1
|
Wang J, Zeng Z, Li Z, Liu G, Zhang S, Luo C, Hu S, Wan S, Zhao L. The clinical application of artificial intelligence in cancer precision treatment. J Transl Med 2025; 23:120. [PMID: 39871340 DOI: 10.1186/s12967-025-06139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Artificial intelligence has made significant contributions to oncology through the availability of high-dimensional datasets and advances in computing and deep learning. Cancer precision medicine aims to optimize therapeutic outcomes and reduce side effects for individual cancer patients. However, a comprehensive review describing the impact of artificial intelligence on cancer precision medicine is lacking. OBSERVATIONS By collecting and integrating large volumes of data and applying it to clinical tasks across various algorithms and models, artificial intelligence plays a significant role in cancer precision medicine. Here, we describe the general principles of artificial intelligence, including machine learning and deep learning. We further summarize the latest developments in artificial intelligence applications in cancer precision medicine. In tumor precision treatment, artificial intelligence plays a crucial role in individualizing both conventional and emerging therapies. In specific fields, including target prediction, targeted drug generation, immunotherapy response prediction, neoantigen prediction, and identification of long non-coding RNA, artificial intelligence offers promising perspectives. Finally, we outline the current challenges and ethical issues in the field. CONCLUSIONS Recent clinical studies demonstrate that artificial intelligence is involved in cancer precision medicine and has the potential to benefit cancer healthcare, particularly by optimizing conventional therapies, emerging targeted therapies, and individual immunotherapies. This review aims to provide valuable resources to clinicians and researchers and encourage further investigation in this field.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ziyi Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Neonatology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guangyue Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shunhong Zhang
- Department of Cardiology, Panzhihua Iron and Steel Group General Hospital, Panzhihua, China
| | - Chenchen Luo
- Department of Outpatient Chengbei, the Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Saidi Hu
- Department of Stomatology, Yaan people's Hospital, Yaan, China
| | - Siran Wan
- Department of Gynaecology and Obstetrics, Yaan people's Hospital, Yaan, China
| | - Linyong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy / Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Qi L, Li X, Ni J, Du Y, Gu Q, Liu B, He J, Du J. Construction of feature selection and efficacy prediction model for transformation therapy of locally advanced pancreatic cancer based on CT, 18F-FDG PET/CT, DNA mutation, and CA199. Cancer Cell Int 2025; 25:19. [PMID: 39828699 PMCID: PMC11743000 DOI: 10.1186/s12935-025-03639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Immunotherapy and radiotherapy play crucial roles in the transformation therapy of locally advanced pancreatic cancer; however, the exploration of effective predictive biomarkers has been unsatisfactory. With the rapid development of radiomics, next-generation sequencing, and machine learning, there is hope to identify biomarkers that can predict the efficacy of transformative treatment for locally advanced pancreatic cancer through simple and non-invasive clinical methods. Our study focuses on using computed tomography (CT), positron emission tomography/computed tomography (PET/CT), gene mutations, and baseline carbohydrate antigen 199 (CA199) to identify biomarkers for predicting the efficacy of transformative treatment. METHODS We retrospectively collected data from 70 patients with locally advanced pancreatic cancer who had undergone a biopsy for pathological diagnosis. These patients had complete baseline enhanced CT images and baseline CA199 results. Among them, 65 patients had efficacy evaluation results after 4 treatment cycles, 54 patients had complete baseline PET/CT images, 51 patients had complete DNA mutation detection results, and 34 patients had both complete PET/CT images and DNA mutation detection results. Additionally, 47 patients had complete available CT images at baseline, after 2 treatment cycles, and after 4 treatment cycles. We extracted radiomic features from the original lesion-enhanced CT images (including baseline and subsequent follow-up CT scans), radiomic features from baseline 18F-fluoro-2-deoxy-2-D-glucose (18F-FDG) PET, and patient-specific features related to abdominal and visceral fat. We used short-term and long-term treatment efficacy as the prediction outcomes and performed statistical and machine learning-based feature selection and COX regression analysis to identify potentially predictive features. Subsequently, we separately or in combination modeled the CT features, PET features, baseline CA199, and gene mutation data to construct efficacy prediction models. Finally, we investigated the mixed effects model of the dynamic changes in CT features at baseline, after 2 treatment cycles, and after 4 treatment cycles on the prediction of short-term treatment efficacy. RESULTS We found that a combination of CT radiomic features, including F1_ gray level co-occurrence matrix (GLCM), F2_gray level run length matrix (GLRLM), F5_neighboring gray tone difference matrix (NGTDM), and F6_Shape, PET radiomic features such as visceral adipose tissue (VAT), tumor-to-liver ratio (T/L), standardized uptake value mean (SUVmean), and GLCM, as well as baseline CA199, can be used to predict short-term treatment efficacy. Baseline CA199, GLCM, IntensityDirect, Shape, and PET/CT features are independent factors for long-term treatment efficacy. In constructing the short-term treatment efficacy prediction model, ensemble learning methods such as adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and RandomForest performed the best. However, in terms of model interpretability, decision tree methods provide the most intuitive display of the predictive details of the model. For the time series data of patients' baseline CT, CT after 2 treatment cycles, and CT after 4 treatment cycles, long short-term memory (LSTM) modeling yielded better predictive models. CONCLUSION A multimodal combination of radiomics, DNA mutations, and baseline CA199 can predict the efficacy of transformative treatment in locally advanced pancreatic cancer. Various feature selection methods and multimodal fusion approaches contribute to guiding personalized and precise treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Liang Qi
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiang Li
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiayao Ni
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yali Du
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Qing Gu
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Juan Du
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
3
|
Li D, Hu W, Ma L, Yang W, Liu Y, Zou J, Ge X, Han Y, Gan T, Cheng D, Ai K, Liu G, Zhang J. Deep learning radiomics nomograms predict Isocitrate dehydrogenase (IDH) genotypes in brain glioma: A multicenter study. Magn Reson Imaging 2024; 117:110314. [PMID: 39708927 DOI: 10.1016/j.mri.2024.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE To explore the feasibility of Deep learning radiomics nomograms (DLRN) in predicting IDH genotype. METHODS A total of 402 glioma patients from two independent centers were retrospectively included, and the data from center I was randomly divided into a training cohort (n = 239) and an internal validation cohort (n = 103) on a 7:3 basis. Center II served as an independent external validation cohort (n = 60). We developed a DLRN for IDH classification of gliomas based on T2 images. This hybrid model integrates deep learning features, radiomics features, and clinical features most relevant to IDH genotypes and finally classifies them using multivariate logistic regression analysis. We used the area under the curve (AUC) of the receiver operating characteristic (ROC) to evaluate the performance of the model and applied the DLRN score to the survival analysis of some of the follow-up glioma patients. RESULTS The proposed model had an area under the curve (AUC) of 0.98 in an externally validated cohort, and DLRN scores were significantly associated with the overall survival of glioma patients. CONCLUSIONS Deep learning radiomics nomograms performed well in non-invasively predicting IDH mutation status in gliomas, assisting stratified management and targeted therapy for glioma patients.
Collapse
Affiliation(s)
- Darui Li
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Wanjun Hu
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Laiyang Ma
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Wenxia Yang
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yang Liu
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Jie Zou
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Xin Ge
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yuping Han
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Tiejun Gan
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Ai
- Philips Healthcare, Xi'an, China
| | - Guangyao Liu
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Jing Zhang
- Department of Nuclear Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China.
| |
Collapse
|
4
|
Liao H, Yuan J, Liu C, Zhang J, Yang Y, Liang H, Liu H, Chen S, Li Y. One novel transfer learning-based CLIP model combined with self-attention mechanism for differentiating the tumor-stroma ratio in pancreatic ductal adenocarcinoma. LA RADIOLOGIA MEDICA 2024; 129:1559-1574. [PMID: 39412688 DOI: 10.1007/s11547-024-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/05/2024] [Indexed: 11/12/2024]
Abstract
PURPOSE To develop a contrastive language-image pretraining (CLIP) model based on transfer learning and combined with self-attention mechanism to predict the tumor-stroma ratio (TSR) in pancreatic ductal adenocarcinoma on preoperative enhanced CT images, in order to understand the biological characteristics of tumors for risk stratification and guiding feature fusion during artificial intelligence-based model representation. MATERIAL AND METHODS This retrospective study collected a total of 207 PDAC patients from three hospitals. TSR assessments were performed on surgical specimens by pathologists and divided into high TSR and low TSR groups. This study developed one novel CLIP-adapter model that integrates the CLIP paradigm with a self-attention mechanism for better utilizing features from multi-phase imaging, thereby enhancing the accuracy and reliability of tumor-stroma ratio predictions. Additionally, clinical variables, traditional radiomics model and deep learning models (ResNet50, ResNet101, ViT_Base_32, ViT_Base_16) were constructed for comparison. RESULTS The models showed significant efficacy in predicting TSR in PDAC. The performance of the CLIP-adapter model based on multi-phase feature fusion was superior to that based on any single phase (arterial or venous phase). The CLIP-adapter model outperformed traditional radiomics models and deep learning models, with CLIP-adapter_ViT_Base_32 performing the best, achieving the highest AUC (0.978) and accuracy (0.921) in the test set. Kaplan-Meier survival analysis showed longer overall survival in patients with low TSR compared to those with high TSR. CONCLUSION The CLIP-adapter model designed in this study provides a safe and accurate method for predicting the TSR in PDAC. The feature fusion module based on multi-modal (image and text) and multi-phase (arterial and venous phase) significantly improves model performance.
Collapse
Affiliation(s)
- Hongfan Liao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiang Yuan
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Chunhua Liu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiao Zhang
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shanxiong Chen
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Chen Y, Xie T, Chen L, Zhang Z, Wang Y, Zhou Z, Liu W. The preoperative prediction of lymph node metastasis of resectable pancreatic ductal adenocarcinoma using dual-layer spectral computed tomography. Eur Radiol 2024:10.1007/s00330-024-11143-2. [PMID: 39448418 DOI: 10.1007/s00330-024-11143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES To investigate the value of dual-layer spectral computed tomography (DLCT) parameters derived from primary tumors in predicting lymph node metastasis (LNM) of resectable pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS In this retrospective study, patients with resectable PDAC who underwent DLCT within 2-week intervals before surgery were enrolled and randomly divided into training and validation sets at a 7:3 ratio. The patients' clinical data, CT morphological features, and DLCT parameters were analyzed. Univariate and multivariate logistic analyses were used to identify the predictors and construct a predictive model, and receiver operator characteristic (ROC) curves were programmed to evaluate the predictive efficacy. RESULTS We enrolled 107 patients (44 patients with LNM and 63 patients without LNM). Among all variables, iodine concentration in the venous phase, extracellular volume, and tumor size were identified as independent predictors of LNM. The nomogram model, incorporating the two DLCT parameters and the morphological feature, achieved an area under the curve (AUC) of 0.877 (95% confidence interval [CI]: 0.803-0.952) and 0.842 (95% CI: 0.707-0.977) for predicting LNM in the training and validation sets, respectively. Furthermore, the AUC of the nomogram model was greater than that of morphological features of lymph nodes in the training (AUC = 0.877 vs. 0.570) and validation (AUC = 0.842 vs. 0.583) sets. CONCLUSIONS DLCT has the potential to predict LNM in patients with resectable PDAC and show a better predictive value than morphological features of lymph nodes. KEY POINTS Question Morphological features of lymph nodes are of limited value in detecting metastatic lymph nodes in pancreatic ductal adenocarcinoma (PDAC). Findings Dual-layer spectral computed tomography (DLCT) parameters and morphological features derived from PDAC lesions show good preoperatively predictive efficacy for lymph node metastasis. Clinical relevance The proposed DLCT-based nomogram model may serve as an effective and convenient tool for preoperatively predicting lymph node metastasis of resectable PDAC.
Collapse
Affiliation(s)
- Yi Chen
- Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Tiansong Xie
- Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 201100, China
| | - Lei Chen
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 201100, China
| | - Zehua Zhang
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 201100, China
| | - Yu Wang
- Clinical and Technical Support, Philips Healthcare, Shanghai, 200072, China
| | - Zhengrong Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Radiology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 201100, China.
| | - Wei Liu
- Department of Radiology, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Coppola A, Tessitore L, Fontana F, Piacentino F, Recaldini C, Minenna M, Capogrosso P, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Cacioppa LM, Dehò F, Venturini M. Dual-Energy Computed Tomography in Urological Diseases: A Narrative Review. J Clin Med 2024; 13:4069. [PMID: 39064110 PMCID: PMC11277677 DOI: 10.3390/jcm13144069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Dual-Energy computed tomography (DECT) with its various advanced techniques, including Virtual Non-Contrast (VNC), effective atomic number (Z-eff) calculation, Z-maps, Iodine Density Index (IDI), and so on, holds great promise in the diagnosis and management of urogenital tumours. In this narrative review, we analyze the current status of knowledge of this technology to provide better lesion characterization, improve the staging accuracy, and give more precise treatment response assessments in relation to urological tumours.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Luigi Tessitore
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Chiara Recaldini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Manuela Minenna
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Paolo Capogrosso
- Urology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, Via Sforza 35, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, Via Sforza 35, 20122 Milan, Italy
| | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Laura Maria Cacioppa
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Division of Interventional Radiology, Department of Radiological Sciences, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
| | - Federico Dehò
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Urology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
7
|
Castellana R, Fanni SC, Roncella C, Romei C, Natrella M, Neri E. Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Eur J Radiol 2024; 176:111510. [PMID: 38781919 DOI: 10.1016/j.ejrad.2024.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. RESULTS Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77-0.88), 0.76 (95 %CI = 0.62-0.86), 15.70 (95 %CI = 8.12-27.50) and 0.85 (95 %CI = 0.77-0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). CONCLUSION Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.
Collapse
Affiliation(s)
- Roberto Castellana
- Diagnostic and Interventional Radiology, "Parini" Regional Hospital, Azienda USL della Valle d'Aosta, Viale Ginevra 3 11100, Aosta, Italy.
| | - Salvatore Claudio Fanni
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Claudia Roncella
- Radiology Unit, Apuane Hospital, Azienda USL Toscana Nord Ovest, Via Mattei 21, 54100, Massa, Italy
| | - Chiara Romei
- Department of Diagnostic Imaging, Diagnostic Radiology 2, Pisa University Hospital, Via Paradisa 2, 56124, Pisa, Italy
| | - Massimiliano Natrella
- Diagnostic and Interventional Radiology, "Parini" Regional Hospital, Azienda USL della Valle d'Aosta, Viale Ginevra 3 11100, Aosta, Italy
| | - Emanuele Neri
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
8
|
Wu L, Cen C, Yue X, Chen L, Wu H, Yang M, Lu Y, Ma L, Li X, Wu H, Zheng C, Han P. A clinical-radiomics nomogram based on dual-layer spectral detector CT to predict cancer stage in pancreatic ductal adenocarcinoma. Cancer Imaging 2024; 24:55. [PMID: 38725034 PMCID: PMC11080083 DOI: 10.1186/s40644-024-00700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the efficacy of radiomics signatures derived from polyenergetic images (PEIs) and virtual monoenergetic images (VMIs) obtained through dual-layer spectral detector CT (DLCT). Moreover, it sought to develop a clinical-radiomics nomogram based on DLCT for predicting cancer stage (early stage: stage I-II, advanced stage: stage III-IV) in pancreatic ductal adenocarcinoma (PDAC). METHODS A total of 173 patients histopathologically diagnosed with PDAC and who underwent contrast-enhanced DLCT were enrolled in this study. Among them, 49 were in the early stage, and 124 were in the advanced stage. Patients were randomly categorized into training (n = 122) and test (n = 51) cohorts at a 7:3 ratio. Radiomics features were extracted from PEIs and 40-keV VMIs were reconstructed at both arterial and portal venous phases. Radiomics signatures were constructed based on both PEIs and 40-keV VMIs. A radiomics nomogram was developed by integrating the 40-keV VMI-based radiomics signature with selected clinical predictors. The performance of the nomogram was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curves analysis (DCA). RESULTS The PEI-based radiomics signature demonstrated satisfactory diagnostic efficacy, with the areas under the ROC curves (AUCs) of 0.92 in both the training and test cohorts. The optimal radiomics signature was based on 40-keV VMIs, with AUCs of 0.96 and 0.94 in the training and test cohorts. The nomogram, which integrated a 40-keV VMI-based radiomics signature with two clinical parameters (tumour diameter and normalized iodine density at the portal venous phase), demonstrated promising calibration and discrimination in both the training and test cohorts (0.97 and 0.91, respectively). DCA indicated that the clinical-radiomics nomogram provided the most significant clinical benefit. CONCLUSIONS The radiomics signature derived from 40-keV VMI and the clinical-radiomics nomogram based on DLCT both exhibited exceptional performance in distinguishing early from advanced stages in PDAC, aiding clinical decision-making for patients with this condition.
Collapse
Affiliation(s)
- Linxia Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Chunyuan Cen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Xiaofei Yue
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Ming Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Yuting Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Ling Ma
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, The People's Republic of China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China.
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, The People's Republic of China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, The People's Republic of China.
| |
Collapse
|
9
|
Shi S, Lin C, Zhou J, Wei L, Chen M, Zhang J, Cao K, Fan Y, Huang B, Luo Y, Feng ST. Development and validation of a deep learning radiomics model with clinical-radiological characteristics for the identification of occult peritoneal metastases in patients with pancreatic ductal adenocarcinoma. Int J Surg 2024; 110:2669-2678. [PMID: 38445459 DOI: 10.1097/js9.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Occult peritoneal metastases (OPM) in patients with pancreatic ductal adenocarcinoma (PDAC) are frequently overlooked during imaging. The authors aimed to develop and validate a computed tomography (CT)-based deep learning-based radiomics (DLR) model to identify OPM in PDAC before treatment. METHODS This retrospective, bicentric study included 302 patients with PDAC (training: n =167, OPM-positive, n =22; internal test: n =72, OPM-positive, n =9: external test, n =63, OPM-positive, n =9) who had undergone baseline CT examinations between January 2012 and October 2022. Handcrafted radiomics (HCR) and DLR features of the tumor and HCR features of peritoneum were extracted from CT images. Mutual information and least absolute shrinkage and selection operator algorithms were used for feature selection. A combined model, which incorporated the selected clinical-radiological, HCR, and DLR features, was developed using a logistic regression classifier using data from the training cohort and validated in the test cohorts. RESULTS Three clinical-radiological characteristics (carcinoembryonic antigen 19-9 and CT-based T and N stages), nine HCR features of the tumor, 14 DLR features of the tumor, and three HCR features of the peritoneum were retained after feature selection. The combined model yielded satisfactory predictive performance, with an area under the curve (AUC) of 0.853 (95% CI: 0.790-0.903), 0.845 (95% CI: 0.740-0.919), and 0.852 (95% CI: 0.740-0.929) in the training, internal test, and external test cohorts, respectively (all P <0.05). The combined model showed better discrimination than the clinical-radiological model in the training (AUC=0.853 vs. 0.612, P <0.001) and the total test (AUC=0.842 vs. 0.638, P <0.05) cohorts. The decision curves revealed that the combined model had greater clinical applicability than the clinical-radiological model. CONCLUSIONS The model combining CT-based DLR and clinical-radiological features showed satisfactory performance for predicting OPM in patients with PDAC.
Collapse
Affiliation(s)
- Siya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Chuxuan Lin
- Medical AI Lab, School of Biomedical Engineering
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
| | - Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou
- South China Hospital, Medical School, Shenzhen University
| | - Luyong Wei
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Mingjie Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Jian Zhang
- Shenzhen University Medical School
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
| | - Kangyang Cao
- Medical AI Lab, School of Biomedical Engineering
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
| | - Yaheng Fan
- Medical AI Lab, School of Biomedical Engineering
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
10
|
Li Q, Song Z, Li X, Zhang D, Yu J, Li Z, Huang J, Su K, Liu Q, Zhang X, Tang Z. Development of a CT radiomics nomogram for preoperative prediction of Ki-67 index in pancreatic ductal adenocarcinoma: a two-center retrospective study. Eur Radiol 2024; 34:2934-2943. [PMID: 37938382 DOI: 10.1007/s00330-023-10393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES To develop and validate a contrast-enhanced computed tomography (CECT)-based radiomics nomogram for the preoperative evaluation of Ki-67 proliferation status in pancreatic ductal adenocarcinoma (PDAC). METHODS In this two-center retrospective study, a total of 181 patients (95 in the training cohort; 42 in the testing cohort, and 44 in the external validation cohort) with PDAC who underwent CECT examination were included. Radiomic features were extracted from portal venous phase images. The radiomics signatures were built by using two feature-selecting methods (relief and recursive feature elimination) and four classifiers (support vector machine, naive Bayes, linear discriminant analysis (LDA), and logistic regression (LR)). Multivariate LR was used to build a clinical model and radiomics-clinical nomogram. The predictive performances of the models were evaluated using area under receiver operating characteristic curve (AUC) and decision curve analysis (DCA). RESULTS The relief selector and LDA classifier using twelve features built the optimal radiomics signature, with AUCs of 0.948, 0.927, and 0.824 in the training, testing, and external validation cohorts, respectively. The radiomics-clinical nomogram incorporating the optimal radiomics signature, CT-reported lymph node status, and CA19-9 showed better predictive performance with AUCs of 0.976, 0.955, and 0.882 in the training, testing, and external validation cohorts, respectively. The calibration curve and DCA demonstrated goodness-of-fit and improved benefits in clinical practice of the nomogram. CONCLUSIONS The radiomics-clinical nomogram is an effective and non-invasive computer-aided tool to predict the Ki-67 expression status in patients with PDAC. CLINICAL RELEVANCE STATEMENT The radiomics-clinical nomogram is an effective and non-invasive computer-aided tool to predict the Ki-67 expression status in patients with pancreatic ductal adenocarcinoma. KEY POINTS The radiomics analysis could be helpful to predict Ki-67 expression status in patients with pancreatic ductal adenocarcinoma (PDAC). The radiomics-clinical nomogram integrated with the radiomics signature, clinical data, and CT radiological features could significantly improve the differential diagnosis of Ki-67 expression status. The radiomics-clinical nomogram showed satisfactory calibration and net benefit for discriminating high and low Ki-67 expression status in PDAC.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Zuhua Song
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Xiaojiao Li
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Dan Zhang
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Jiayi Yu
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Zongwen Li
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Jie Huang
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Kai Su
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Qian Liu
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China
| | - Xiaodi Zhang
- Department of Clinical Science, Philips Healthcare, Chengdu, China
| | - Zhuoyue Tang
- Department of Radiology, Chongqing General Hospital, Yuzhong District, No. 104, Pipashan Main Street, Chongqing, 400014, China.
| |
Collapse
|
11
|
Wang N, Bing X, Li Y, Yao J, Dai Z, Yu D, Ouyang A. Study of radiomics based on dual-energy CT for nuclear grading and T-staging in renal clear cell carcinoma. Medicine (Baltimore) 2024; 103:e37288. [PMID: 38457546 PMCID: PMC10919525 DOI: 10.1097/md.0000000000037288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/23/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is the most lethal subtype of renal cell carcinoma with a high invasive potential. Radiomics has attracted much attention in predicting the preoperative T-staging and nuclear grade of ccRCC. OBJECTIVE The objective was to evaluate the efficacy of dual-energy computed tomography (DECT) radiomics in predicting ccRCC grade and T-stage while optimizing the models. METHODS 200 ccRCC patients underwent preoperative DECT scanning and were randomized into training and validation cohorts. Radiomics models based on 70 KeV, 100 KeV, 150 KeV, iodine-based material decomposition images (IMDI), virtual noncontrasted images (VNC), mixed energy images (MEI) and MEI + IMDI were established for grading and T-staging. Receiver operating characteristic analysis and decision curve analysis (DCA) were performed. The area under the curve (AUC) values were compared using Delong test. RESULTS For grading, the AUC values of these models ranged from 0.64 to 0.97 during training and from 0.54 to 0.72 during validation. In the validation cohort, the performance of MEI + IMDI model was optimal, with an AUC of 0.72, sensitivity of 0.71, and specificity of 0.70. The AUC value for the 70 KeV model was higher than those for the 100 KeV, 150 KeV, and MEI models. For T-staging, these models achieved AUC values of 0.83 to 1.00 in training and 0.59 to 0.82 in validation. The validation cohort demonstrated AUCs of 0.82 and 0.70, sensitivities of 0.71 and 0.71, and specificities of 0.80 and 0.60 for the MEI + IMDI and IMDI models, respectively. In terms of grading and T-staging, the MEI + IMDI model had the highest AUC in validation, with IMDI coming in second. There were statistically significant differences between the MEI + IMDI model and the 70 KeV, 100 KeV, 150 KeV, MEI, and VNC models in terms of grading (P < .05) and staging (P ≤ .001). DCA showed that both MEI + IDMI and IDMI models outperformed other models in predicting grade and stage of ccRCC. CONCLUSIONS DECT radiomics models were helpful in grading and T-staging of ccRCC. The combined model of MEI + IMDI achieved favorable results.
Collapse
Affiliation(s)
- Ning Wang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Xue Bing
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Yuhan Li
- Department of Radiology, Longkou Traditional Chinese Medicine Hospital, Yantai 265700, Shandong Province, P. R. China
| | - Jian Yao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Zhengjun Dai
- Scientific Research Department, Huiying Medical Technology Co., Ltd, Beijing 100192, P. R. China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P. R. China
| | - Aimei Ouyang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| |
Collapse
|
12
|
Chen M, Jiang Y, Zhou X, Wu D, Xie Q. Dual-Energy Computed Tomography in Detecting and Predicting Lymph Node Metastasis in Malignant Tumor Patients: A Comprehensive Review. Diagnostics (Basel) 2024; 14:377. [PMID: 38396416 PMCID: PMC10888055 DOI: 10.3390/diagnostics14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The accurate and timely assessment of lymph node involvement is paramount in the management of patients with malignant tumors, owing to its direct correlation with cancer staging, therapeutic strategy formulation, and prognostication. Dual-energy computed tomography (DECT), as a burgeoning imaging modality, has shown promising results in the diagnosis and prediction of preoperative metastatic lymph nodes in recent years. This article aims to explore the application of DECT in identifying metastatic lymph nodes (LNs) across various cancer types, including but not limited to thyroid carcinoma (focusing on papillary thyroid carcinoma), lung cancer, and colorectal cancer. Through this narrative review, we aim to elucidate the clinical relevance and utility of DECT in the detection and predictive assessment of lymph node metastasis in malignant tumors, thereby contributing to the broader academic discourse in oncologic radiology and diagnostic precision.
Collapse
Affiliation(s)
| | | | | | - Di Wu
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518036, China; (M.C.); (Y.J.); (X.Z.)
| | - Qiuxia Xie
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518036, China; (M.C.); (Y.J.); (X.Z.)
| |
Collapse
|
13
|
Wei Z, Liu H, Xv Y, Liao F, He Q, Xie Y, Lv F, Jiang Q, Xiao M. Development and validation of a CT-based deep learning radiomics nomogram to predict muscle invasion in bladder cancer. Heliyon 2024; 10:e24878. [PMID: 38304824 PMCID: PMC10831750 DOI: 10.1016/j.heliyon.2024.e24878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Objective This study aimed to develop a nomogram combining CT-based handcrafted radiomics and deep learning (DL) features to preoperatively predict muscle invasion in bladder cancer (BCa) with multi-center validation. Methods In this retrospective study, 323 patients underwent radical cystectomy with pathologically confirmed BCa were enrolled and randomly divided into the training cohort (n = 226) and internal validation cohort (n = 97). And fifty-two patients from another independent medical center were enrolled as an independent external validation cohort. Handcrafted radiomics and DL features were constructed from preoperative nephrographic phase CT images. Least absolute shrinkage and selection operator (LASSO) regression was used to identify the most discriminative features in train cohort. Multivariate logistic regression was used to develop the predictive model and a deep learning radiomics nomogram (DLRN) was constructed. The predictive performance of models was evaluated by area under the curves (AUC) in the three cohorts. The calibration and clinical usefulness of DLRN were estimated by calibration curve and decision curve analysis. Results The nomogram that incorporated radiomics signature and DL signature demonstrated satisfactory predictive performance for differentiating non-muscle invasive bladder cancer (NMIBC) from muscle invasive bladder cancer (MIBC), with an AUC of 0.884 (95 % CI: 0.813-0.953) in internal validation cohort and 0.862 (95 % CI: 0.756-0.968) in external validation cohort, respectively. Decision curve analysis confirmed the clinical usefulness of the nomogram. Conclusions A CT-based deep learning radiomics nomogram exhibited a promising performance for preoperative prediction of muscle invasion in bladder cancer, and may be helpful in the clinical decision-making process.
Collapse
Affiliation(s)
- Zongjie Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huayun Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingjie Xv
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangtong Liao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quanhao He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongpeng Xie
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingzhao Xiao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Patel H, Zanos T, Hewitt DB. Deep Learning Applications in Pancreatic Cancer. Cancers (Basel) 2024; 16:436. [PMID: 38275877 PMCID: PMC10814475 DOI: 10.3390/cancers16020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Pancreatic cancer is one of the most lethal gastrointestinal malignancies. Despite advances in cross-sectional imaging, chemotherapy, radiation therapy, and surgical techniques, the 5-year overall survival is only 12%. With the advent and rapid adoption of AI across all industries, we present a review of applications of DL in the care of patients diagnosed with PC. A review of different DL techniques with applications across diagnosis, management, and monitoring is presented across the different pathological subtypes of pancreatic cancer. This systematic review highlights AI as an emerging technology in the care of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hardik Patel
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - Theodoros Zanos
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - D. Brock Hewitt
- Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
15
|
Li D, Peng Q, Wang L, Cai W, Liang M, Liu S, Ma X, Zhao X. Preoperative prediction of disease-free survival in pancreatic ductal adenocarcinoma patients after R0 resection using contrast-enhanced CT and CA19-9. Eur Radiol 2024; 34:509-524. [PMID: 37507611 DOI: 10.1007/s00330-023-09980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES To investigate the efficiency of a combination of preoperative contrast-enhanced computed tomography (CECT) and carbohydrate antigen 19-9 (CA19-9) in predicting disease-free survival (DFS) after R0 resection of pancreatic ductal adenocarcinoma (PDAC). METHODS A total of 138 PDAC patients who underwent curative R0 resection were retrospectively enrolled and allocated chronologically to training (n = 91, January 2014-July 2019) and validation cohorts (n = 47, August 2019-December 2020). Using univariable and multivariable Cox regression analyses, we constructed a preoperative clinicoradiographic model based on the combination of CECT features and serum CA19-9 concentrations, and validated it in the validation cohort. The prognostic performance was evaluated and compared with that of postoperative clinicopathological and tumor-node-metastasis (TNM) models. Kaplan-Meier analysis was conducted to verify the preoperative prognostic stratification performance of the proposed model. RESULTS The preoperative clinicoradiographic model included five independent prognostic factors (tumor diameter on CECT > 4 cm, extrapancreatic organ infiltration, CECT-reported lymph node metastasis, peripheral enhancement, and preoperative CA19-9 levels > 180 U/mL). It better predicted DFS than did the postoperative clinicopathological (C-index, 0.802 vs. 0.787; p < 0.05) and TNM (C-index, 0.802 vs. 0.711; p < 0.001) models in the validation cohort. Low-risk patients had significantly better DFS than patients at the high-risk, defined by the model preoperatively (p < 0.001, training cohort; p < 0.01, validation cohort). CONCLUSIONS The clinicoradiographic model, integrating preoperative CECT features and serum CA19-9 levels, helped preoperatively predict postsurgical DFS for PDAC and could facilitate clinical decision-making. CLINICAL RELEVANCE STATEMENT We constructed a simple model integrating clinical and radiological features for the prediction of disease-free survival after curative R0 resection in patients with pancreatic ductal adenocarcinoma; this novel model may facilitate preoperative identification of patients at high risk of recurrence and metastasis that may benefit from neoadjuvant treatments. KEY POINTS • Existing clinicopathological predictors for prognosis in pancreatic ductal adenocarcinoma (PDAC) patients who underwent R0 resection can only be ascertained postoperatively and do not allow preoperative prediction. • We constructed a clinicoradiographic model, using preoperative contrast-enhanced computed tomography (CECT) features and preoperative carbohydrate antigen 19-9 (CA19-9) levels, and presented it as a nomogram. • The presented model can predict disease-free survival (DFS) in patients with PDAC better than can postoperative clinicopathological or tumor-node-metastasis (TNM) models.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Street South, Chaoyang District, Beijing, 100021, China
| | - Qing Peng
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Leyao Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Street South, Chaoyang District, Beijing, 100021, China
| | - Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Street South, Chaoyang District, Beijing, 100021, China
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Street South, Chaoyang District, Beijing, 100021, China
| | - Siyun Liu
- GE Healthcare (China), Beijing, 100176, China
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Street South, Chaoyang District, Beijing, 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Street South, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
16
|
He X, Li K, Wei R, Zuo M, Yao W, Zheng Z, He X, Fu Y, Li C, An C, Liu W. A multitask deep learning radiomics model for predicting the macrotrabecular-massive subtype and prognosis of hepatocellular carcinoma after hepatic arterial infusion chemotherapy. LA RADIOLOGIA MEDICA 2023; 128:1508-1520. [PMID: 37801197 PMCID: PMC10700409 DOI: 10.1007/s11547-023-01719-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The macrotrabecular-massive (MTM) is a special subtype of hepatocellular carcinoma (HCC), which has commonly a dismal prognosis. This study aimed to develop a multitask deep learning radiomics (MDLR) model for predicting MTM and HCC patients' prognosis after hepatic arterial infusion chemotherapy (HAIC). METHODS From June 2018 to March 2020, 158 eligible patients with HCC who underwent surgery were retrospectively enrolled in MTM related cohorts, and 752 HCC patients who underwent HAIC were included in HAIC related cohorts during the same period. DLR features were extracted from dual-phase (arterial phase and venous phase) contrast-enhanced computed tomography (CECT) of the entire liver region. Then, an MDLR model was used for the simultaneous prediction of the MTM subtype and patient prognosis after HAIC. The MDLR model for prognostic risk stratification incorporated DLR signatures, clinical variables and MTM subtype. FINDINGS The predictive performance of the DLR model for the MTM subtype was 0.968 in the training cohort [TC], 0.912 in the internal test cohort [ITC] and 0.773 in the external test cohort [ETC], respectively. Multivariable analysis identified portal vein tumor thrombus (PVTT) (p = 0.012), HAIC response (p < 0.001), HAIC sessions (p < 0.001) and MTM subtype (p < 0.001) as indicators of poor prognosis. After incorporating DLR signatures, the MDLR model yielded the best performance among all models (AUC, 0.855 in the TC, 0.805 in the ITC and 0.792 in the ETC). With these variables, the MDLR model provided two risk strata for overall survival (OS) in the TC: low risk (5-year OS, 44.9%) and high risk (5-year OS, 4.9%). INTERPRETATION A tool based on MDLR was developed to consider that the MTM is an important prognosis factor for HCC patients. MDLR showed outstanding performance for the prognostic risk stratification of HCC patients who underwent HAIC and may help physicians with therapeutic decision making and surveillance strategy selection in clinical practice.
Collapse
Affiliation(s)
- Xuelei He
- School of Information Sciences and Technology, Northwest University, Xi'an, 710127, Shaanxi Province, People's Republic of China
| | - Kai Li
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Ran Wei
- Department of Interventional Radiology and Vascular Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Mengxuan Zuo
- Department of Minimal Invasive Intervention, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651, Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Wang Yao
- Department of Interventional Radiology and Vascular Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Zechen Zheng
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese, Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaowei He
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese, Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical, Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical, Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510060, People's Republic of China.
| | - Chao An
- Department of Minimal Invasive Intervention, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651, Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| | - Wendao Liu
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese, Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Yang C, Chen Y, Zhu L, Wang L, Lin Q. A deep learning MRI-based signature may provide risk-stratification strategies for nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2023; 280:5039-5047. [PMID: 37358652 DOI: 10.1007/s00405-023-08084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE As the prognosis of nasopharyngeal carcinoma (NPC) is influenced by various factors, making it difficult for clinical physicians to predict the outcome, the objective of this study was to develop a deep learning-based signature for risk stratification in NPC patients. METHODS A total of 293 patients were enrolled in the study and divided into training, validation, and testing groups with a ratio of 7:1:2. MRI scans and corresponding clinical information were collected, and the 3-year disease-free survival (DFS) was chosen as the endpoint. The Res-Net18 algorithm was used to develop two deep learning (DL) models and another solely based on clinical characteristics developed by multivariate cox analysis. The performance of both models was evaluated using the area under the curve (AUC) and the concordance index (C-index). Discriminative performance was assessed using Kaplan-Meier survival analysis. RESULTS The deep learning approach identified DL prognostic models. The MRI-based DL model showed significantly better performance compared to the traditional model solely based on clinical characteristics (AUC: 0.8861 vs 0.745, p = 0.04 and C-index: 0.865 vs 0.727, p = 0.03). The survival analysis showed significant survival differences between the risk groups identified by the MRI-based model. CONCLUSION Our study highlights the potential of MRI in predicting the prognosis of NPC through DL algorithm. This approach has the potential to become a novel tool for prognosis prediction and can help physicians to develop more valid treatment strategies in the future.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Yuan Chen
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Luchao Zhu
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Liansheng Wang
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China.
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
18
|
Wang S, Zhang Y, Xu Y, Yang P, Liu C, Gong H, Lei J. Progress in the application of dual-energy CT in pancreatic diseases. Eur J Radiol 2023; 168:111090. [PMID: 37742372 DOI: 10.1016/j.ejrad.2023.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
Pancreatic diseases are difficult to diagnose due to their insidious onset and complex pathophysiological developmental characteristics. In recent years, dual-energy computed tomography (DECT) imaging technology has rapidly advanced. DECT can quantitatively extract and analyze medical imaging features and establish a correlation between these features and clinical results. This feature enables the adoption of more modern and accurate clinical diagnosis and treatment strategies for patients with pancreatic diseases so as to achieve the goal of non-invasive, low-cost, and personalized treatment. The purpose of this review is to elaborate on the application of DECT for the diagnosis, biological characterization, and prediction of the survival of patients with pancreatic diseases (including pancreatitis, pancreatic cancer, pancreatic cystic tumor, pancreatic neuroendocrine tumor, and pancreatic injury) and to summarize its current limitations and future research prospects.
Collapse
Affiliation(s)
- Sha Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yanli Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of Radiology, The First Hospital of Lanzhou University, Lanzhou 730000, China; Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou 730000, China
| | - Yongsheng Xu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of Radiology, The First Hospital of Lanzhou University, Lanzhou 730000, China; Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou 730000, China
| | - Pengcheng Yang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Chuncui Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Hengxin Gong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Junqiang Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of Radiology, The First Hospital of Lanzhou University, Lanzhou 730000, China; Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
19
|
Hong Y, Zhong L, Lv X, Liu Q, Fu L, Zhou D, Yu N. Application of spectral CT in diagnosis, classification and prognostic monitoring of gastrointestinal cancers: progress, limitations and prospects. Front Mol Biosci 2023; 10:1284549. [PMID: 37954980 PMCID: PMC10634296 DOI: 10.3389/fmolb.2023.1284549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrointestinal (GI) cancer is the leading cause of cancer-related deaths worldwide. Computed tomography (CT) is an important auxiliary tool for the diagnosis, evaluation, and prognosis prediction of gastrointestinal tumors. Spectral CT is another major CT revolution after spiral CT and multidetector CT. Compared to traditional CT which only provides single-parameter anatomical diagnostic mode imaging, spectral CT can achieve multi-parameter imaging and provide a wealth of image information to optimize disease diagnosis. In recent years, with the rapid development and application of spectral CT, more and more studies on the application of spectral CT in the characterization of GI tumors have been published. For this review, we obtained a substantial volume of literature, focusing on spectral CT imaging of gastrointestinal cancers, including esophageal, stomach, colorectal, liver, and pancreatic cancers. We found that spectral CT can not only accurately stage gastrointestinal tumors before operation but also distinguish benign and malignant GI tumors with improved image quality, and effectively evaluate the therapeutic response and prognosis of the lesions. In addition, this paper also discusses the limitations and prospects of using spectral CT in GI cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yuqin Hong
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Lijuan Zhong
- Department of Radiology, The People’s Hospital of Leshan, Leshan, China
| | - Xue Lv
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Qiao Liu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Langzhou Fu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Daiquan Zhou
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Na Yu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| |
Collapse
|
20
|
Wolf EV, Müller L, Schoepf UJ, Fink N, Griffith JP, Zsarnoczay E, Baruah D, Suranyi P, Kabakus IM, Halfmann MC, Emrich T, Varga-Szemes A, O'Doherty J. Photon-counting detector CT-based virtual monoenergetic reconstructions: repeatability and reproducibility of radiomics features of an organic phantom and human myocardium. Eur Radiol Exp 2023; 7:59. [PMID: 37875769 PMCID: PMC10597903 DOI: 10.1186/s41747-023-00371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) may influence imaging characteristics for various clinical conditions due to higher signal and contrast-to-noise ratio in virtual monoenergetic images (VMI). Radiomics analysis relies on quantification of image characteristics. We evaluated the impact of different VMI reconstructions on radiomic features in in vitro and in vivo PCD-CT datasets. METHODS An organic phantom consisting of twelve samples (four oranges, four onions, and four apples) was scanned five times. Twenty-three patients who had undergone coronary computed tomography angiography on a first generation PCD-CT system with the same image acquisitions were analyzed. VMIs were reconstructed at 6 keV levels (40, 55, 70, 90, 120, and 190 keV). The phantoms and the patients' left ventricular myocardium (LVM) were segmented for all reconstructions. Ninety-three original radiomic features were extracted. Repeatability and reproducibility were evaluated through intraclass correlations coefficient (ICC) and post hoc paired samples ANOVA t test. RESULTS There was excellent repeatability for radiomic features in phantom scans (all ICC = 1.00). Among all VMIs, 36/93 radiomic features (38.7%) in apples, 28/93 (30.1%) in oranges, and 33/93 (35.5%) in onions were not significantly different. For LVM, the percentage of stable features was high between VMIs ≥ 90 keV (90 versus 120 keV, 77.4%; 90 versus 190 keV, 83.9%; 120 versus 190 keV, 89.3%), while comparison to lower VMI levels led to fewer reproducible features (40 versus 55 keV, 8.6%). CONCLUSIONS VMI levels influence the stability of radiomic features in an organic phantom and patients' LVM; stability decreases considerably below 90 keV. RELEVANCE STATEMENT Spectral reconstructions significantly influence radiomic features in vitro and in vivo, necessitating standardization and careful attention to these reconstruction parameters before clinical implementation. KEY POINTS • Radiomic features have an excellent repeatability within the same PCD-CT acquisition and reconstruction. • Differences in VMI lead to decreased reproducibility for radiomic features. • VMI ≥ 90 keV increased the reproducibility of the radiomic features.
Collapse
Affiliation(s)
- Elias V Wolf
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Lukas Müller
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Joseph P Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Dhiraj Baruah
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Pal Suranyi
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Ismael M Kabakus
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Moritz C Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany.
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Siemens Medical Solutions USA Inc, Malvern, PA, USA
| |
Collapse
|
21
|
Abu-Khudir R, Hafsa N, Badr BE. Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning. Diagnostics (Basel) 2023; 13:3091. [PMID: 37835833 PMCID: PMC10572229 DOI: 10.3390/diagnostics13193091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PC) has one of the lowest survival rates among all major types of cancer. Consequently, it is one of the leading causes of mortality worldwide. Serum biomarkers historically correlate well with the early prognosis of post-surgical complications of PC. However, attempts to identify an effective biomarker panel for the successful prognosis of PC were almost non-existent in the current literature. The current study investigated the roles of various serum biomarkers including carbohydrate antigen 19-9 (CA19-9), chemokine (C-X-C motif) ligand 8 (CXCL-8), procalcitonin (PCT), and other relevant clinical data for identifying PC progression, classified into sepsis, recurrence, and other post-surgical complications, among PC patients. The most relevant biochemical and clinical markers for PC prognosis were identified using a random-forest-powered feature elimination method. Using this informative biomarker panel, the selected machine-learning (ML) classification models demonstrated highly accurate results for classifying PC patients into three complication groups on independent test data. The superiority of the combined biomarker panel (Max AUC-ROC = 100%) was further established over using CA19-9 features exclusively (Max AUC-ROC = 75%) for the task of classifying PC progression. This novel study demonstrates the effectiveness of the combined biomarker panel in successfully diagnosing PC progression and other relevant complications among Egyptian PC survivors.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, P.O. Box 380, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Noor Hafsa
- Computer Science Department, College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Badr E. Badr
- Egyptian Ministry of Labor, Training and Research Department, Tanta 31512, Egypt;
- Botany Department, Microbiology Unit, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
22
|
Fu N, Fu W, Chen H, Chai W, Qian X, Wang W, Jiang Y, Shen B. A deep-learning radiomics-based lymph node metastasis predictive model for pancreatic cancer: a diagnostic study. Int J Surg 2023; 109:2196-2203. [PMID: 37216230 PMCID: PMC10442094 DOI: 10.1097/js9.0000000000000469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVES Preoperative lymph node (LN) status is essential in formulating the treatment strategy among pancreatic cancer patients. However, it is still challenging to evaluate the preoperative LN status precisely now. METHODS A multivariate model was established based on the multiview-guided two-stream convolution network (MTCN) radiomics algorithms, which focused on primary tumor and peri-tumor features. Regarding discriminative ability, survival fitting, and model accuracy, different models were compared. RESULTS Three hundred and sixty-three pancreatic cancer patients were divided in to train and test cohorts by 7:3. The modified MTCN (MTCN+) model was established based on age, CA125, MTCN scores, and radiologist judgement. The MTCN+ model outperformed the MTCN model and the artificial model in discriminative ability and model accuracy. [Train cohort area under curve (AUC): 0.823 vs. 0.793 vs. 0.592; train cohort accuracy (ACC): 76.1 vs. 74.4 vs. 56.7%; test cohort AUC: 0.815 vs. 0.749 vs. 0.640; test cohort ACC: 76.1 vs. 70.6 vs. 63.3%; external validation AUC: 0.854 vs. 0.792 vs. 0.542; external validation ACC: 71.4 vs. 67.9 vs. 53.5%]. The survivorship curves fitted well between actual LN status and predicted LN status regarding disease free survival and overall survival. Nevertheless, the MTCN+ model performed poorly in assessing the LN metastatic burden among the LN positive population. Notably, among the patients with small primary tumors, the MTCN+ model performed steadily as well (AUC: 0.823, ACC: 79.5%). CONCLUSIONS A novel MTCN+ preoperative LN status predictive model was established and outperformed the artificial judgement and deep-learning radiomics judgement. Around 40% misdiagnosed patients judged by radiologists could be corrected. And the model could help precisely predict the survival prognosis.
Collapse
Affiliation(s)
- Ningzhen Fu
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Wenli Fu
- School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | | | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yu Jiang
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center
- Research Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine
- Institute of Translational Medicine
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
23
|
Li M, Fan Y, You H, Li C, Luo M, Zhou J, Li A, Zhang L, Yu X, Deng W, Zhou J, Zhang D, Zhang Z, Chen H, Xiao Y, Huang B, Wang J. Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma. Radiology 2023; 308:e230255. [PMID: 37606573 DOI: 10.1148/radiol.230255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Background It is unknown whether the additional information provided by multiparametric dual-energy CT (DECT) could improve the noninvasive diagnosis of the aggressive macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC). Purpose To evaluate the diagnostic performance of dual-phase contrast-enhanced multiparametric DECT for predicting MTM HCC. Materials and Methods Patients with histopathologic examination-confirmed HCC who underwent contrast-enhanced DECT between June 2019 and June 2022 were retrospectively recruited from three independent centers (center 1, training and internal test data set; centers 2 and 3, external test data set). Radiologic features were visually analyzed and combined with clinical information to establish a clinical-radiologic model. Deep learning (DL) radiomics models were based on DL features and handcrafted features extracted from virtual monoenergetic images and material composition images on dual phase using binary least absolute shrinkage and selection operators. A DL radiomics nomogram was developed using multivariable logistic regression analysis. Model performance was evaluated with the area under the receiver operating characteristic curve (AUC), and the log-rank test was used to analyze recurrence-free survival. Results A total of 262 patients were included (mean age, 54 years ± 12 [SD]; 225 men [86%]; training data set, n = 146 [56%]; internal test data set, n = 35 [13%]; external test data set, n = 81 [31%]). The DL radiomics nomogram better predicted MTM than the clinical-radiologic model (AUC = 0.91 vs 0.77, respectively, for the training set [P < .001], 0.87 vs 0.72 for the internal test data set [P = .04], and 0.89 vs 0.79 for the external test data set [P = .02]), with similar sensitivity (80% vs 87%, respectively; P = .63) and higher specificity (90% vs 63%; P < .001) in the external test data set. The predicted positive MTM groups based on the DL radiomics nomogram had shorter recurrence-free survival than predicted negative MTM groups in all three data sets (training data set, P = .04; internal test data set, P = .01; and external test data set, P = .03). Conclusion A DL radiomics nomogram derived from multiparametric DECT accurately predicted the MTM subtype in patients with HCC. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
Collapse
Affiliation(s)
- Mengsi Li
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Yaheng Fan
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Huayu You
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Chao Li
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Ma Luo
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Jing Zhou
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Anqi Li
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Lina Zhang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Xiao Yu
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Weiwei Deng
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Jinhui Zhou
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Dingyue Zhang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Zhongping Zhang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Haimei Chen
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Yuanqiang Xiao
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Bingsheng Huang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| | - Jin Wang
- From the Departments of Radiology (M. Li, C.L., A.L., L.Z., Jinhui Zhou, D.Z., H.C., Y.X., J.W.) and Pathology (Jing Zhou), The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Rd, Guangzhou, Guangdong, 510630, People's Republic of China; Medical AI Laboratory, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, People's Republic of China (Y.F., B.H.); Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China (H.Y.); Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China (M. Luo); and Department of Clinical Science, Philips Healthcare China, Shanghai, People's Republic of China (X.Y., W.D., Z.Z.)
| |
Collapse
|
24
|
Zhang G, Bao C, Liu Y, Wang Z, Du L, Zhang Y, Wang F, Xu B, Zhou SK, Liu R. 18F-FDG-PET/CT-based deep learning model for fully automated prediction of pathological grading for pancreatic ductal adenocarcinoma before surgery. EJNMMI Res 2023; 13:49. [PMID: 37231321 DOI: 10.1186/s13550-023-00985-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The determination of pathological grading has a guiding significance for the treatment of pancreatic ductal adenocarcinoma (PDAC) patients. However, there is a lack of an accurate and safe method to obtain pathological grading before surgery. The aim of this study is to develop a deep learning (DL) model based on 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) for a fully automatic prediction of preoperative pathological grading of pancreatic cancer. METHODS A total of 370 PDAC patients from January 2016 to September 2021 were collected retrospectively. All patients underwent 18F-FDG-PET/CT examination before surgery and obtained pathological results after surgery. A DL model for pancreatic cancer lesion segmentation was first developed using 100 of these cases and applied to the remaining cases to obtain lesion regions. After that, all patients were divided into training set, validation set, and test set according to the ratio of 5:1:1. A predictive model of pancreatic cancer pathological grade was developed using the features computed from the lesion regions obtained by the lesion segmentation model and key clinical characteristics of the patients. Finally, the stability of the model was verified by sevenfold cross-validation. RESULTS The Dice score of the developed PET/CT-based tumor segmentation model for PDAC was 0.89. The area under curve (AUC) of the PET/CT-based DL model developed on the basis of the segmentation model was 0.74, with an accuracy, sensitivity, and specificity of 0.72, 0.73, and 0.72, respectively. After integrating key clinical data, the AUC of the model improved to 0.77, with its accuracy, sensitivity, and specificity boosted to 0.75, 0.77, and 0.73, respectively. CONCLUSION To the best of our knowledge, this is the first deep learning model to end-to-end predict the pathological grading of PDAC in a fully automatic manner, which is expected to improve clinical decision-making.
Collapse
Affiliation(s)
- Gong Zhang
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chengkai Bao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Yanzhe Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zizheng Wang
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Du
- Department of Nuclear Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yue Zhang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Fei Wang
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Baixuan Xu
- Department of Nuclear Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - S Kevin Zhou
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China.
| | - Rong Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
25
|
Zhong J, Pan Z, Chen Y, Wang L, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Yan F, Zhang H, Yao W. Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability. Insights Imaging 2023; 14:79. [PMID: 37166511 PMCID: PMC10175529 DOI: 10.1186/s13244-023-01426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVES To evaluate robustness of dual-energy CT (DECT) radiomics features of virtual unenhanced (VUE) image and virtual monoenergetic image (VMI) among different imaging platforms. METHODS A phantom with sixteen clinical-relevant densities was scanned on ten DECT platforms with comparable scan parameters. Ninety-four radiomic features were extracted via Pyradiomics from VUE images and VMIs at energy level of 70 keV (VMI70keV). Test-retest repeatability was assessed by Bland-Altman analysis. Inter-platform reproducibility of VUE images and VMI70keV was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD) among platforms, and by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC) between platform pairs. The correlation between variability of CT number radiomics reproducibility was estimated. RESULTS 92.02% and 92.87% of features were repeatable between scan-rescans for VUE images and VMI70keV, respectively. Among platforms, 11.30% and 28.39% features of VUE images, and 15.16% and 28.99% features of VMI70keV were with CV < 10% and QCD < 10%. The average percentages of radiomics features with ICC > 0.90 and CCC > 0.90 between platform pairs were 10.00% and 9.86% in VUE images and 11.23% and 11.23% in VMI70keV. The CT number inter-platform reproducibility using CV and QCD showed negative correlations with percentage of the first-order radiomics features with CV < 10% and QCD < 10%, in both VUE images and VMI70keV (r2 0.3870-0.6178, all p < 0.001). CONCLUSIONS The majority of DECT radiomics features were non-reproducible. The differences in CT number were considered as an indicator of inter-platform DECT radiomics variation. Critical relevance statement: The majority of radiomics features extracted from the VUE images and the VMI70keV were non-reproducible among platforms, while synchronizing energy levels of VMI to reduce the CT number value variability may be a potential way to mitigate radiomics instability.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
26
|
Liu J, Pan H, Lin Q, Chen X, Huang Z, Huang X, Tang L. Added value of spectral parameters in diagnosing metastatic lymph nodes of pT1-2 rectal cancer. Abdom Radiol (NY) 2023; 48:1260-1267. [PMID: 36862166 DOI: 10.1007/s00261-023-03854-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE To investigate the added value of spectral parameters derived from dual-layer spectral detector CT (SDCT) in diagnosing metastatic lymph nodes (LNs) of pT1-2 (stage 1-2 determined by pathology) rectal cancer. METHODS A total of 80 LNs (57 non-metastatic LNs and 23 metastatic LNs) from 42 patients with pT1-T2 rectal cancer were retrospectively analyzed. The short-axis diameter of LNs was measured, then its border and enhancement homogeneity were evaluated. All spectral parameters, including iodine concentration (IC), effective atomic number (Zeff), normalized IC (nIC), normalized Zeff (nZeff), and slope of the attenuation curve (λ), were measured or calculated. The chi-square test, Fisher's exact test, independent-samples t-test, or Mann-Whitney U test was used to compare the differences of each parameter between the non-metastatic group and the metastatic group. Multivariable logistic regression analyses were used to determine the independent factors for predicting LN metastasis. Diagnostic performances were assessed by ROC curve analysis and compared with the DeLong test. RESULTS The short-axis diameter, border, enhancement homogeneity, and each spectral parameter of LNs showed significant differences between the two groups (P < 0.05). The nZeff and short-axis diameter were independent predictors of metastatic LNs (P < 0.05), with areas under the curve (AUC) of 0.870 and 0.772, sensitivity of 82.5% and 73.9%, and specificity of 82.6% and 78.9%. After combining nZeff and the short-axis diameter, the AUC (0.966) was the highest with sensitivity of 100% and specificity of 87.7%. CONCLUSION The spectral parameters derived from SDCT might help us to improve the diagnostic accuracy of metastatic LNs in patients with pT1-2 rectal cancer, the highest diagnostic performance can be achieved after combining nZeff with the short-axis diameter of LNs.
Collapse
Affiliation(s)
- Jinkai Liu
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, North 91 Road, Xinluo District, Longyan, 364000, Fujian, People's Republic of China
| | - Hao Pan
- Department of Radiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Qi Lin
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, North 91 Road, Xinluo District, Longyan, 364000, Fujian, People's Republic of China
| | - Xingbiao Chen
- Clinical Science, Philips Healthcare, Shanghai, People's Republic of China
| | - Zhenhuan Huang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, North 91 Road, Xinluo District, Longyan, 364000, Fujian, People's Republic of China
| | - Xionghua Huang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, North 91 Road, Xinluo District, Longyan, 364000, Fujian, People's Republic of China
| | - Langlang Tang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, North 91 Road, Xinluo District, Longyan, 364000, Fujian, People's Republic of China.
| |
Collapse
|
27
|
Gu Q, He M, He Y, Dai A, Liu J, Chen X, Liu P. CT-measured body composition radiomics predict lymph node metastasis in localized pancreatic ductal adenocarcinoma. Discov Oncol 2023; 14:16. [PMID: 36735166 PMCID: PMC9898483 DOI: 10.1007/s12672-023-00624-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To explored the value of CT-measured body composition radiomics in preoperative evaluation of lymph node metastasis (LNM) in localized pancreatic ductal adenocarcinoma (LPDAC). METHODS We retrospectively collected patients with LPDAC who underwent surgical resection from January 2016 to June 2022. According to whether there was LNM after operation, the patients were divided into LNM group and non-LNM group in both male and female patients. The patient's body composition was measured by CT images at the level of the L3 vertebral body before surgery, and the radiomics features of adipose tissue and muscle were extracted. Multivariate logistic regression (forward LR) analyses were used to determine the predictors of LNM from male and female patient, respectively. Sexual dimorphism prediction signature using adipose tissue radiomics features, muscle tissue radiomics features and combined signature of both were developed and compared. The model performance is evaluated on discrimination and validated through a leave-one-out cross-validation method. RESULTS A total of 196 patients (mean age, 60 years ± 9 [SD]; 117 men) were enrolled, including 59 LNM in male and 36 LNM in female. Both male and female CT-measured body composition radiomics signatures have a certain predictive power on LNM of LPDAC. Among them, the female adipose tissue signature showed the highest performance (area under the ROC curve (AUC), 0.895), and leave one out cross validation (LOOCV) indicated that the signature could accurately classify 83.5% of cases; The prediction efficiency of the signature can be further improved after adding the muscle radiomics features (AUC, 0.924, and the accuracy of the LOOCV was 87.3%); The abilities of male adipose tissue and muscle tissue radiomics signatures in predicting LNM of LPDAC was similar, AUC was 0.735 and 0.773, respectively, and the accuracy of LOOCV was 62.4% and 68.4%, respectively. CONCLUSIONS CT-measured body composition Radiomics strategy showed good performance for predicting LNM in LPDAC, and has sexual dimorphism. It may provide a reference for individual treatment of LPDAC and related research about body composition in the future.
Collapse
Affiliation(s)
- Qianbiao Gu
- Department of Radiology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005 China
| | - Mengqing He
- Department of Radiology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005 China
| | - Yaqiong He
- Department of Radiology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005 China
| | - Anqi Dai
- Department of Radiology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005 China
| | - Jianbin Liu
- Department of Radiology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005 China
| | - Xiang Chen
- Department of Radiology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005 China
| | - Peng Liu
- Department of Radiology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005 China
| |
Collapse
|
28
|
Bian Y, Zheng Z, Fang X, Jiang H, Zhu M, Yu J, Zhao H, Zhang L, Yao J, Lu L, Lu J, Shao C. Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma. Radiology 2023; 306:160-169. [PMID: 36066369 DOI: 10.1148/radiol.220329] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Although deep learning has brought revolutionary changes in health care, reliance on manually selected cross-sectional images and segmentation remain methodological barriers. Purpose To develop and validate an automated preoperative artificial intelligence (AI) algorithm for tumor and lymph node (LN) segmentation with CT imaging for prediction of LN metastasis in patients with pancreatic ductal adenocarcinoma (PDAC). Materials and Methods In this retrospective study, patients with surgically resected, pathologically confirmed PDAC underwent multidetector CT from January 2015 to April 2020. Three models were developed, including an AI model, a clinical model, and a radiomics model. CT-determined LN metastasis was diagnosed by radiologists. Multivariable logistic regression analysis was conducted to develop the clinical and radiomics models. The performance of the models was determined on the basis of their discrimination and clinical utility. Kaplan-Meier curves, the log-rank test, or Cox regression were used for survival analysis. Results Overall, 734 patients (mean age, 62 years ± 9 [SD]; 453 men) were evaluated. All patients were split into training (n = 545) and validation (n = 189) sets. Patients who had LN metastasis (LN-positive group) accounted for 340 of 734 (46%) patients. In the training set, the AI model showed the highest performance (area under the receiver operating characteristic curve [AUC], 0.91) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.58, 0.76, and 0.71, respectively. In the validation set, the AI model showed the highest performance (AUC, 0.92) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.65, 0.77, and 0.68, respectively (P < .001). AI model-predicted positive LN metastasis was associated with worse survival (hazard ratio, 1.46; 95% CI: 1.13, 1.89; P = .004). Conclusion An artificial intelligence model outperformed radiologists and clinical and radiomics models for prediction of lymph node metastasis at CT in patients with pancreatic ductal adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
Collapse
Affiliation(s)
- Yun Bian
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Zhilin Zheng
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Xu Fang
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Hui Jiang
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Mengmeng Zhu
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Jieyu Yu
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Haiyan Zhao
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Ling Zhang
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Jiawen Yao
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Le Lu
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Jianping Lu
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| | - Chengwei Shao
- From the Departments of Radiology (Y.B., X.F., M.Z., J. Yu, H.Z., J.L., C.S.) and Pathology (H.J.), Changhai Hospital, 168 Changhai Road, Shanghai 200433, China; Ping An Technology, Shanghai, China (Z.Z.); and PAII Inc, Bethesda, Md (L.Z., J. Yao, L.L.)
| |
Collapse
|
29
|
An P, Lin Y, Zhang J, Hu Y, Qin P, Ye Y, Li X, Feng G, Wang J. Prognostic Predicting Model of Pancreatic Body Tail Carcinoma Using Clinical and CT Radiomic Data. Technol Cancer Res Treat 2023; 22:15330338231186739. [PMID: 37464839 PMCID: PMC10363996 DOI: 10.1177/15330338231186739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 07/20/2023] Open
Abstract
Objective: To collect the clinical, pathological, and computed tomography (CT) data of 143 accepted surgical cases of pancreatic body tail cancer (PBTC) and to model and predict its prognosis. Methods: The clinical, pathological, and CT data of 143 PBTC patients who underwent surgical resection or endoscopic ultrasound biopsy and were pathologically diagnosed in Xiangyang No.1 People's Hospital Hospital from December 2012 to December 2022 were retrospectively analyzed. The Kaplan-Meier method was adopted to make survival curves based on the 1 to 5 years' follow-up data, and then the log-rank was employed to analyze the survival. According to the median survival of 6 months, the PBTC patients were divided into a group with a good prognosis (survival time ≥ 6 months) and a group with a poor prognosis (survival time < 6 months), and further the training set and test set were set at a ratio of 7/3. Then logistic regression was conducted to find independent risk factors, establish predictive models, and further the models were validated. Results: The Kaplan-Meier analysis showed that age, diabetes, tumor, node, and metastasis stage, CT enhancement mode, peripancreatic lymph node swelling, nerve invasion, surgery in a top hospital, tumor size, carbohydrate antigen 19-9, carcinoembryonic antigen, Radscore 1/2/3 were the influencing factors of PBTC recurrence. The overall average survival was 7.4 months in this study. The multivariate logistic analysis confirmed that nerve invasion, surgery in top hospital, dilation of the main pancreatic duct, and Radscore 2 were independent factors affecting the mortality of PBTC (P < .05). In the test set, the combined model achieved the best predictive performance [AUC 0.944, 95% CI (0.826-0.991)], significantly superior to the clinicopathological model [AUC 0.770, 95% CI (0.615-0.886), P = .0145], and the CT radiomics model [AUC 0.883, 95% CI (0.746-0.961), P = .1311], with a good clinical net benefit confirmed by decision curve. The same results were subsequently validated on the test set. Conclusion: The diagnosis and treatment of PBTC are challenging, and survival is poor. Nevertheless, the combined model benefits the clinical management and prognosis of PBTC.
Collapse
Affiliation(s)
- Peng An
- Department of Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Internal Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yong Lin
- Department of Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pancreatic Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Junyan Zhang
- Department of Internal Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Depatment of Radiology, Hubei Clinical Research Center of Parkinson’s disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, P.R.C
| | - Yan Hu
- Department of Pancreatic Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Ping Qin
- Department of Pancreatic Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Depatment of Radiology, Hubei Clinical Research Center of Parkinson’s disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, P.R.C
- Department of internal medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yingjian Ye
- Department of Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of internal medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiumei Li
- Depatment of Radiology, Hubei Clinical Research Center of Parkinson’s disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, P.R.C
- Department of Pharmacy and Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of internal medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Guoyan Feng
- Department of Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Internal Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jinsong Wang
- Department of Internal Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
30
|
Tabari A, Chan SM, Omar OMF, Iqbal SI, Gee MS, Daye D. Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers. Cancers (Basel) 2022; 15:cancers15010063. [PMID: 36612061 PMCID: PMC9817513 DOI: 10.3390/cancers15010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancers, consisting of a wide spectrum of pathologies, have become a prominent health issue globally. Despite medical imaging playing a crucial role in the clinical workflow of cancers, standard evaluation of different imaging modalities may provide limited information. Accurate tumor detection, characterization, and monitoring remain a challenge. Progress in quantitative imaging analysis techniques resulted in "radiomics", a promising methodical tool that helps to personalize diagnosis and treatment optimization. Radiomics, a sub-field of computer vision analysis, is a bourgeoning area of interest, especially in this era of precision medicine. In the field of oncology, radiomics has been described as a tool to aid in the diagnosis, classification, and categorization of malignancies and to predict outcomes using various endpoints. In addition, machine learning is a technique for analyzing and predicting by learning from sample data, finding patterns in it, and applying it to new data. Machine learning has been increasingly applied in this field, where it is being studied in image diagnosis. This review assesses the current landscape of radiomics and methodological processes in GI cancers (including gastric, colorectal, liver, pancreatic, neuroendocrine, GI stromal, and rectal cancers). We explain in a stepwise fashion the process from data acquisition and curation to segmentation and feature extraction. Furthermore, the applications of radiomics for diagnosis, staging, assessment of tumor prognosis and treatment response according to different GI cancer types are explored. Finally, we discussed the existing challenges and limitations of radiomics in abdominal cancers and investigate future opportunities.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Shin Mei Chan
- Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Omar Mustafa Fathy Omar
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Shams I. Iqbal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael S. Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Wong PK, Chan IN, Yan HM, Gao S, Wong CH, Yan T, Yao L, Hu Y, Wang ZR, Yu HH. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28:6363-6379. [PMID: 36533112 PMCID: PMC9753055 DOI: 10.3748/wjg.v28.i45.6363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal (GI) cancers are the major cause of cancer-related mortality globally. Medical imaging is an important auxiliary means for the diagnosis, assessment and prognostic prediction of GI cancers. Radiomics is an emerging and effective technology to decipher the encoded information within medical images, and traditional machine learning is the most commonly used tool. Recent advances in deep learning technology have further promoted the development of radiomics. In the field of GI cancer, although there are several surveys on radiomics, there is no specific review on the application of deep-learning-based radiomics (DLR). In this review, a search was conducted on Web of Science, PubMed, and Google Scholar with an emphasis on the application of DLR for GI cancers, including esophageal, gastric, liver, pancreatic, and colorectal cancers. Besides, the challenges and recommendations based on the findings of the review are comprehensively analyzed to advance DLR.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - In Neng Chan
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Hao-Ming Yan
- School of Clinical Medicine, China Medical University, Shenyang 110013, Liaoning Province, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei Province, China
| | - Chi Hong Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Liang Yao
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Zhong-Ren Wang
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau 999078, China
| |
Collapse
|
32
|
Liao H, Yang J, Li Y, Liang H, Ye J, Liu Y. One 3D VOI-based deep learning radiomics strategy, clinical model and radiologists for predicting lymph node metastases in pancreatic ductal adenocarcinoma based on multiphasic contrast-enhanced computer tomography. Front Oncol 2022; 12:990156. [PMID: 36158647 PMCID: PMC9500296 DOI: 10.3389/fonc.2022.990156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose We designed to construct one 3D VOI-based deep learning radiomics strategy for identifying lymph node metastases (LNM) in pancreatic ductal adenocarcinoma on the basis of multiphasic contrast-enhanced computer tomography and to assist clinical decision-making. Methods This retrospective research enrolled 139 PDAC patients undergoing pre-operative arterial phase and venous phase scanning examination between 2015 and 2021. A primary group (training group and validation group) and an independent test group were divided. The DLR strategy included three sections. (1) Residual network three dimensional-18 (Resnet 3D-18) architecture was constructed for deep learning feature extraction. (2) Least absolute shrinkage and selection operator model was used for feature selection. (3) Fully connected network served as the classifier. The DLR strategy was applied for constructing different 3D CNN models using 5-fold cross-validation. Radiomics scores (Rad score) were calculated for distinguishing the statistical difference between negative and positive lymph nodes. A clinical model was constructed by combining significantly different clinical variables using univariate and multivariable logistic regression. The manifestation of two radiologists was detected for comparing with computer-developed models. Receiver operating characteristic curves, the area under the curve, accuracy, precision, recall, and F1 score were used for evaluating model performance. Results A total of 45, 49, and 59 deep learning features were selected via LASSO model. No matter in which 3D CNN model, Rad score demonstrated the deep learning features were significantly different between non-LNM and LNM groups. The AP+VP DLR model yielded the best performance in predicting status of lymph node in PDAC with an AUC of 0.995 (95% CI:0.989-1.000) in training group; an AUC of 0.940 (95% CI:0.910-0.971) in validation group; and an AUC of 0.949 (95% CI:0.914-0.984) in test group. The clinical model enrolled the histological grade, CA19-9 level and CT-reported tumor size. The AP+VP DLR model outperformed AP DLR model, VP DLR model, clinical model, and two radiologists. Conclusions The AP+VP DLR model based on Resnet 3D-18 demonstrated excellent ability for identifying LNM in PDAC, which could act as a non-invasive and accurate guide for clinical therapeutic strategies. This 3D CNN model combined with 3D tumor segmentation technology is labor-saving, promising, and effective.
Collapse
Affiliation(s)
- Hongfan Liao
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Junjun Yang
- Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyong Ye
- Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
- *Correspondence: Yanbing Liu,
| |
Collapse
|
33
|
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J. Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging. Cancers (Basel) 2022; 14:cancers14143498. [PMID: 35884559 PMCID: PMC9316850 DOI: 10.3390/cancers14143498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, associated with a 98% loss of life expectancy and a 30% increase in disability-adjusted life years. Image-based artificial intelligence (AI) can help improve outcomes for PDAC given that current clinical guidelines are non-uniform and lack evidence-based consensus. However, research on image-based AI for PDAC is too scattered and lacking in sufficient quality to be incorporated into clinical workflows. In this review, an international, multi-disciplinary team of the world’s leading experts in pancreatic cancer breaks down the patient pathway and pinpoints the current clinical touchpoints in each stage. The available PDAC imaging AI literature addressing each pathway stage is then rigorously analyzed, and current performance and pitfalls are identified in a comprehensive overview. Finally, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed. Abstract Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European Commission and the United States Congress. Due to lack of investment in research and development, combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification, treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus. Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI research is too scattered and lacking in quality to be incorporated into clinical workflows. This review describes the patient pathway and derives touchpoints for image-based AI research in collaboration with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps. The results show absence of multi-institutional, well-curated datasets, an essential building block for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.
Collapse
Affiliation(s)
- Megan Schuurmans
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Natália Alves
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Pierpaolo Vendittelli
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - Henkjan Huisman
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - John Hermans
- Department of Medical Imaging, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|