1
|
Wu N, Zhang X, Li Y, Zhang J, Cui M. Fluorinated Coumarin Derivatives as Selective PET Tracer for MAO-B Imaging. J Med Chem 2024. [PMID: 39699074 DOI: 10.1021/acs.jmedchem.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Monoamine oxidase-B (MAO-B), predominantly exists on the outer mitochondrial membrane of astrocytes, serves as a crucial biomarker for reactive astrocytes during neuroinflammatory responses and various neurodegenerative diseases. In this study, we synthesized a series of fluorinated coumarin derivatives and evaluated their structure-activity relationship and subtype selectivity for MAO-B. Following this, the preclinical bioevaluation containing in vivo positron emission tomography (PET) imaging and ex vivo autoradiography studies led to the identification of the novel PET tracer, [18F]8, which demonstrated high affinity for MAO-B (IC50 = 0.59 nM) and appreciable brain pharmacokinetics (SUVmax = 2.15 at 2 min, brain2min/60min = 7.67) in rats. Furthermore, the radioactivates from [18F]8 in regions of MAO-B expression could be effectively inhibited by Selegiline. All these positive findings supported that [18F]8 is a promising candidate for MAO-B PET imaging, which merits further evaluation.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinming Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Agarwal N, Fan A, Huang X, Dehkharghani S, van der Kolk A. ISMRM Clinical Focus Meeting 2023: "Imaging the Fire in the Brain". J Magn Reson Imaging 2024. [PMID: 39193867 DOI: 10.1002/jmri.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
Set during the Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), the "Clinical Focus Meeting" (CFM) aims to bridge the gap between innovative magnetic resonance imaging (MRI) scientific research and daily patient care. This initiative is dedicated to maximizing the impact of MRI technology on healthcare outcomes for patients. At the 2023 Annual Meeting, clinicians and scientists from across the globe were invited to discuss neuroinflammation from various angles (entitled "Imaging the Fire in the Brain"). Topics ranged from fundamental mechanisms and biomarkers of neuroinflammation to the role of different contrast mechanisms, including both proton and non-proton techniques, in brain tumors, autoimmune disorders, and pediatric neuroinflammatory diseases. Discussions also delved into how systemic inflammation can trigger neuroinflammation and the role of the gut-brain axis in causing brain inflammation. Neuroinflammation arises from various external and internal factors and serves as a vital mechanism to mitigate tissue damage and provide neuroprotection. Nonetheless, excessive neuroinflammatory responses can lead to significant tissue injury and subsequent neurological impairments. Prolonged neuroinflammation can result in cellular apoptosis and neurodegeneration, posing severe consequences. MRI can be used to visualize these consequences, by detecting blood-brain barrier damage, characterizing brain lesions, quantifying edema, and identifying specific metabolites. It also facilitates monitoring of chronic changes in both the brain and spinal cord over time, potentially leading to better patient outcomes. This paper represents a summary of the 2023 CFM, and is intended to guide the enthusiastic MR user to several key and novel sequences that MRI offers to image pathophysiologic processes underlying acute and chronic neuroinflammation. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco, Italy
| | - Audrey Fan
- Department of Neurology, University of California Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Seena Dehkharghani
- Department of Radiology, Albert Einstein College of Medicine-Montefiore Health, New York, New York, USA
| | - Anja van der Kolk
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Parsi S, Zhu C, Motlagh NJ, Kim D, Küllenberg EG, Kim HH, Gillani RL, Chen JW. Basic Science of Neuroinflammation and Involvement of the Inflammatory Response in Disorders of the Nervous System. Magn Reson Imaging Clin N Am 2024; 32:375-384. [PMID: 38555147 PMCID: PMC10987041 DOI: 10.1016/j.mric.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neuroinflammation is a key immune response observed in many neurologic diseases. Although an appropriate immune response can be beneficial, aberrant activation of this response recruits excessive proinflammatory cells to cause damage. Because the central nervous system is separated from the periphery by the blood-brain barrier (BBB) that creates an immune-privileged site, it has its own unique immune cells and immune response. Moreover, neuroinflammation can compromise the BBB causing an influx of peripheral immune cells and factors. Recent advances have brought a deeper understanding of neuroinflammation that can be leveraged to develop more potent therapies and improve patient selection.
Collapse
Affiliation(s)
- Sepideh Parsi
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cindy Zhu
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Negin Jalali Motlagh
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daeki Kim
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Enrico G Küllenberg
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyung-Hwan Kim
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca L Gillani
- Department of Neurology, Neuroimmunology and Neuro-Infectious Diseases Division, Massachusetts Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John W Chen
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Yang K, Liu Y, Zhang M. The Diverse Roles of Reactive Astrocytes in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci 2024; 14:158. [PMID: 38391732 PMCID: PMC10886687 DOI: 10.3390/brainsci14020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Astrocytes displaying reactive phenotypes are characterized by their ability to remodel morphologically, molecularly, and functionally in response to pathological stimuli. This process results in the loss of their typical astrocyte functions and the acquisition of neurotoxic or neuroprotective roles. A growing body of research indicates that these reactive astrocytes play a pivotal role in the pathogenesis of amyotrophic lateral sclerosis (ALS), involving calcium homeostasis imbalance, mitochondrial dysfunction, abnormal lipid and lactate metabolism, glutamate excitotoxicity, etc. This review summarizes the characteristics of reactive astrocytes, their role in the pathogenesis of ALS, and recent advancements in astrocyte-targeting strategies.
Collapse
Affiliation(s)
- Kangqin Yang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Choudhary D, Kaur R, Singh TG, Kumar B. Pyrazoline Derivatives as Promising MAO-A Targeting Antidepressants: An Update. Curr Top Med Chem 2024; 24:401-415. [PMID: 38318823 DOI: 10.2174/0115680266280249240126052505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Depression is one of the key conditions addressed by the Mental Health Gap Action Programme (mhGAP) of WHO that can lead to self-harm and suicide. Depression is associated with low levels of neurotransmitters, which eventually play a key role in the progression and development of mental illness. The nitrogen-containing heterocyclic compounds exhibit the most prominent pharmacological profile as antidepressants. Pyrazoline, a dihydro derivative of pyrazole, is a well-known five-membered heterocyclic moiety that exhibits a broad spectrum of biological activities. Many researchers have reported pyrazoline scaffold-containing molecules as potential antidepressant agents with selectivity for monoamine oxidase enzyme (MAO) isoforms. Several studies indicated a better affinity of pyrazoline-based moiety as (monoamine oxidase inhibitors) MAOIs. In this review, we have focused on the recent advancements (2019-2023) in the development of pyrazoline-containing derivatives exhibiting promising inhibition of MAO-A enzyme to treat depression. This review provides structural insights on pyrazoline-based molecules along with their SAR analysis, in silico exploration of binding interactions between pyrazoline derivatives and MAO-A enzyme, and clinical trial status of various drug molecules against depression. The in-silico exploration of potent pyrazoline derivatives at the active site of the MAOA enzyme will provide further insights into the development of new potential MAO-A inhibitors for the treatment of depression.
Collapse
Affiliation(s)
- Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, 248002, Uttrakhand, India
| |
Collapse
|
6
|
Tavares-Júnior JWL, Ciurleo GCV, Feitosa EDAAF, Oriá RB, Braga-Neto P. The Clinical Aspects of COVID and Alzheimer's Disease: A Round-Up of Where Things Stand and Are Headed. J Alzheimers Dis 2024; 99:1159-1171. [PMID: 38848177 DOI: 10.3233/jad-231368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The link between long COVID-19 and brain/cognitive impairments is concerning and may foster a worrisome worldwide emergence of novel cases of neurodegenerative diseases with aging. This review aims to update the knowledge, crosstalk, and possible intersections between the Post-COVID Syndrome (PCS) and Alzheimer's disease (AD). References included in this review were obtained from PubMed searches conducted between October 2023 and November 2023. PCS is a very heterogenous and poorly understood disease with recent evidence of a possible association with chronic diseases such as AD. However, more scientific data is required to establish the link between PCS and AD.
Collapse
Affiliation(s)
| | - Gabriella Cunha Vieira Ciurleo
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Reinaldo B Oriá
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro Braga-Neto
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Center of Health Sciences, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Natale G, Colella M, De Carluccio M, Lelli D, Paffi A, Carducci F, Apollonio F, Palacios D, Viscomi MT, Liberti M, Ghiglieri V. Astrocyte Responses Influence Local Effects of Whole-Brain Magnetic Stimulation in Parkinsonian Rats. Mov Disord 2023; 38:2173-2184. [PMID: 37700489 DOI: 10.1002/mds.29599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. OBJECTIVE Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions. METHODS 6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. RESULTS As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved. CONCLUSION These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giuseppina Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Micol Colella
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Maria De Carluccio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniele Lelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Neuroimaging Laboratory, Department of Physiology and Pharmacology "Vitorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
8
|
Chouliaras L, O'Brien JT. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatry 2023; 28:4084-4097. [PMID: 37608222 PMCID: PMC10827668 DOI: 10.1038/s41380-023-02215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Dementia is a leading cause of disability and death worldwide. At present there is no disease modifying treatment for any of the most common types of dementia such as Alzheimer's disease (AD), Vascular dementia, Lewy Body Dementia (LBD) and Frontotemporal dementia (FTD). Early and accurate diagnosis of dementia subtype is critical to improving clinical care and developing better treatments. Structural and molecular imaging has contributed to a better understanding of the pathophysiology of neurodegenerative dementias and is increasingly being adopted into clinical practice for early and accurate diagnosis. In this review we summarise the contribution imaging has made with particular focus on multimodal magnetic resonance imaging (MRI) and positron emission tomography imaging (PET). Structural MRI is widely used in clinical practice and can help exclude reversible causes of memory problems but has relatively low sensitivity for the early and differential diagnosis of dementia subtypes. 18F-fluorodeoxyglucose PET has high sensitivity and specificity for AD and FTD, while PET with ligands for amyloid and tau can improve the differential diagnosis of AD and non-AD dementias, including recognition at prodromal stages. Dopaminergic imaging can assist with the diagnosis of LBD. The lack of a validated tracer for α-synuclein or TAR DNA-binding protein 43 (TDP-43) imaging remain notable gaps, though work is ongoing. Emerging PET tracers such as 11C-UCB-J for synaptic imaging may be sensitive early markers but overall larger longitudinal multi-centre cross diagnostic imaging studies are needed.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, St Margaret's Hospital, Epping, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
9
|
Xie F, Ni R. Collection on molecular imaging in neurodegeneration. Eur J Nucl Med Mol Imaging 2023; 50:3166-3167. [PMID: 37480370 DOI: 10.1007/s00259-023-06347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Affiliation(s)
- Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Neuroinflammation and Mitochondrial Dysfunction in Parkinson's Disease: Connecting Neuroimaging with Pathophysiology. Antioxidants (Basel) 2023; 12:1411. [PMID: 37507950 PMCID: PMC10375976 DOI: 10.3390/antiox12071411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
There is a pressing need for disease-modifying therapies in patients suffering from neurodegenerative diseases, including Parkinson's disease (PD). However, these disorders face unique challenges in clinical trial designs to assess the neuroprotective properties of potential drug candidates. One of these challenges relates to the often unknown individual disease mechanisms that would, however, be relevant for targeted treatment strategies. Neuroinflammation and mitochondrial dysfunction are two proposed pathophysiological hallmarks and are considered to be highly interconnected in PD. Innovative neuroimaging methods can potentially help to gain deeper insights into one's predominant disease mechanisms, can facilitate patient stratification in clinical trials, and could potentially map treatment responses. This review aims to highlight the role of neuroinflammation and mitochondrial dysfunction in patients with PD (PwPD). We will specifically introduce different neuroimaging modalities, their respective technical hurdles and challenges, and their implementation into clinical practice. We will gather preliminary evidence for their potential use in PD research and discuss opportunities for future clinical trials.
Collapse
Affiliation(s)
- Benjamin Matís Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:736. [PMID: 36899872 PMCID: PMC10000757 DOI: 10.3390/cells12050736] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Department of Neuroimmunology, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
12
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Xie F, Wei W. [ 64Cu]Cu-ATSM: an emerging theranostic agent for cancer and neuroinflammation. Eur J Nucl Med Mol Imaging 2022; 49:3964-3972. [PMID: 35918492 DOI: 10.1007/s00259-022-05887-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
14
|
Neuroimaging of Mouse Models of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10020305. [PMID: 35203515 PMCID: PMC8869427 DOI: 10.3390/biomedicines10020305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) and positron emission tomography (PET) have made great strides in the diagnosis and our understanding of Alzheimer’s Disease (AD). Despite the knowledge gained from human studies, mouse models have and continue to play an important role in deciphering the cellular and molecular evolution of AD. MRI and PET are now being increasingly used to investigate neuroimaging features in mouse models and provide the basis for rapid translation to the clinical setting. Here, we provide an overview of the human MRI and PET imaging landscape as a prelude to an in-depth review of preclinical imaging in mice. A broad range of mouse models recapitulate certain aspects of the human AD, but no single model simulates the human disease spectrum. We focused on the two of the most popular mouse models, the 3xTg-AD and the 5xFAD models, and we summarized all known published MRI and PET imaging data, including contrasting findings. The goal of this review is to provide the reader with broad framework to guide future studies in existing and future mouse models of AD. We also highlight aspects of MRI and PET imaging that could be improved to increase rigor and reproducibility in future imaging studies.
Collapse
|