1
|
Yang J, Afaq A, Sibley R, McMilan A, Pirasteh A. Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01199-y. [PMID: 39167304 DOI: 10.1007/s10334-024-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
We aim to provide an overview of technical and clinical unmet needs in deep learning (DL) applications for quantitative and qualitative PET in PET/MR, with a focus on attenuation correction, image enhancement, motion correction, kinetic modeling, and simulated data generation. (1) DL-based attenuation correction (DLAC) remains an area of limited exploration for pediatric whole-body PET/MR and lung-specific DLAC due to data shortages and technical limitations. (2) DL-based image enhancement approximating MR-guided regularized reconstruction with a high-resolution MR prior has shown promise in enhancing PET image quality. However, its clinical value has not been thoroughly evaluated across various radiotracers, and applications outside the head may pose challenges due to motion artifacts. (3) Robust training for DL-based motion correction requires pairs of motion-corrupted and motion-corrected PET/MR data. However, these pairs are rare. (4) DL-based approaches can address the limitations of dynamic PET, such as long scan durations that may cause patient discomfort and motion, providing new research opportunities. (5) Monte-Carlo simulations using anthropomorphic digital phantoms can provide extensive datasets to address the shortage of clinical data. This summary of technical/clinical challenges and potential solutions may provide research opportunities for the research community towards the clinical translation of DL solutions.
Collapse
Affiliation(s)
- Jaewon Yang
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA.
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Robert Sibley
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Alan McMilan
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, USA
| |
Collapse
|
2
|
Romero ÁB, Furtado FS, Sertic M, Goiffon RJ, Mahmood U, Catalano OA. Abdominal Positron Emission Tomography/Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am 2023; 31:579-589. [PMID: 37741642 DOI: 10.1016/j.mric.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly suited for abdominal pathologies. A precise co-registration of anatomic and metabolic data is possible thanks to the simultaneous acquisition, leading to accurate imaging. The literature shows that PET/MRI is at least as good as PET/CT and even superior for some indications, such as primary hepatic tumors, distant metastasis evaluation, and inflammatory bowel disease. PET/MRI allows whole-body staging in a single session, improving health care efficiency and patient comfort.
Collapse
Affiliation(s)
- Álvaro Badenes Romero
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA; Department of Nuclear Medicine, Joan XXIII Hospital, Tarragona, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Madaleine Sertic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
3
|
Karaman A, Abbasguliyev H. Editorial for "Predictive Value of 18 F-FDG PET/MRI for Pleural Invasion in Solid and Subsolid Lung Adenocarcinomas Smaller Than 3 cm". J Magn Reson Imaging 2023; 58:187-188. [PMID: 36222571 DOI: 10.1002/jmri.28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/11/2023] Open
Affiliation(s)
- Adem Karaman
- Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Hasan Abbasguliyev
- Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Watanabe M, Kawai-Miyake K, Fushimi Y, Ishimori T, Nakajima A, Yoshimura M, Kikuchi M, Ohno K, Nakamoto Y. Application of a Flexible PET Scanner Combined with 3 T MRI Using Non-local Means Reconstruction: Qualitative and Quantitative Comparison with Whole-Body PET/CT. Mol Imaging Biol 2021; 24:167-176. [PMID: 34642900 DOI: 10.1007/s11307-021-01651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Flexible positron emission tomography (fxPET) employing a non-local means reconstruction algorithm was designed to fit existing magnetic resonance imaging (MRI) systems. We aimed to compare the qualitative and quantitative performance of fxPET among fxPET with MR-based attenuation correction (MRAC), fxPET with CT-based attenuation correction (CTAC) using CT as a part of WB PET/CT, and whole-body (WB) PET/CT. PROCEDURES Sixteen patients with suspected head and neck cancer underwent 2-deoxy-2-[18F]fluoro-D-glucose WB PET/CT scans, followed by fxPET and 3 T MRI scans. Phantom data were compared among the three datasets. For registration accuracy, we measured the distance between the center of the tumor determined by fxPET and that in MRI. We compared image quality, detection rates, and quantitative values including maximal standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and tumor-to-muscle ratio (TMR) among the three datasets. RESULTS The phantom data in fxPET, except the percent contrast recoveries of 17-mm and 22-mm hot spheres, were inferior to those in WB PET/CT. The mean registration accuracy was 4.4 mm between fxPET using MRAC and MRI. The image quality was comparable between two fxPET datasets, but significantly inferior to WB PET/CT (p < 0.0001). In contrast, detection rates were comparable among the three datasets. SUVmax was significantly higher, and MTV and TLG were significantly lower in the two fxPET datasets compared with the WB PET/CT dataset (p < 0.005). There were no significant differences in SUVmax, MTV, and TLG between the two fxPET datasets or in TMR among the three datasets. All quantitative values had significantly positive correlations. CONCLUSIONS Compared with WB PET/CT, the phantom data and image quality were inferior in fxPET. However, the results of the detection rates and quantitative values suggested the clinical feasibility of fxPET.
Collapse
Affiliation(s)
- Masao Watanabe
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Radiology, Kobe City Medical Center General Hospital, 2-1-1 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Kanae Kawai-Miyake
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayoshi Ishimori
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Aya Nakajima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Kikuchi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuko Ohno
- Department of Radiological Technology, Kyoto College of Medical Science, 1-3 Imakita, Oyamahigashi-cho, Sonobe-cho, Nantan, Kyoto, 622-0041, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Harder FN, Jungmann F, Kaissis GA, Lohöfer FK, Ziegelmayer S, Havel D, Quante M, Reichert M, Schmid RM, Demir IE, Friess H, Wildgruber M, Siveke J, Muckenhuber A, Steiger K, Weichert W, Rauscher I, Eiber M, Makowski MR, Braren RF. [ 18F]FDG PET/MRI enables early chemotherapy response prediction in pancreatic ductal adenocarcinoma. EJNMMI Res 2021; 11:70. [PMID: 34322781 PMCID: PMC8319249 DOI: 10.1186/s13550-021-00808-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose In this prospective exploratory study, we evaluated the feasibility of [18F]fluorodeoxyglucose ([18F]FDG) PET/MRI-based chemotherapy response prediction in pancreatic ductal adenocarcinoma at two weeks upon therapy onset. Material and methods In a mixed cohort, seventeen patients treated with chemotherapy in neoadjuvant or palliative intent were enrolled. All patients were imaged by [18F]FDG PET/MRI before and two weeks after onset of chemotherapy. Response per RECIST1.1 was then assessed at 3 months [18F]FDG PET/MRI-derived parameters (MTV50%, TLG50%, MTV2.5, TLG2.5, SUVmax, SUVpeak, ADCmax, ADCmean and ADCmin) were assessed, using multiple t-test, Man–Whitney-U test and Fisher’s exact test for binary features. Results At 72 ± 43 days, twelve patients were classified as responders and five patients as non-responders. An increase in ∆MTV50% and ∆ADC (≥ 20% and 15%, respectively) and a decrease in ∆TLG50% (≤ 20%) at 2 weeks after chemotherapy onset enabled prediction of responders and non-responders, respectively. Parameter combinations (∆TLG50% and ∆ADCmax or ∆MTV50% and ∆ADCmax) further improved discrimination. Conclusion Multiparametric [18F]FDG PET/MRI-derived parameters, in particular indicators of a change in tumor glycolysis and cellularity, may enable very early chemotherapy response prediction. Further prospective studies in larger patient cohorts are recommended to their clinical impact. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00808-4.
Collapse
Affiliation(s)
- Felix N Harder
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Friederike Jungmann
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georgios A Kaissis
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Computing, Faculty of Engineering, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, UK
| | - Fabian K Lohöfer
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Ziegelmayer
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel Havel
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Quante
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
| | - Maximillian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Moritz Wildgruber
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Jens Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Isabel Rauscher
- Department of Nuclear Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Marcus R Makowski
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rickmer F Braren
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany. .,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
6
|
Abstract
A decade of PET/MRI clinical imaging has passed and many of the pitfalls are similar to those on earlier studies. However, techniques to overcome them have emerged and continue to develop. Although clinically significant lung nodules are demonstrable, smaller nodules may be detected using ultrashort/zero echo-time (TE) lung MRI. Fast reconstruction ultrashort TE sequences have also been used to achieve high-resolution lung MRI even with free-breathing. The introduction and improvement of time-of-flight scanners and increasing the axial length of the PET detector arrays have more than doubled the sensitivity of the PET part of the system. MRI for attenuation correction has provided many potential pitfalls, including misclassification of tissue classes based on MRI information for attenuation correction. Although the use of short echo times have helped to address these pitfalls, one of the most exciting developments has been the use of deep learning algorithms and computational neural networks to rapidly provide soft tissue, fat, bone and air information for the attenuation correction as a supplement to the attenuation correction information from fat-water imaging. Challenges with motion correction, particularly respiratory and cardiac remain but are being addressed with respiratory monitors and using PET data. In order to address truncation artefacts, the system manufacturers have developed methods to extend the MR field-of-view for the purpose of the attenuation and scatter corrections. General pitfalls like stitching of body sections for individual studies, optimum delivery of images for viewing and reporting, and resource implications for the sheer volume of data generated remain Methods to overcome these pitfalls serve as a strong foundation for the future of PET/MRI. Advances in the underlying technology with significant evolution in hard-ware and software and the exiting developments in use of deep learning algorithms and computational neural networks will drive the next decade of PET/MRI imaging.
Collapse
Affiliation(s)
- Asim Afaq
- University of Iowa Carver College of Medicine, Iowa City; Institute of Nuclear Medicine, UCL/ UCLH London, UK
| | | | | | - Simon Wan
- Institute of Nuclear Medicine, UCL/ UCLH London, UK
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Patrick Veit Haibach
- Toronto Joint Dept. Medical Imaging, University Health Network, Sinai Health System, Women's College University of Toronto, Canada
| | | |
Collapse
|
7
|
Yang J, Sohn JH, Behr SC, Gullberg GT, Seo Y. CT-less Direct Correction of Attenuation and Scatter in the Image Space Using Deep Learning for Whole-Body FDG PET: Potential Benefits and Pitfalls. Radiol Artif Intell 2021; 3:e200137. [PMID: 33937860 PMCID: PMC8043359 DOI: 10.1148/ryai.2020200137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 05/14/2023]
Abstract
PURPOSE To demonstrate the feasibility of CT-less attenuation and scatter correction (ASC) in the image space using deep learning for whole-body PET, with a focus on the potential benefits and pitfalls. MATERIALS AND METHODS In this retrospective study, 110 whole-body fluorodeoxyglucose (FDG) PET/CT studies acquired in 107 patients (mean age ± standard deviation, 58 years ± 18; age range, 11-92 years; 72 females) from February 2016 through January 2018 were randomly collected. A total of 37.3% (41 of 110) of the studies showed metastases, with diverse FDG PET findings throughout the whole body. A U-Net-based network was developed for directly transforming noncorrected PET (PETNC) into attenuation- and scatter-corrected PET (PETASC). Deep learning-corrected PET (PETDL) images were quantitatively evaluated by using the standardized uptake value (SUV) of the normalized root mean square error, the peak signal-to-noise ratio, and the structural similarity index, in addition to a joint histogram for statistical analysis. Qualitative reviews by radiologists revealed the potential benefits and pitfalls of this correction method. RESULTS The normalized root mean square error (0.21 ± 0.05 [mean SUV ± standard deviation]), mean peak signal-to-noise ratio (36.3 ± 3.0), mean structural similarity index (0.98 ± 0.01), and voxelwise correlation (97.62%) of PETDL demonstrated quantitatively high similarity with PETASC. Radiologist reviews revealed the overall quality of PETDL. The potential benefits of PETDL include a radiation dose reduction on follow-up scans and artifact removal in the regions with attenuation correction- and scatter correction-based artifacts. The pitfalls involve potential false-negative results due to blurring or missing lesions or false-positive results due to pseudo-low-uptake patterns. CONCLUSION Deep learning-based direct ASC at whole-body PET is feasible and potentially can be used to overcome the current limitations of CT-based approaches, benefiting patients who are sensitive to radiation from CT.Supplemental material is available for this article.© RSNA, 2020.
Collapse
Affiliation(s)
- Jaewon Yang
- From the Department of Radiology and Biomedical Imaging (J.Y., J.H.S., S.C.B., G.TG., Y.S.) and Physics Research Laboratory (J.Y., G.T.G., Y.S.), University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946
| | - Jae Ho Sohn
- From the Department of Radiology and Biomedical Imaging (J.Y., J.H.S., S.C.B., G.TG., Y.S.) and Physics Research Laboratory (J.Y., G.T.G., Y.S.), University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946
| | - Spencer C. Behr
- From the Department of Radiology and Biomedical Imaging (J.Y., J.H.S., S.C.B., G.TG., Y.S.) and Physics Research Laboratory (J.Y., G.T.G., Y.S.), University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946
| | - Grant T. Gullberg
- From the Department of Radiology and Biomedical Imaging (J.Y., J.H.S., S.C.B., G.TG., Y.S.) and Physics Research Laboratory (J.Y., G.T.G., Y.S.), University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946
| | - Youngho Seo
- From the Department of Radiology and Biomedical Imaging (J.Y., J.H.S., S.C.B., G.TG., Y.S.) and Physics Research Laboratory (J.Y., G.T.G., Y.S.), University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946
| |
Collapse
|
8
|
Abstract
Attenuation correction has been one of the main methodological challenges in the integrated positron emission tomography and magnetic resonance imaging (PET/MRI) field. As standard transmission or computed tomography approaches are not available in integrated PET/MRI scanners, MR-based attenuation correction approaches had to be developed. Aspects that have to be considered for implementing accurate methods include the need to account for attenuation in bone tissue, normal and pathological lung and the MR hardware present in the PET field-of-view, to reduce the impact of subject motion, to minimize truncation and susceptibility artifacts, and to address issues related to the data acquisition and processing both on the PET and MRI sides. The standard MR-based attenuation correction techniques implemented by the PET/MRI equipment manufacturers and their impact on clinical and research PET data interpretation and quantification are first discussed. Next, the more advanced methods, including the latest generation deep learning-based approaches that have been proposed for further minimizing the attenuation correction related bias are described. Finally, a future perspective focused on the needed developments in the field is given.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| |
Collapse
|
9
|
Aizaz M, Moonen RPM, van der Pol JAJ, Prieto C, Botnar RM, Kooi ME. PET/MRI of atherosclerosis. Cardiovasc Diagn Ther 2020; 10:1120-1139. [PMID: 32968664 DOI: 10.21037/cdt.2020.02.09] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial infarction and stroke are the most prevalent global causes of death. Each year 15 million people worldwide die due to myocardial infarction or stroke. Rupture of a vulnerable atherosclerotic plaque is the main underlying cause of stroke and myocardial infarction. Key features of a vulnerable plaque are inflammation, a large lipid-rich necrotic core (LRNC) with a thin or ruptured overlying fibrous cap, and intraplaque hemorrhage (IPH). Noninvasive imaging of these features could have a role in risk stratification of myocardial infarction and stroke and can potentially be utilized for treatment guidance and monitoring. The recent development of hybrid PET/MRI combining the superior soft tissue contrast of MRI with the opportunity to visualize specific plaque features using various radioactive tracers, paves the way for comprehensive plaque imaging. In this review, the use of hybrid PET/MRI for atherosclerotic plaque imaging in carotid and coronary arteries is discussed. The pros and cons of different hybrid PET/MRI systems are reviewed. The challenges in the development of PET/MRI and potential solutions are described. An overview of PET and MRI acquisition techniques for imaging of atherosclerosis including motion correction is provided, followed by a summary of vessel wall imaging PET/MRI studies in patients with carotid and coronary artery disease. Finally, the future of imaging of atherosclerosis with PET/MRI is discussed.
Collapse
Affiliation(s)
- Mueez Aizaz
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Rik P M Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jochem A J van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Schramm G, Ladefoged CN. Metal artifact correction strategies in MRI-based attenuation correction in PET/MRI. BJR Open 2019; 1:20190033. [PMID: 33178954 PMCID: PMC7592486 DOI: 10.1259/bjro.20190033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/27/2019] [Accepted: 10/20/2019] [Indexed: 12/31/2022] Open
Abstract
In hybrid positron emission tomography (PET) and MRI systems, attenuation correction for PET image reconstruction is commonly based on processing of dedicated MR images. The image quality of the latter is strongly affected by metallic objects inside the body, such as e.g. dental implants, endoprostheses, or surgical clips which all lead to substantial artifacts that propagate into MRI-based attenuation images. In this work, we review publications about metal artifact correction strategies in MRI-based attenuation correction in PET/MRI. Moreover, we also give an overview about publications investigating the impact of MRI-based attenuation correction metal artifacts on the reconstructed PET image quality and quantification.
Collapse
Affiliation(s)
- Georg Schramm
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, Leuven, Belgium
| | - Claes Nøhr Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Amorim BJ, Prabhu V, Marco SS, Gervais D, Palmer WE, Heidari P, Vangel M, Saylor PJ, Catalano OA. Performance of 18F-fluciclovine PET/MR in the evaluation of osseous metastases from castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2019; 47:105-114. [DOI: 10.1007/s00259-019-04506-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/22/2019] [Indexed: 01/17/2023]
|
12
|
Rozenblum L, Mokrane FZ, Yeh R, Sinigaglia M, Besson F, Seban RD, Chougnet CN, Revel-Mouroz P, Zhao B, Otal P, Schwartz LH, Dercle L. The role of multimodal imaging in guiding resectability and cytoreduction in pancreatic neuroendocrine tumors: focus on PET and MRI. Abdom Radiol (NY) 2019; 44:2474-2493. [PMID: 30980115 DOI: 10.1007/s00261-019-01994-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic neuroendocrine tumors (pNETs) are rare neoplasms that secrete peptides and neuro-amines. pNETs can be sporadic or hereditary, syndromic or non-syndromic with different clinical presentations and prognoses. The role of medical imaging includes locating the tumor, assessing its extent, and evaluating the feasibility of curative surgery or cytoreduction. Pancreatic NETs have very distinctive phenotypes on CT, MRI, and PET. PET have been demonstrated to be very sensitive to detect either well-differentiated pNETs using 68Gallium somatostatin receptor (SSTR) radiotracers, or more aggressive undifferentiated pNETS using 18F-FDG. A comprehensive interpretation of multimodal imaging guides resectability and cytoreduction in pNETs. The imaging phenotype provides information on the differentiation and proliferation of pNETs, as well as the spatial and temporal heterogeneity of tumors with prognostic and therapeutic implications. This review provides a structured approach for standardized reading and reporting of medical imaging studies with a focus on PET and MR techniques. It explains which imaging approach should be used for different subtypes of pNET and what a radiologist should be looking for and reporting when interpreting these studies.
Collapse
Affiliation(s)
- Laura Rozenblum
- Sorbonne Université, Service de Médecine Nucléaire, AP-HP, Hôpital La Pitié-Salpêtrière, 75013, Paris, France
| | - Fatima-Zohra Mokrane
- Radiology Department, Toulouse University Hospital, 1 Avenue du Professeur Jean Poulhes, 31059, Toulouse, France
- Department of Radiology, New York Presbyterian Hospital, Columbia University, New York, NY, USA
| | - Randy Yeh
- Memorial Sloan Kettering Cancer Center, Molecular Imaging and Therapy Service, New York, NY, USA
| | - Mathieu Sinigaglia
- Department of Imaging and Nuclear Medicine, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Florent Besson
- Paris Sud University, Kremlin Bicêtre Hospital, Paris, France
| | - Romain-David Seban
- Department of Nuclear Medicine, Institut Curie-René Huguenin, Saint-Cloud, France
| | - Cecile N Chougnet
- Department of Endocrine Oncology, Hôpital Saint Louis, Paris, France
| | - Paul Revel-Mouroz
- Radiology Department, Toulouse University Hospital, 1 Avenue du Professeur Jean Poulhes, 31059, Toulouse, France
| | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital, Columbia University, New York, NY, USA
| | - Philippe Otal
- Radiology Department, Toulouse University Hospital, 1 Avenue du Professeur Jean Poulhes, 31059, Toulouse, France
| | - Lawrence H Schwartz
- Department of Radiology, New York Presbyterian Hospital, Columbia University, New York, NY, USA
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University, New York, NY, USA.
- UMR 1015, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, 94805, France.
| |
Collapse
|
13
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. PET Clin 2018; 13:97-112. [PMID: 29157390 DOI: 10.1016/j.cpet.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency.
Collapse
Affiliation(s)
- Samuel Galgano
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Zachary Viets
- Department of Radiology, Washington University in St Louis, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Kathryn Fowler
- Department of Radiology, Washington University in St Louis, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Lael Gore
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - John V Thomas
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Michelle McNamara
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA.
| |
Collapse
|
14
|
Wang YH, An Y, Fan XT, Lu J, Ren LK, Wei PH, Cui BX, Du JL, Lu C, Wang D, Zhang HQ, Shan YZ, Zhao GG. Comparison between simultaneously acquired arterial spin labeling and 18F-FDG PET in mesial temporal lobe epilepsy assisted by a PET/MR system and SEEG. NEUROIMAGE-CLINICAL 2018; 19:824-830. [PMID: 30013926 PMCID: PMC6024198 DOI: 10.1016/j.nicl.2018.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 11/26/2022]
Abstract
Objective In the detection of seizure onset zones, arterial spin labeling (ASL) can overcome the limitations of positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG), which is invasive, expensive, and radioactive. PET/magnetic resonance (MR) systems have been introduced that allow simultaneous performance of ASL and PET, but comparisons of these techniques with stereoelectroencephalography (SEEG) and comparisons among the treatment outcomes of these techniques are still lacking. Here, we investigate the effectiveness of ASL compared with that of SEEG and their outcomes in localizing mesial temporal lobe epilepsy (MTLE) and assess the correlation between simultaneously acquired PET and ASL. Methods Between October 2016 and August 2017, we retrospectively studied 12 patients diagnosed with pure unilateral MTLE. We extracted and quantitatively computed values for ASL and PET in the bilateral hippocampus. SEEG findings and outcome were considered the gold standard of lateralization. Finally, the bilateral asymmetry index (AI) was calculated to assess the correlation between PET and ASL. Results Our results showed that hypoperfusion in the hippocampus detected using ASL matched the SEEG-defined epileptogenic zone in this series of patients. The mean normalized voxel value of ASL in the contralateral hippocampus was 0.97 ± 0.19, while in the ipsilateral hippocampus, it was 0.84 ± 0.14. Meanwhile, significantly decreased perfusion and metabolism were observed in these patients (Wilcoxon, p < 0.05), with a significant positive correlation between the AI values derived from PET and ASL (Pearson's correlation, r = 0.74, p < 0.05). Significance In our SEEG- and outcome-defined patients with MTLE, ASL could provide significant information during presurgical evaluation, with the hypoperfusion detected with ASL reliably lateralizing MTLE. This non-invasive technique may be used as an alternative diagnostic tool for MTLE lateralization. ASL has been increasingly used in presurgical evaluations in epilepsy recent years. Comparisons of ASL and PET with a PET/MR system using SEEG and treatment outcomes as gold-standard are still lacking. Decreased perfusion consistent with hypometabolism and SEEG was observed with ASL. ASL offers an effective non-invasive alternative to PET in evaluation of MTLE.
Collapse
Affiliation(s)
- Yi-He Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yang An
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiao-Tong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lian-Kun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Bi-Xiao Cui
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jia-Lin Du
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chao Lu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Di Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hua-Qiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yong-Zhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Guo-Guang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorder, Beijing 100069, China.
| |
Collapse
|
15
|
Catana C, Quick HH, Zaidi H. Current commercial techniques for MRI-guided attenuation correction are insufficient and will limit the wider acceptance of PET/MRI technology in the clinic. Med Phys 2018; 45:4007-4010. [PMID: 29758089 DOI: 10.1002/mp.12963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
16
|
Yeh R, Dercle L, Garg I, Wang ZJ, Hough DM, Goenka AH. The Role of 18F-FDG PET/CT and PET/MRI in Pancreatic Ductal Adenocarcinoma. Abdom Radiol (NY) 2018; 43:415-434. [PMID: 29143875 DOI: 10.1007/s00261-017-1374-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a difficult disease to treat and continues to portend a poor prognosis, as most patients are unresectable at diagnosis. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with CT (PET/CT) has been a cornerstone in oncological imaging of different cancers; however, the role of PET/CT in PDAC is continually evolving and currently not well established. Studies have shown the potential of PET/CT in guiding the management of patients with PDAC, with possible added benefit over anatomic imaging with CT or MRI in certain scenarios. PET/CT may be useful in diagnosis, initial staging, treatment response assessment, differentiation of recurrent tumor from post-treatment fibrosis, and radiotherapy planning. Additionally, PET/CT may be a cost-effective modality due to upstaging of patients originally deemed as surgical candidates. Recently, the advent of simultaneous PET/MRI represents an exciting advancement in hybrid functional imaging with potential applications in the imaging of PDAC. The advantages of PET/MRI include simultaneous acquisition to improve registration of fusion images, lower radiation dose, superior soft tissue contrast, and availability of multiparametric imaging. Studies are underway to evaluate the utility of PET/MRI in PDAC, including in initial staging and treatment response assessment and to determine the subgroup of patients that will benefit from PET/MRI. Further studies are warranted in both PET/CR and PET/MRI to better understand the role of these modalities in PDAC.
Collapse
Affiliation(s)
- Randy Yeh
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, 622 W. 168th Street, PB 1-301, New York, NY, 10032, USA.
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, 622 W. 168th Street, PB 1-301, New York, NY, 10032, USA
- Gustave Roussy, UMR1015, Villejuif, France
| | - Ishan Garg
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, M-372, Box 0628, San Francisco, CA, 94143, USA
| | - David M Hough
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
17
|
Abstract
Simultaneous PET-MR imaging improves deficiencies in PET images. The primary areas in which magnetic resonance (MR) has been applied to guide PET results are in correction for patient motion and in improving the effects of PET resolution and partial volume averaging. MR-guided motion correction of PET has been applied to respiratory, cardiac, and gross body movements and shown to improve lesion detectability and contrast. Partial volume correction or resolution improvement of PET governed by MR imaging anatomic information improves visualization of structures and quantitative accuracy. Evaluation in clinical applications is needed to determine their true impacts.
Collapse
Affiliation(s)
- David S Lalush
- Joint Department of Biomedical Engineering, The University of North Carolina, Campus Box 7575, 152 MacNider Hall, Chapel Hill, NC 27599-7575, USA; Joint Department of Biomedical Engineering, North Carolina State University, Campus Box 7115, 911 Oval Drive, Raleigh, NC 27695-7115, USA.
| |
Collapse
|
18
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. Magn Reson Imaging Clin N Am 2017; 25:281-296. [DOI: 10.1016/j.mric.2016.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Abstract
Hybrid imaging systems have dramatically improved thoracic oncology patient care over the past 2 decades. PET-MR imaging systems have the potential to further improve imaging of thoracic neoplasms, resulting in diagnostic and therapeutic advantages compared with current MR imaging and PET-computed tomography systems. Increasing soft tissue contrast and lesion sensitivity, improved image registration, reduced radiation exposure, and improved patient convenience are immediate clinical advantages. Multiparametric quantitative imaging capabilities of PET-MR imaging have the potential to improve understanding of the molecular mechanisms of cancer and treatment effects, potentially guiding improvements in diagnosis and therapy.
Collapse
Affiliation(s)
- Samuel L Rice
- Division of Nuclear Medicine, Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Kent P Friedman
- Division of Nuclear Medicine, Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
20
|
Delso G, Khalighi M, Ter Voert E, Barbosa F, Sekine T, Hüllner M, Veit-Haibach P. Effect of Time-of-Flight Information on PET/MR Reconstruction Artifacts: Comparison of Free-breathing versus Breath-hold MR-based Attenuation Correction. Radiology 2016; 282:229-235. [PMID: 27355899 DOI: 10.1148/radiol.2016152509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To evaluate the magnitude and anatomic extent of the artifacts introduced on positron emission tomographic (PET)/magnetic resonance (MR) images by respiratory state mismatch in the attenuation map. Materials and Methods The method was tested on 14 patients referred for an oncologic examination who underwent PET/MR imaging. The acquisition included standard PET and MR series for each patient, and an additional attenuation correction series was acquired by using breath hold. PET data were reconstructed with and without time-of-flight (TOF) information, first by using the standard free-breathing attenuation map and then again by using the additional breath-hold map. Two-tailed paired t testing and linear regression with 0 intercept was performed on TOF versus non-TOF and free-breathing versus breath-hold data for all detected lesions. Results Fluorodeoxyglucose-avid lesions were found in eight of the 14 patients included in the study. The uptake differences (maximum standardized uptake values) between PET reconstructions with free-breathing versus breath-hold attenuation ranged, for non-TOF reconstructions, from -18% to 26%. The corresponding TOF reconstructions yielded differences from -15% to 18%. Conclusion TOF information was shown to reduce the artifacts caused at PET/MR by respiratory mismatch between emission and attenuation data. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Gaspar Delso
- From the Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D., M.K.); the Departments of Nuclear Medicine (E.t.V., F.B., T.S., M.H., P.V.H.), Neuroradiology (M.H.) and Medical Radiology (P.V.H.), University Hospital of Zurich; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); and University of Zurich, Zurich, Switzerland (E.t.V., M.H., P.V.H.)
| | - Mohammed Khalighi
- From the Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D., M.K.); the Departments of Nuclear Medicine (E.t.V., F.B., T.S., M.H., P.V.H.), Neuroradiology (M.H.) and Medical Radiology (P.V.H.), University Hospital of Zurich; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); and University of Zurich, Zurich, Switzerland (E.t.V., M.H., P.V.H.)
| | - Edwin Ter Voert
- From the Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D., M.K.); the Departments of Nuclear Medicine (E.t.V., F.B., T.S., M.H., P.V.H.), Neuroradiology (M.H.) and Medical Radiology (P.V.H.), University Hospital of Zurich; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); and University of Zurich, Zurich, Switzerland (E.t.V., M.H., P.V.H.)
| | - Felipe Barbosa
- From the Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D., M.K.); the Departments of Nuclear Medicine (E.t.V., F.B., T.S., M.H., P.V.H.), Neuroradiology (M.H.) and Medical Radiology (P.V.H.), University Hospital of Zurich; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); and University of Zurich, Zurich, Switzerland (E.t.V., M.H., P.V.H.)
| | - Tetsuro Sekine
- From the Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D., M.K.); the Departments of Nuclear Medicine (E.t.V., F.B., T.S., M.H., P.V.H.), Neuroradiology (M.H.) and Medical Radiology (P.V.H.), University Hospital of Zurich; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); and University of Zurich, Zurich, Switzerland (E.t.V., M.H., P.V.H.)
| | - Martin Hüllner
- From the Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D., M.K.); the Departments of Nuclear Medicine (E.t.V., F.B., T.S., M.H., P.V.H.), Neuroradiology (M.H.) and Medical Radiology (P.V.H.), University Hospital of Zurich; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); and University of Zurich, Zurich, Switzerland (E.t.V., M.H., P.V.H.)
| | - Patrick Veit-Haibach
- From the Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D., M.K.); the Departments of Nuclear Medicine (E.t.V., F.B., T.S., M.H., P.V.H.), Neuroradiology (M.H.) and Medical Radiology (P.V.H.), University Hospital of Zurich; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); and University of Zurich, Zurich, Switzerland (E.t.V., M.H., P.V.H.)
| |
Collapse
|
21
|
Pugmire BS, Guimaraes AR, Lim R, Friedmann AM, Huang M, Ebb D, Weinstein H, Catalano OA, Mahmood U, Catana C, Gee MS. Simultaneous whole body 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with 18F-fluorodeoxyglucose positron emission tomography computed tomography. World J Radiol 2016; 8:322-330. [PMID: 27028112 PMCID: PMC4807342 DOI: 10.4329/wjr.v8.i3.322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/18/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients.
METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard.
RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student’s t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10-3 mm2/s. The 1.0 × 10-3 ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar’s test).
CONCLUSION: These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients.
Collapse
|
22
|
Abstract
OBJECTIVE This review article explores recent advancements in PET/MRI for clinical oncologic imaging. CONCLUSION Radiologists should understand the technical considerations that have made PET/MRI feasible within clinical workflows, the role of PET tracers for imaging various molecular targets in oncology, and advantages of hybrid PET/MRI compared with PET/CT. To facilitate this understanding, we discuss clinical examples (including gliomas, breast cancer, bone metastases, prostate cancer, bladder cancer, gynecologic malignancy, and lymphoma) as well as future directions, challenges, and areas for continued technical optimization for PET/MRI.
Collapse
|