PMID: 33677733 PMCID: PMC8175325 DOI: 10.1007/s00259-021-05253-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The development of blood biomarkers that reflect Alzheimer's disease (AD) pathophysiology (phosphorylated tau and amyloid-β) has offered potential as scalable tests for dementia differential diagnosis and early detection. In 2019, the Geneva AD Biomarker Roadmap Initiative included blood biomarkers in the systematic validation of AD biomarkers. METHODS A panel of experts convened in November 2019 at a two-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of blood biomarkers was assessed based on the Biomarker Roadmap methodology and discussed fully during the workshop which also evaluated cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. RESULTS Plasma p-tau has shown analytical validity (phase 2 primary aim 1) and first evidence of clinical validity (phase 3 primary aim 1), whereas the maturity level for Aβ remains to be partially achieved. Full and partial achievement has been assigned to p-tau and Aβ, respectively, in their associations to ante-mortem measures (phase 2 secondary aim 2). However, only preliminary evidence exists for the influence of covariates, assay comparison and cut-off criteria. CONCLUSIONS Despite the relative infancy of blood biomarkers, in comparison to CSF biomarkers, much has already been achieved for phases 1 through 3 - with p-tau having greater success in detecting AD and predicting disease progression. However, sufficient data about the effect of covariates on the biomarker measurement is lacking. No phase 4 (real-world performance) or phase 5 (assessment of impact/cost) aim has been tested, thus not achieved.
Collapse
Affiliation(s)
- N J Ashton
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden.
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - A Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - T K Karikari
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
| | - N Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
| | - M Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| | - J Corre
- Centre National de la Recherche Scientifique, Montpellier, France
| | - A Drzezga
- Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - R Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - H Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - K Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - G B Frisoni
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- UK Dementia Research Institute at UCL, London, UK.
- Memory Clinic, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
18
|
Bischof GN, Dodich A, Boccardi M, van Eimeren T, Festari C, Barthel H, Hansson O, Nordberg A, Ossenkoppele R, Sabri O, Giovanni BFG, Garibotto V, Drzezga A. Clinical validity of second-generation tau PET tracers as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2110-2120. [PMID: 33590274 PMCID: PMC8175320 DOI: 10.1007/s00259-020-05156-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE In 2017, the Geneva Alzheimer's disease (AD) strategic biomarker roadmap initiative proposed a framework of the systematic validation AD biomarkers to harmonize and accelerate their development and implementation in clinical practice. Here, we use this framework to examine the translatability of the second-generation tau PET tracers into the clinical context. METHODS All available literature was systematically searched based on a set of search terms that related independently to analytic validity (phases 1-2), clinical validity (phase 3-4), and clinical utility (phase 5). The progress on each of the phases was determined based on scientific criteria applied for each phase and coded as fully, partially, preliminary achieved or not achieved at all. RESULTS The validation of the second-generation tau PET tracers has successfully passed the analytical phase 1 of the strategic biomarker roadmap. Assay definition studies showed evidence on the superiority over first-generation tau PET tracers in terms of off-target binding. Studies have partially achieved the primary aim of the analytical validity stage (phase 2), and preliminary evidence has been provided for the assessment of covariates on PET signal retention. Studies investigating of the clinical validity in phases 3, 4, and 5 are still underway. CONCLUSION The current literature provides overall preliminary evidence on the establishment of the second-generation tau PET tracers into the clinical context, thereby successfully addressing some methodological issues from the tau PET tracer of the first generation. Nevertheless, bigger cohort studies, longitudinal follow-up, and examination of diverse disease population are still needed to gauge their clinical validity.
Collapse
Affiliation(s)
- Gérard N Bischof
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.
| | - Alessandra Dodich
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
| | - Marina Boccardi
- German Center for Neurodegenerative Disorders (DZNE), Rostock/Greifswald, Rostock, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn/Cologne, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Neurodegenerative Disorders (DZNE), Rostock/Greifswald, Rostock, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn/Cologne, Germany
| | - Cristina Festari
- LANE - Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Oskar Hansson
- Memory Clinic, Skåne University Hopsital, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - B Frisoni G Giovanni
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Memory Center - Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Nuclear Medicine and Molecular Imaging Division, Diagnostic Department, Geneva University Hospitals, Genève, Switzerland
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Neurodegenerative Disorders (DZNE), Rostock/Greifswald, Rostock, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn/Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine (INM-2), Jülich, Germany
| |
Collapse
|
19
|
Salvadó G, Grothe MJ, Groot C, Moscoso A, Schöll M, Gispert JD, Ossenkoppele R. Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia. Eur J Nucl Med Mol Imaging 2021; 48:2212-2224. [PMID: 33521872 PMCID: PMC8175302 DOI: 10.1007/s00259-021-05192-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/03/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE To examine associations between the APOE-ε2 and APOE-ε4 alleles and core Alzheimer's disease (AD) pathological hallmarks as measured by amyloid-β (Aβ) and tau PET in older individuals without dementia. METHODS We analyzed data from 462 ADNI participants without dementia who underwent Aβ ([18F]florbetapir or [18F]florbetaben) and tau ([18F]flortaucipir) PET, structural MRI, and cognitive testing. Employing APOE-ε3 homozygotes as the reference group, associations between APOE-ε2 and APOE-ε4 carriership with global Aβ PET and regional tau PET measures (entorhinal cortex (ERC), inferior temporal cortex, and Braak-V/VI neocortical composite regions) were investigated using linear regression models. In a subset of 156 participants, we also investigated associations between APOE genotype and regional tau accumulation over time using linear mixed models. Finally, we assessed whether Aβ mediated the cross-sectional and longitudinal associations between APOE genotype and tau. RESULTS Compared to APOE-ε3 homozygotes, APOE-ε2 carriers had lower global Aβ burden (βstd [95% confidence interval (CI)]: - 0.31 [- 0.45, - 0.16], p = 0.034) but did not differ on regional tau burden or tau accumulation over time. APOE-ε4 participants showed higher Aβ (βstd [95%CI]: 0.64 [0.42, 0.82], p < 0.001) and tau burden (βstd range: 0.27-0.51, all p < 0.006). In mediation analyses, APOE-ε4 only retained an Aβ-independent effect on tau in the ERC. APOE-ε4 showed a trend towards increased tau accumulation over time in Braak-V/VI compared to APOE-ε3 homozygotes (βstd [95%CI]: 0.10 [- 0.02, 0.18], p = 0.11), and this association was fully mediated by baseline Aβ. CONCLUSION Our data suggest that the established protective effect of the APOE-ε2 allele against developing clinical AD is primarily linked to resistance against Aβ deposition rather than tau pathology.
Collapse
Affiliation(s)
- Gemma Salvadó
- Alzheimer Prevention Program, Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30 08005, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Michel J Grothe
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n 41013, Seville, Spain.
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Juan Domingo Gispert
- Alzheimer Prevention Program, Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30 08005, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Garibotto V, Boccardi M, Chiti A, Frisoni GB. Molecular imaging and fluid biomarkers of Alzheimer's disease neuropathology: an opportunity for integrated diagnostics. Eur J Nucl Med Mol Imaging 2021; 48:2067-2069. [PMID: 33688995 DOI: 10.1007/s00259-020-05116-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Valentina Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland. .,Nuclear Medicine and Molecular Division, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland.
| | - Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Rostock, Germany
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Giovanni B Frisoni
- Memory Clinic, University Hospital, Geneva, Switzerland.,LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Outcomes of clinical utility in amyloid-PET studies: state of art and future perspectives. Eur J Nucl Med Mol Imaging 2021; 48:2157-2168. [PMID: 33594474 PMCID: PMC8175294 DOI: 10.1007/s00259-020-05187-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To review how outcomes of clinical utility are operationalized in current amyloid-PET validation studies, to prepare for formal assessment of clinical utility of amyloid-PET-based diagnosis. METHODS Systematic review of amyloid-PET research studies published up to April 2020 that included outcomes of clinical utility. We extracted and analyzed (a) outcome categories, (b) their definition, and (c) their methods of assessment. RESULTS Thirty-two studies were eligible. (a) Outcome categories were clinician-centered (found in 25/32 studies, 78%), patient-/caregiver-centered (in 9/32 studies, 28%), and health economics-centered (5/32, 16%). (b) Definition: Outcomes were mainly defined by clinical researchers; only the ABIDE study expressly included stakeholders in group discussions. Clinician-centered outcomes mainly consisted of incremental diagnostic value (25/32, 78%) and change in patient management (17/32, 53%); patient-/caregiver-centered outcomes considered distress after amyloid-pet-based diagnosis disclosure (8/32, 25%), including quantified burden of procedure for patients' outcomes (n = 8) (1/8, 12.5%), impact of disclosure of results (6/8, 75%), and psychological implications of biomarker-based diagnosis (75%); and health economics outcomes focused on costs to achieve a high-confidence etiological diagnosis (5/32, 16%) and impact on quality of life (1/32, 3%). (c) Assessment: all outcome categories were operationalized inconsistently across studies, employing 26 different tools without formal rationale for selection. CONCLUSION Current studies validating amyloid-PET already assessed outcomes for clinical utility, although non-clinician-based outcomes were inconsistent. A wider participation of stakeholders may help produce a more thorough and systematic definition and assessment of outcomes of clinical utility and help collect evidence informing decisions on reimbursement of amyloid-PET.
Collapse
|