1
|
Peng L, Chen Q, Meng Z, Zhang Y, Wang J, Wen H. Comparison of adaptive imaging receiver coil and traditional coil for multiplexed sensitivity encoding diffusion-weighted imaging of the liver. Br J Radiol 2024; 97:1826-1832. [PMID: 39167448 DOI: 10.1093/bjr/tqae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/18/2023] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVES To compare the image quality and efficacy of the adaptive imaging receiver (AIR) coil (GE Healthcare) and the traditional coil for multiplexed sensitivity encoding diffusion-weighted imaging (MUSE-DWI) in the detection of focal liver lesions (FLLs). METHODS Two groups of MUSE-DWI were obtained. Image quality was qualitatively evaluated by 3 independent blinded radiologists on a 5-point scale, and quantitative parameters were calculated by measurements of the region of interest in the liver and FLLs. McNemar's test were used to compare the characteristics and detectability. RESULTS Less image noise, sharper contours, milder susceptibility artefacts, and better liver lesion conspicuity were found by all radiologists in 60 livers with 140 FLLs with the AIR coil than with the traditional coil (reader average mean, 4.3-4.4 vs. 3.7-4.0, P < .001). The signal-to-noise ratio (SNR) of the liver was significantly higher with the AIR coil than with the traditional coil (right lobe: mean, 8.89 vs.7.76, P < .05; left lobe: mean, 7.14 vs.6.19, P < .001), and the SNR of FLLs (mean, 24.62 vs. 21.01, P < .001) and lesion-to-liver CNR (mean, 16.61 vs. 14.02, P < .001) exhibited significant differences between the AIR coil and the traditional coil. Besides, superior detection of FLLs was observed with the AIR coil compared to the traditional coil (95.7% [134/140] vs. 85.7% [120/140], P < .001). CONCLUSIONS The AIR coil yields less noise, fewer distortions, better lesion detectability, higher SNR of the liver and FLLs, and improved lesion-to-liver CNR during liver MUSE-DWI. Thus, it is a feasible and effective scanning scheme in liver MRI. ADVANCES IN KNOWLEDGE The AIR coil improves SNR and the quality of liver MR imaging compared with the traditional coil.
Collapse
Affiliation(s)
- Lingrong Peng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University (SYSU), Guangzhou 510630, China
| | - Qilong Chen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University (SYSU), Guangzhou 510630, China
| | - Zhanao Meng
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University (SYSU), Guangzhou 510630, China
| | - Yao Zhang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University (SYSU), Guangzhou 510630, China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University (SYSU), Guangzhou 510630, China
| | - Huiquan Wen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University (SYSU), Guangzhou 510630, China
| |
Collapse
|
2
|
Xing LH, Wang SP, Zhuo LY, Zhang Y, Wang JN, Ma ZP, Zhao YJ, Yuan SR, Zu QH, Yin XP. Comparison of Machine Learning Models Using Diffusion-Weighted Images for Pathological Grade of Intrahepatic Mass-Forming Cholangiocarcinoma. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2252-2263. [PMID: 38627269 PMCID: PMC11522244 DOI: 10.1007/s10278-024-01103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 10/30/2024]
Abstract
Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the diverse algorithms currently available? The objective of our study is to develop DWI radiomic models based on different machine learning algorithms and identify the optimal prediction model. We undertook a retrospective analysis of the DWI data of 77 patients with IMCC confirmed by pathological testing. Fifty-seven patients initially included in the study were randomly assigned to either the training set or the validation set in a ratio of 7:3. We established four different classifier models, namely random forest (RF), support vector machines (SVM), logistic regression (LR), and gradient boosting decision tree (GBDT), by manually contouring the region of interest and extracting prominent radiomic features. An external validation of the model was performed with the DWI data of 20 patients with IMCC who were subsequently included in the study. The area under the receiver operating curve (AUC), accuracy (ACC), precision (PRE), sensitivity (REC), and F1 score were used to evaluate the diagnostic performance of the model. Following the process of feature selection, a total of nine features were retained, with skewness being the most crucial radiomic feature demonstrating the highest diagnostic performance, followed by Gray Level Co-occurrence Matrix lmc1 (glcm-lmc1) and kurtosis, whose diagnostic performances were slightly inferior to skewness. Skewness and kurtosis showed a negative correlation with the pathological grading of IMCC, while glcm-lmc1 exhibited a positive correlation with the IMCC pathological grade. Compared with the other three models, the SVM radiomic model had the best diagnostic performance with an AUC of 0.957, an accuracy of 88.2%, a sensitivity of 85.7%, a precision of 85.7%, and an F1 score of 85.7% in the training set, as well as an AUC of 0.829, an accuracy of 76.5%, a sensitivity of 71.4%, a precision of 71.4%, and an F1 score of 71.4% in the external validation set. The DWI-based radiomic model proved to be efficacious in predicting the pathological grade of IMCC. The model with the SVM classifier algorithm had the best prediction efficiency and robustness. Consequently, this SVM-based model can be further explored as an option for a non-invasive preoperative prediction method in clinical practice.
Collapse
Affiliation(s)
- Li-Hong Xing
- College of Clinical Medicine, Hebei University, Baoding, 071000, China
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Shu-Ping Wang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Li-Yong Zhuo
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Yu Zhang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Jia-Ning Wang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Ze-Peng Ma
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Ying-Jia Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Shuang-Rui Yuan
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Qian-He Zu
- Clinical Medicine, College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Xiao-Ping Yin
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China.
| |
Collapse
|
3
|
Chen Y, Ma C, Yang P, Mao K, Gao Y, Chen L, Wang Z, Bian Y, Shao C, Lu J. Values of apparent diffusion coefficient in pancreatic cancer patients receiving neoadjuvant therapy. BMC Cancer 2024; 24:1160. [PMID: 39294623 PMCID: PMC11412028 DOI: 10.1186/s12885-024-12934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND To investigate the values of apparent diffusion coefficient (ADC) for the treatment response evaluation in pancreatic cancer (PC) patients receiving neoadjuvant therapy (NAT). METHODS This study included 103 NAT patients with histologically proven PC. ADC maps were generated using monoexponential diffusion-weighted imaging (b values: 50, 800 s/mm2). Tumors' minimum, maximum, and mean ADCs were measured and compared pre- and post-NAT. Variations in ADC values measured between pre- and post-NAT completion for NAT methods (chemotherapy, chemoradiotherapy), tumor locations (head/neck, body/tail), tumor regression grade (TRG) levels (0-2, 3), N stages (N0, N1/N2) and tumor resection margin status (R0, R1), were further analyzed. RESULTS The minimum, maximum, and mean ADC values all increased dramatically after NAT, rising from 23.4 to 25.4% (all p < 0.001): mean (average: 1.626 × 10- 3 mm2/s vs. 1.315 × 10- 3 mm2/s), minimum (median: 1.274 × 10- 3 mm2/s vs. 1.034 × 10- 3 mm2/s), and maximum (average: 1.981 × 10- 3 mm2/s vs. 1.580 × 10- 3 mm2/s). The ADCs between the subgroups of all the criteria under investigation did not differ significantly for the minimum, maximum, or mean values pre- or post-NAT (P = 0.08 to 1.00). In the patients with borderline resectable PC (n = 47), the rate of tumor size changes after NAT was correlated with the pre-NAT mean ADC values (Spearman's coefficient: 0.288, P = 0.049). CONCLUSIONS The ADC values of PC increased significantly following NAT; however, the percentage increases failed to provide any predictive value for the resection margin status or TRG levels.
Collapse
Affiliation(s)
- Yufei Chen
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Chao Ma
- College of Electronic and Information Engineering, Tongji University, Shanghai, China.
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Kuanzheng Mao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yisha Gao
- Department of Pathology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, China
| | - Luguang Chen
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Zhen Wang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| |
Collapse
|
4
|
Bougia CΚ, Astrakas L, Pappa O, Maliakas V, Sofikitis N, Argyropoulou MI, Tsili AC. Diffusion tensor imaging and fiber tractography of the normal epididymis. Abdom Radiol (NY) 2024; 49:2932-2941. [PMID: 38836882 DOI: 10.1007/s00261-024-04372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE To evaluate the feasibility of diffusion tensor imaging (DTI) and fiber tractography (FT) of the normal epididymis and to determine normative apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values. METHODS Twenty-eight healthy volunteers underwent MRI of the scrotum, including DTI on a 3.0 T system. For each anatomic part of the epididymis (head, body and tail) free-hand regions of interest were drawn and the mean ADC and FA were measured by two radiologists in consensus. Parametric statistical tests were used to determine intersubject differences in ADC and FA between the anatomic parts of each normal epididymis and between bilateral epididymides. Fiber tracts of the epididymis were reconstructed using the MR Diffusion tool. RESULTS The mean ADC and FA of the normal epididymis was 1.31 × 10-3 mm2/s and 0.20, respectively. No differences in ADC (p = 0.736) and FA (p = 0.628) between the anatomic parts of each normal epididymis were found. Differences (p = 0.020) were observed in FA of the body between the right and the left epididymis. FT showed the fiber tracts of the normal epididymis. Main study's limitations include the following: small number of participants with narrow age range, absence of histologic confirmation and lack of quantitative assessment of the FT reconstructions. CONCLUSION DTI and FT of the normal epididymis is feasible and allow the noninvasive assessment of the structural and geometric organization of the organ.
Collapse
Affiliation(s)
- Christina Κ Bougia
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Ourania Pappa
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Vasileios Maliakas
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
- Department of Clinical Radiology, University Hospital of Ioannina, St. Niarchos, 45500, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
5
|
Wang Q, Yu G, Qiu J, Lu W. Application of Intravoxel Incoherent Motion in Clinical Liver Imaging: A Literature Review. J Magn Reson Imaging 2024; 60:417-440. [PMID: 37908165 DOI: 10.1002/jmri.29086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Intravoxel incoherent motion (IVIM) modeling is a widely used double-exponential model for describing diffusion-weighted imaging (DWI) signal, with a slow component related to pure molecular diffusion and a fast component associated with microcirculatory perfusion, which compensates for the limitations of traditional DWI. IVIM is a noninvasive technique for obtaining liver pathological information and characterizing liver lesions, and has potential applications in the initial diagnosis and treatment monitoring of liver diseases. Recent studies have demonstrated that IVIM-derived parameters are useful for evaluating liver lesions, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and liver tumors. However, the results are not stable. Therefore, it is necessary to summarize the current applications of IVIM in liver disease research, identify existing shortcomings, and point out the future development direction. In this review, we searched for studies related to hepatic IVIM-DWI applications over the past two decades in the PubMed database. We first introduce the fundamental principles and influential factors of IVIM, and then discuss its application in NAFLD, liver fibrosis, and focal hepatic lesions. It has been found that IVIM is still unstable in ensuring the robustness and reproducibility of measurements in the assessment of liver fibrosis grade and liver tumors differentiation, due to inconsistent and substantial overlap in the range of IVIM-derived parameters for different fibrotic stages. In the end, the future direction of IVIM-DWI in the assessment of liver diseases is discussed, emphasizing the need for further research on the stability of IVIM-derived parameters, particularly perfusion-related parameters, in order to promote the clinical practice of IVIM-DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Guanghui Yu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
6
|
Ye Z, Yao S, Yang T, Li Q, Li Z, Song B. Abdominal Diffusion-Weighted MRI With Simultaneous Multi-Slice Acquisition: Agreement and Reproducibility of Apparent Diffusion Coefficients Measurements. J Magn Reson Imaging 2024; 59:1170-1178. [PMID: 37334872 DOI: 10.1002/jmri.28876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Simultaneous multi-slice diffusion-weighted imaging (SMS-DWI) can shorten acquisition time in abdominal imaging. PURPOSE To investigate the agreement and reproducibility of apparent diffusion coefficient (ADC) from abdominal SMS-DWI acquired with different vendors and different breathing schemes. STUDY TYPE Prospective. SUBJECTS Twenty volunteers and 10 patients. FIELD STRENGTH/SEQUENCE 3.0 T, SMS-DWI with a diffusion-weighted echo-planar imaging sequence. ASSESSMENT SMS-DWI was acquired using breath-hold and free-breathing techniques in scanners from two vendors, yielding four scans in each participant. Average ADC values were measured in the liver, pancreas, spleen, and both kidneys. Non-normalized ADC and ADCs normalized to the spleen were compared between vendors and breathing schemes. STATISTICAL TESTS Paired t-test or Wilcoxon signed rank test; intraclass correlation coefficient (ICC); Bland-Altman method; coefficient of variation (CV) analysis; significance level: P < 0.05. RESULTS Non-normalized ADCs from the four SMS-DWI scans did not differ significantly in the spleen (P = 0.262, 0.330, 0.166, 0.122), right kidney (P = 0.167, 0.538, 0.957, 0.086), and left kidney (P = 0.182, 0.281, 0.504, 0.405), but there were significant differences in the liver and pancreas. For normalized ADCs, there were no significant differences in the liver (P = 0.315, 0.915, 0.198, 0.799), spleen (P = 0.815, 0.689, 0.347, 0.423), pancreas (P = 0.165, 0.336, 0.304, 0.584), right kidney (P = 0.165, 0.336, 0.304, 0.584), and left kidney (P = 0.496, 0.304, 0.443, 0.371). Inter-reader agreements of non-normalized ADCs were good to excellent (ICCs ranged from 0.861 to 0.983), and agreement and reproducibility were good to excellent depending on anatomic location (CVs ranged from 3.55% to 13.98%). Overall CVs for abdominal ADCs from the four scans were 6.25%, 7.62%, 7.08, and 7.60%. DATA CONCLUSION The normalized ADCs from abdominal SMS-DWI may be comparable between different vendors and breathing schemes, showing good agreement and reproducibility. ADC changes above approximately 8% may potentially be considered as a reliable quantitative biomarker to assess disease or treatment-related changes. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers, Shanghai, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People's Hospital, Sanya, China
| |
Collapse
|
7
|
Bagheri M, Ghorbani F, Akbari-Lalimi H, Akbari-Zadeh H, Asadinezhad M, Shafaghi A, Montazerabadi A. Histopathological graded liver lesions: what role does the IVIM analysis method have? MAGMA (NEW YORK, N.Y.) 2023; 36:565-575. [PMID: 36943581 DOI: 10.1007/s10334-022-01060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 03/23/2023]
Abstract
PURPOSE This study aims to investigate three different image processing methods on quantitative parameters of IVIM sequence, as well as apparent diffusion coefficients and simple perfusion fractions, for benign and malignant liver tumors. MATERIALS AND METHODS IVIM images with 8 b-values (0-1000 s/mm2) and 1.5 T MRI scanner in 16 patients and 3 healthy people were obtained. Next, the regions of interest were selected for malignant, benign, and healthy liver regions (50, 56, and 12, respectively). Then, the bi-exponential equation of the IVIM technique was fitted with two segmented fitting methods as well as one full fitting method (three methods in total). Using the segmented fitting method, diffusion coefficient (D) is fixed with a mono-exponential equation with b-values that are greater than 200 s/mm2. The perfusion fraction (f) can then be calculated by extrapolating, as the first method, or fitting simultaneously with the pseudo-diffusion coefficient (D*) as the second method. In the full fitting method, as the third method, all IVIM parameters were obtained simultaneously. The mean values of parameters from different methods were compared in different grades of lesions. RESULTS Our results indicate that the image processing method can change statistical comparisons between different groups for each parameter. The D value is the only quantity in this technique that does not depend on the fitting process and can be used as an indicator of comparison between studies (P < 0.05). The most effective method to distinguish liver lesions is the extrapolated f method (first method). This method created a significant difference (P < 0.05) between the perfusion parameters between benign and malignant lesions. CONCLUSION Using extrapolated f is the most effective method of distinguishing liver lesions using IVIM parameters. The comparison between groups does not depend on the fitting method only for parameter D.
Collapse
Affiliation(s)
- Mona Bagheri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Ghorbani
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Akbari-Lalimi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Akbari-Zadeh
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Asadinezhad
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afshin Shafaghi
- Caspian Digestive Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Montazerabadi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Broncano J, Steinbrecher K, Marquis KM, Raptis CA, Royuela Del Val J, Vollmer I, Bhalla S, Luna A. Diffusion-weighted Imaging of the Chest: A Primer for Radiologists. Radiographics 2023; 43:e220138. [PMID: 37347699 DOI: 10.1148/rg.220138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Diffusion-weighted imaging (DWI) is a fundamental sequence not only in neuroimaging but also in oncologic imaging and has emerging applications for MRI evaluation of the chest. DWI can be used in clinical practice to enhance lesion conspicuity, tissue characterization, and treatment response. While the spatial resolution of DWI is in the order of millimeters, changes in diffusion can be measured on the micrometer scale. As such, DWI sequences can provide important functional information to MRI evaluation of the chest but require careful optimization of acquisition parameters, notably selection of b values, application of parallel imaging, fat saturation, and motion correction techniques. Along with assessment of morphologic and other functional features, evaluation of DWI signal attenuation and apparent diffusion coefficient maps can aid in tissue characterization. DWI is a noninvasive noncontrast acquisition with an inherent quantitative nature and excellent reproducibility. The outstanding contrast-to-noise ratio provided by DWI can be used to improve detection of pulmonary, mediastinal, and pleural lesions, to identify the benign nature of complex cysts, to characterize the solid portions of cystic lesions, and to classify chest lesions as benign or malignant. DWI has several advantages over fluorine 18 (18F)-fluorodeoxyglucose PET/CT in the assessment, TNM staging, and treatment monitoring of lung cancer and other thoracic neoplasms with conventional or more recently developed therapies. © RSNA, 2023 Quiz questions for this article are available in the supplemental material. Supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article.
Collapse
Affiliation(s)
- Jordi Broncano
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Kacie Steinbrecher
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Kaitlin M Marquis
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Constantin A Raptis
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Javier Royuela Del Val
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Ivan Vollmer
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Sanjeev Bhalla
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Antonio Luna
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| |
Collapse
|
9
|
Chen M, Zhou X, Cai H, Li D, Song C, You H, Ma R, Dong Z, Peng Z, Feng ST. Evaluation of Hypoxia in Hepatocellular Carcinoma Using Quantitative MRI: Significances, Challenges, and Advances. J Magn Reson Imaging 2023; 58:12-25. [PMID: 36971442 DOI: 10.1002/jmri.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
This review aimed to perform a scoping review of promising MRI methods in assessing tumor hypoxia in hepatocellular carcinoma (HCC). The hypoxic microenvironment and upregulated hypoxic metabolism in HCC are determining factors of poor prognosis, increased metastatic potential, and resistance to chemotherapy and radiotherapy. Assessing hypoxia in HCC is essential for personalized therapy and predicting prognoses. Oxygen electrodes, protein markers, optical imaging, and positron emission tomography can evaluate tumor hypoxia. These methods lack clinical applicability because of invasiveness, tissue depth, and radiation exposure. MRI methods, including blood oxygenation level-dependent, dynamic contrast-enhanced MRI, diffusion-weighted imaging, MRI spectroscopy, chemical exchange saturation transfer MRI, and multinuclear MRI, are promising noninvasive methods that evaluate the hypoxic microenvironment by observing biochemical processes in vivo, which may inform on therapeutic options. This review summarizes the recent challenges and advances in MRI techniques for assessing hypoxia in HCC and highlights the potential of MRI methods for examining the hypoxic microenvironment via specific metabolic substrates and pathways. Although the utilization of MRI methods for evaluating hypoxia in patients with HCC is increasing, rigorous validation is needed in order to translate these MRI methods into clinical use. Due to the limited sensitivity and specificity of current quantitative MRI methods, their acquisition and analysis protocols require further improvement. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Meicheng Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Xiaoqi Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Di Li
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Chenyu Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Huayu You
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Ruixia Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| |
Collapse
|
10
|
Chen Y, Yang P, Fu C, Bian Y, Shao C, Ma C, Lu J. Variabilities in apparent diffusion coefficient (ADC) measurements of the spleen and the paraspinal muscle: A single center large cohort study. Heliyon 2023; 9:e18166. [PMID: 37519768 PMCID: PMC10372245 DOI: 10.1016/j.heliyon.2023.e18166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Evaluation of the variabilities in apparent diffusion coefficient (ADC) measurements of the spleen (ADCspleen) and the paraspinal muscles (ADCmuscle) to identify the reference organ for normalizing the ADC from the abdominal diffusion weighted imaging (DWI). Methods Two MRI scanners, with 314 abdominal exams on the GE and 929 on the Siemens system, were used for MRI examinations including DWI (b-values, 50 and 800 s/mm2). For a subset of 73 exams on the Siemens system a second exam was conducted. Four regions of interest (ROIs) in each exam were placed to measure the ADCspleen and the bilateral ADCmuscle. ADC variability between patients (on each scanner separately), ADC variability due to ROI placement between the two ROIs in each organ, and variability in the subset between the first and second exams were assessed. Results The ADCspleen was more scattered and variable than the ADCmuscle in the comparability (n = 929 and 314 for two MRI scanners, respectively) and repeatability (n = 73) datasets. The Bland-Altmann bias and limits of agreement (LoAs) for the ADCspleen (ICC, 0.47; CV, 0.070) and ADCmuscle (ICC, 0.67; CV, 0.023) in the repeatability datasets (n = 73) were -0.1 (-25.7%-25.6%) and -0.3 (-8.8%-8.1%), respectively. For the Siemens system, the Bland-Altmann bias and LoAs for the ADCspleen (ICC, 0.72; CV, 0.061) and ADCmuscle (ICC, 0.53; CV, 0.030) in the comparability datasets (n = 929) were 2.1 (-20.0%-24.2%) and 0.7 (-10.0%-11.4%), respectively. Similar findings have been found in the GE system (n = 314). The CVs for the ADCmuscle measurements were lower than those of the ADCspleen both in the repeatability and the comparability analyses (all p < 0.001). Conclusion Paraspinal muscles demonstrate better reference characteristics than the spleen in estimating ADC variability of abdominal DWI.
Collapse
Affiliation(s)
- Yukun Chen
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Caixia Fu
- Application Developments, Siemens Shenzhen Magnetic Resonance Ltd., Siemens Healthineers, Shenzhen, 518057, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
- College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
11
|
Yang T, Li Y, Ye Z, Yao S, Li Q, Yuan Y, Song B. Diffusion Weighted Imaging of the Abdomen and Pelvis: Recent Technical Advances and Clinical Applications. Acad Radiol 2023; 30:470-482. [PMID: 36038417 DOI: 10.1016/j.acra.2022.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 01/25/2023]
Abstract
Diffusion weighted imaging (DWI) serves as one of the most important functional magnetic resonance imaging techniques in abdominal and pelvic imaging. It is designed to reflect the diffusion of water molecules and is particularly sensitive to the malignancies. Yet, the limitations of image distortion and artifacts in single-shot DWI may hamper its widespread use in clinical practice. With recent technical advances in DWI, such as simultaneous multi-slice excitation, computed or reduced field-of-view techniques, as well as advanced shimming methods, it is possible to achieve shorter acquisition time, better image quality, and higher robustness in abdominopelvic DWI. This review discussed the recent advances of each DWI approach, and highlighted its future perspectives in abdominal and pelvic imaging, hoping to familiarize physicians and radiologists with the technical improvements in this field and provide future research directions.
Collapse
Affiliation(s)
- Ting Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- MR Collaborations, Siemens Healthcare, Shanghai, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
12
|
Lyu J, Li Y, Yan F, Chen W, Wang C, Li R. Multi-channel GAN-based calibration-free diffusion-weighted liver imaging with simultaneous coil sensitivity estimation and reconstruction. Front Oncol 2023; 13:1095637. [PMID: 36845688 PMCID: PMC9945270 DOI: 10.3389/fonc.2023.1095637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Diffusion-weighted imaging (DWI) with parallel reconstruction may suffer from a mismatch between the coil calibration scan and imaging scan due to motions, especially for abdominal imaging. Methods This study aimed to construct an iterative multichannel generative adversarial network (iMCGAN)-based framework for simultaneous sensitivity map estimation and calibration-free image reconstruction. The study included 106 healthy volunteers and 10 patients with tumors. Results The performance of iMCGAN was evaluated in healthy participants and patients and compared with the SAKE, ALOHA-net, and DeepcomplexMRI reconstructions. The peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), root mean squared error (RMSE), and histograms of apparent diffusion coefficient (ADC) maps were calculated for assessing image qualities. The proposed iMCGAN outperformed the other methods in terms of the PSNR (iMCGAN: 41.82 ± 2.14; SAKE: 17.38 ± 1.78; ALOHA-net: 20.43 ± 2.11 and DeepcomplexMRI: 39.78 ± 2.78) for b = 800 DWI with an acceleration factor of 4. Besides, the ghosting artifacts in the SENSE due to the mismatch between the DW image and the sensitivity maps were avoided using the iMCGAN model. Discussion The current model iteratively refined the sensitivity maps and the reconstructed images without additional acquisitions. Thus, the quality of the reconstructed image was improved, and the aliasing artifact was alleviated when motions occurred during the imaging procedure.
Collapse
Affiliation(s)
- Jun Lyu
- School of Computer and Control Engineering, Yantai University, Yantai, Shandong, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibo Chen
- Philips Healthcare (China), Shanghai, China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China,*Correspondence: Chengyan Wang, ; Ruokun Li,
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Chengyan Wang, ; Ruokun Li,
| |
Collapse
|
13
|
Wang J, Ma C, Yang P, Wang Z, Chen Y, Bian Y, Shao C, Lu J. Diffusion-Weighted Imaging of the Abdomen: Correction for Gradient Nonlinearity Bias in Apparent Diffusion Coefficient. J Magn Reson Imaging 2022. [PMID: 36373955 DOI: 10.1002/jmri.28529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gradient nonlinearity (GNL) introduces spatial nonuniformity bias in apparent diffusion coefficient (ADC) measurements, especially at large offsets from the magnet isocenter. PURPOSE To investigate the effects of GNL in abdominal ADC measurements and to develop an ADC bias correction procedure. STUDY TYPE Retrospective. PHANTOM/POPULATION Two homemade ultrapure water phantoms/25 patients with histologically confirmed pancreatic ductal adenocarcinoma (PDAC). FIELD STRENGTH/SEQUENCE A 3.0 T/diffusion-weighted imaging (DWI) with single-shot echo-planar imaging sequence. ASSESSMENT ADC bias was computed in the three orthogonal directions at different offset locations. The spatial-dependent correctors of ADC bias were generated from the ADCs of phantom 1. The ADCs were estimated before and after corrections for the phantom 1 with both the proposed approach and the theoretical GNL correction method. For the patients, ADCs were measured in abdominal tissues including left and right liver lobes, PDAC, spleen, bilateral kidneys, and bilateral paraspinal muscles. STATISTICAL TEST Friedman tests and Wilcoxon tests. RESULTS The ADC bias measured by phantom 1 was 9.7% and 12.6% higher in the right-left and anterior-posterior directions and 9.2% lower in the superior-inferior direction at the 150 mm offsets from the magnetic isocenter. The corrected vs. the uncorrected ADCs measurements (median: 2.20 × 10-3 mm2 /sec for both the proposed method and the theoretical GNL method vs. 2.31 × 10-3 mm2 /sec, respectively) and their relative ADC errors (0.014, 0.016, and 0.054, respectively) were lower in the phantom 1. The relative ADC errors substantially decreased after correction in the phantom 2 (median: 0.048 and -0.008, respectively). The ADCs of all the abdominal tissues were lower after correction except for the left liver lobes (P = 0.13). DATA CONCLUSION GNL bias in abdominal ADC can be measured by a DWI phantom. The proposed correction procedure was successfully applied for the bias correction in abdominal ADC. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China.,College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Zhen Wang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Yufei Chen
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| |
Collapse
|
14
|
Wang F, Yang Q, Zhang Y, Liu J, Liu M, Zhu J. 3D variable flip angle T1 mapping for differentiating benign and malignant liver lesions at 3T: comparison with diffusion weighted imaging. BMC Med Imaging 2022; 22:146. [PMID: 35982406 PMCID: PMC9389795 DOI: 10.1186/s12880-022-00873-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different methods have been used to improve the imaging diagnosis of focal liver lesions (FLL). Among them, magnetic resonance imaging (MRI) has received more attention since it provides significant amount of information without radiation exposure. However, atypical imaging characteristics of FLL on MRI may complicate the differential diagnosis between benign and malignant FLL. This study aimed to compare the diagnostic value of T1 mapping and diffusion-weighted imaging (DWI) for differentiating of benign and malignant FLLs. METHODS This retrospective study enrolled 294 FLLs, including 150 benign and 144 malignant lesions. Whole liver T1 mapping sequences were obtained before and 2 min after the administration of Gd-DTPA to acquire native T1 and enhanced T1 and ΔT1%. Additionally, DWI sequence was conducted to generate apparent diffusion coefficient (ADC) maps. These quantitative parameters were compared using one-way analysis of variance, and the diagnostic accuracy of T1 mapping and ADC for FLLs was calculated by area under the curve (AUC). RESULTS Significant differences were observed regarding the native T1, enhanced T1, ΔT1%, and ADC between benign and malignant FLLs. Furthermore, the sensitivity and specificity of the parameters are as follows: native T1 0.797/0.702 (cut off value 1635.5 ms); enhanced T1, 0.911/0.976 (cutoff value 339.2 ms); ΔT1%, 0.901/0.905 (cutoff value 70.8%); and ADC, 0.975/0.952 (cutoff value 1.21 × 10-3 mm2/s). The ideal cutoff values for native T1 and ADC in identifying cyst and haemangioma were 2422.9 ms (AUC 0.990, P < 0.01) and 2.077 × 10-3 mm2/s (AUC 0.949, P < 0.01), respectively, with a sensitivity and specificity of 0.963/1 and 0.852/0.892, respectively. ADC was significantly positively correlated with T1 and ΔT1%, and significantly negatively correlated with enhanced T1. CONCLUSION The 3D Variable flip angle T1 mapping technique with Gd-DTPA has a high clinical potential for identifying benign and malignant FLLs. The enhanced T1 and ΔT1% values have similar diagnostic accuracy compared with DWI in evaluating FLLs. Native T1 shows better performance than DWI in distinguishing benign liver lesions, specifically, cysts, and haemangioma.
Collapse
Affiliation(s)
- Fei Wang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China
| | - Qing Yang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China
| | - Yupei Zhang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China
| | - Jun Liu
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China
| | - Mengxiao Liu
- Siemens Healthcare Ltd., Shanghai, 201318, China
| | - Juan Zhu
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China.
| |
Collapse
|
15
|
Liu Q, Zhang J, Jiang M, Zhang Y, Chen T, Zhang J, Li B, Chen J, Xing W. Evaluating the Histopathology of Pancreatic Ductal Adenocarcinoma by Intravoxel Incoherent Motion-Diffusion Weighted Imaging Comparing With Diffusion-Weighted Imaging. Front Oncol 2021; 11:670085. [PMID: 34249707 PMCID: PMC8261286 DOI: 10.3389/fonc.2021.670085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/21/2021] [Indexed: 01/05/2023] Open
Abstract
Objectives To explore the differences between intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and diffusion-weighted imaging (DWI) in evaluating the histopathological characters of pancreatic ductal adenocarcinoma (PDAC). Methods This retrospective study enrolled 50 patients with PDAC confirmed by pathology from December 2018 to May 2020. All patients underwent DWI and IVIM-DWI before surgeries. Patients were classified into low- and high-fibrosis groups. Apparent diffusion coefficient (ADC), diffusion coefficient (D), false diffusion coefficient (D*), and perfusion fraction (f) were measured by two radiologists, respectively in GE AW 4.7 post-processing station, wherein ADC values were derived by mono-exponential fits and f, D, D* values were derived by biexponential fits. The tumor tissue was stained with Sirius red, CD34, and CK19 to evaluate fibrosis, microvascular density (MVD), and tumor cell density. Furthermore, the correlation between ADC, D, D*, and f values and histopathological results was analyzed. Results The D values were lower in the high-fibrosis group than in the low-fibrosis group, while the f values were opposite. Further, no statistically significant differences were detected in ADC and D* values between the high- and low-fibrosis groups. The AUC of D and f values had higher evaluation efficacy in the high- and low-fibrosis groups than ADC values. A significant negative correlation was established between D values, and fibrosis and a significant positive correlation were observed between f values and fibrosis. No statistical difference was detected between DWI/IVIM parameters values and MVD or tumor cell density except for the positive correlation between D* values and tumor cell density. Conclusions D and f values derived from the IVIM model had higher sensitivity and diagnostic performance for grading fibrosis in PDAC compared to the conventional DWI model. IVIM-DWI may have the potential as an imaging biomarker for predicting the fibrosis grade of PDAC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jinggang Zhang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Man Jiang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tongbing Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jilei Zhang
- Clinical Science, Philips Healthcare, Shanghai, China
| | - Bei Li
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
16
|
Kim YY, Kim MJ, Gho SM, Seo N. Comparison of multiplexed sensitivity encoding and single-shot echo-planar imaging for diffusion-weighted imaging of the liver. Eur J Radiol 2020; 132:109292. [PMID: 32992144 DOI: 10.1016/j.ejrad.2020.109292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To compare multiplexed sensitivity encoding (MUSE) and conventional diffusion-weighted magnetic resonance imaging (cDWI) techniques in liver MRI. METHODS Fifty-nine patients who underwent both two-shot echo-planar DWI using MUSE and single-shot echo-planar cDWI at a 3.0-T MRI system were included. Qualitative parameters were independently evaluated by three radiologists, and quantitative parameters were calculated on the basis of region of interest measurements. Receiver operating characteristic curve analysis and McNemar's test were used to compare solid lesion characterization results and lesion detectability, respectively. RESULTS All reviewers found less image noise, sharper liver contours, milder susceptibility artifacts, and better lesion conspicuity in MUSE-DWI than in cDWI (reader average mean, 4.1-4.5 vs. 3.5-4.0; p < 0.05). The signal-to-noise ratio (SNR) of the liver was significantly higher in MUSE-DWI than in cDWI (right lobe: mean, 9.39 vs. 8.10, p < 0.001; left lobe: mean, 8.34 vs. 7.19, p < 0.001), while the SNR of the lesion (mean, 23.72 vs. 23.88, p = 0.911) and lesion-to-liver contrast-to-noise ratio (mean, 14.65 vs. 15.41, p = 0.527) were comparable between MUSE-DWI and cDWI. Solid lesion characterization results were comparably accurate between MUSE-DWI and cDWI (reader average area under the receiver operating characteristic curve, 0.985 vs. 0.986, p = 0.480). The detectability of lesions was better in MUSE-DWI than in cDWI (reader consensus, 83.7 % [41/49] vs. 67.3 % [33/49], p = 0.021). CONCLUSION MUSE-DWI can provide multi-shot liver DWI with less noise, fewer distortions, improved SNR of the liver, and better lesion detectability.
Collapse
Affiliation(s)
- Yeun-Yoon Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Myeong-Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Min Gho
- MR Collaboration & Development, GE Healthcare, 416 Hangang-daero, Jung-gu, Seoul, 04637, Republic of Korea.
| | - Nieun Seo
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Zhou Y, Zhou G, Gao X, Xu C, Wang X, Xu P. Apparent diffusion coefficient value of mass-forming intrahepatic cholangiocarcinoma: a potential imaging biomarker for prediction of lymph node metastasis. Abdom Radiol (NY) 2020; 45:3109-3118. [PMID: 32107582 DOI: 10.1007/s00261-020-02458-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To compare the differences of MR features between mass-forming intrahepatic cholangiocarcinoma (IMCC) with and without lymph node metastasis (LNM) and to search for new imaging biomarkers for predicting LNM. MATERIALS AND METHODS The study included 91 patients with histopathologically confirmed single IMCC (20 patients with LNM and 71 patients without LNM). Findings of preoperative MR imaging including diffusion-weighted imaging (DWI) (b value 0, 500 mm2/s) were analyzed and apparent diffusion coefficient (ADC) values (b = 500 mm2/s) were calculated. Logistic regression analysis was performed to identify independent predictors of LNM. The diagnostic performance of independent predictors was assessed by receiver operating characteristic (ROC) and area under the curve (AUC) was compared. RESULTS Larger tumor size (p = 0.001), diameter of largest lymph node (LN) > 1 cm (p < 0.001), higher ADC value of primary IMCC lesion (ADCIMCC value) (p = 0.001), and positive CA19-9 level (p = 0.018) were correlated with LNM. Multivariate logistic regression analysis demonstrated that ADCIMCC value (odds ratio, 3.347; p = 0.001) and diameter of largest LN > 1 cm (odds ratio, 7.571; p = 0.004) were independent predictors of LNM. The AUCs for ADCIMCC value, diameter of largest LN > 1 cm,and combined method (the combination of ADCIMCC value and diameter of largest LN > 1 cm) were 0.782, 0.701,and 0.857, respectively. The AUC for combined method was significantly higher than that of diameter of largest LN > 1 cm (p = 0.033). CONCLUSION ADCIMCC value can be a potential imaging biomarker for predicting LNM of IMCC, especially in combination with diameter of largest LN > 1 cm.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Guofeng Zhou
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xuan Gao
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Pengju Xu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
18
|
Shan Q, Kuang S, Zhang Y, He B, Wu J, Zhang T, Wang J. A comparative study of monoexponential versus biexponential models of diffusion-weighted imaging in differentiating histologic grades of hepatitis B virus-related hepatocellular carcinoma. Abdom Radiol (NY) 2020; 45:90-100. [PMID: 31595327 DOI: 10.1007/s00261-019-02253-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To compare the diagnostic value of apparent diffusion coefficient (ADC) and intravoxel incoherent motion metrics in discriminating histologic grades of hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV) infection. METHODS 117 chronic HBV patients with 120 pathologically confirmed HCCs after surgical resection or liver transplantation were enrolled in this retrospective study. Diffusion-weighted imaging was performed using eleven b values (0-1500 s/mm2) and two b values (0, 800 s/mm2) successively on a 3.0 T system. ADC0, 800, ADCtotal, diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) were calculated. The parameters of three histologically differentiated subtypes were investigated using Kruskal-Wallis test, Spearman rank correlation, and receiver-operating characteristic analysis. Interobserver agreement was assessed using the intraclass correlation coefficient. RESULTS There was excellent agreement for ADCtotal/D/f, good agreement for ADC0,800, and moderate agreement for D*. ADCtotal, ADC0, 800,D, and f were significantly different for well, moderately, and poorly differentiated HCCs (P < 0.001), and they were all inversely correlated with histologic grades: r = - 0.633, - 0.394, - 0.435, and - 0.358, respectively (P < 0.001). ADCtotal demonstrated higher performance than ADC0,800 in diagnosing both well and poorly differentiated HCCs (P < 0.001 and P = 0.04, respectively). ADCtotal showed higher performance than D and f in diagnosing well differentiated HCCs (P < 0.001) and similar performance in diagnosing poorly differentiated HCCs (P = 0.06 and 0.13, respectively). CONCLUSIONS ADCtotal showed better diagnostic performance than ADC0,800, D, and f to discriminate histologic grades of HCC.
Collapse
Affiliation(s)
- Qungang Shan
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Sichi Kuang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yao Zhang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Bingjun He
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jun Wu
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Tianhui Zhang
- Department of Radiology, MeiZhou People's Hospital, Meizhou Affiliated Hospital of Sun Yat-Sen University, Huangtang Road, Meizhou, 514031, Guangdong, People's Republic of China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Diffusion Kurtosis MR Imaging versus Conventional Diffusion-Weighted Imaging for Distinguishing Hepatocellular Carcinoma from Benign Hepatic Nodules. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:2030147. [PMID: 31396023 PMCID: PMC6664697 DOI: 10.1155/2019/2030147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/09/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022]
Abstract
Objectives To assess the efficacy of diffusion kurtosis imaging (DKI) and compare DKI-derived parameters with conventional diffusion-weighted imaging (DWI) for distinguishing hepatocellular carcinoma (HCC) from benign hepatic nodules including focal nodular hyperplasia (FNH), hemangioma, and hepatocellular adenoma (HCA). Materials and Methods 151 patients with 182 hepatic nodules (114 HCCs and 68 benign nodules including 33 FNHs, 29 hemangiomas, and 6 HCAs) were analyzed. Preoperative MRI examinations including DKI (b values: 0, 200, 500, 800, 1500, and 2000 sec/mm2) were performed, and kurtosis (K), diffusivity (D), and apparent diffusion coefficient (ADC) were calculated. The efficacy of DKI-derived parameters K, D, and ADC for distinguishing HCC from these benign nodules was analyzed. Results ROC (receiver operating characteristic curve) analysis showed the optimal cutoff values of ADC, D, and K for identification of these benign nodules, and HCCs were 1.295 (area under the curve (AUC): 0.826; sensitivity 80.6%; specificity 70.8%), 1.787 (AUC: 0.770; sensitivity 83.6%; specificity 59.6%), and 1.002 (AUC: 0.761; sensitivity 65.5%; specificity 79.0%), respectively. Statistically significant differences were found in ADC, D, and K values between groups of HCC-FNH and HCC-hemangioma (P < 0.05). There were significant differences in K and ADC values between groups of FNH-hemangioma and HCA-hemangioma (P < 0.05), respectively. Using logistic regression analysis, a regression equation was obtained: Logit(P)=−1.982X1+1.385X3+1.948(X1: ADC; X3: K), and odds ratios (OR) were 0.138 (95% confidence interval (CI): 0.052, 0.367), and 8.996 (95% CI: 0.970, 16.460), respectively. Conclusion Both ADC value and DKI-derived parameters K and D values have demonstrated a higher preoperative efficacy in distinguishing HCC from FNH, hemangioma, and HCA. No evidence was shown to suggest D or K value was superior to the ADC value.
Collapse
|
20
|
Alis D, Durmaz ESM, Gulsen F, Bas A, Kabasakal L, Sager S, Numan F. Prognostic value of ADC measurements in predicting overall survival in patients undergoing 90Y radioembolization for colorectal cancer liver metastases. Clin Imaging 2019; 57:124-130. [PMID: 31220677 DOI: 10.1016/j.clinimag.2019.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
AIM To assess the ability of diffusion-weighted imaging (DWI) in predicting the overall survival in patients who underwent Yttrium 90 radioembolization (90Y-RE) for colorectal liver metastases (CLM) with other well-established clinical and imaging parameters by comparing the pre- and post-treatment apparent diffusion coefficient (ADC) values of the lesions. METHODS A total of 81 metastatic lesions of 27 consecutive patients who underwent DWI before and after the 90Y-RE session were enrolled in the study. ADC values were calculated from the entire (ADCe) and peripheral (ADCp) tumor on pre- and post-treatment DWI, and any relative increase in ADC >0% accepted as a functional imaging response. The impact of functional imaging response in addition to other well-known parameters including Response Evaluation Criteria in Solid Tumors (RECIST), hepatic tumor burden, Eastern Cooperative Oncology Group performance status (ECOG-PS) and the presence of extrahepatic metastases in predicting overall survival (OS) was assessed using Kaplan-Meier curves and Cox-regression analyses. RESULTS The median OS of the patients was 10 months (range, 6-20 months) while the median OS of the responders being significantly longer than the non-responders for ADCe and ADCp (median 11 vs 7 months, P = 0.003; median 12 vs. 7 months, P < 0.0001, respectively). The RECIST score was also significantly affected the OS (progressive or stable disease median 8 months vs. partial response 15 indent months, P = 0.019). The other parameters including hepatic tumor burden, gender, ECOG score, the involvement of the liver lobes, and the presence of extrahepatic metastases were not associated with the OS. In multivariate analysis, only ADCp remained as an independent predictor of OS (P = 0.003, HR = 19.878). CONCLUSION Any increase in relative ADCp or ADCe values after Y90-RE treatment was associated with longer OS in CLM patients, and DWI seems to be valuable imaging biomarker in predicting OS in CLM patients during the early post-interventional period after 90Y-RE.
Collapse
Affiliation(s)
- Deniz Alis
- Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Department of Radiology, Istanbul, Turkey.
| | - Emine Sebnem Memis Durmaz
- Ministry of Health, Buyukcekmece Mimar Sinan Hospital, Buyukcekmece, Department of Radiology, Istanbul, Turkey
| | - Fatih Gulsen
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Interventional Radiology, Fatih, Istanbul, Turkey
| | - Ahmet Bas
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Interventional Radiology, Fatih, Istanbul, Turkey
| | - Levent Kabasakal
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Nuclear Medicine, Fatih, Istanbul, Turkey.
| | - Sait Sager
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Nuclear Medicine, Fatih, Istanbul, Turkey
| | - Furuzan Numan
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Interventional Radiology, Fatih, Istanbul, Turkey
| |
Collapse
|
21
|
Hu F, Yang R, Huang Z, Wang M, Zhang H, Yan X, Song B. Liver fibrosis: in vivo evaluation using intravoxel incoherent motion-derived histogram metrics with histopathologic findings at 3.0 T. Abdom Radiol (NY) 2017. [PMID: 28624925 DOI: 10.1007/s00261-017-1208-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE To retrospectively determine the feasibility of intravoxel incoherent motion (IVIM) imaging based on histogram analysis for the staging of liver fibrosis (LF) using histopathologic findings as the reference standard. METHODS 56 consecutive patients (14 men, 42 women; age range, 15-76, years) with chronic liver diseases (CLDs) were studied using IVIM-DWI with 9 b-values (0, 25, 50, 75, 100, 150, 200, 500, 800 s/mm2) at 3.0 T. Fibrosis stage was evaluated using the METAVIR scoring system. Histogram metrics including mean, standard deviation (Std), skewness, kurtosis, minimum (Min), maximum (Max), range, interquartile (Iq) range, and percentiles (10, 25, 50, 75, 90th) were extracted from apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) maps. All histogram metrics among different fibrosis groups were compared using one-way analysis of variance or nonparametric Kruskal-Wallis test. For significant parameters, receivers operating characteristic curve (ROC) analyses were further performed for the staging of LF. RESULTS Based on their METAVIR stage, the 56 patients were reclassified into three groups as follows: F0-1 group (n = 25), F2-3 group (n = 21), and F4 group (n = 10). The mean, Iq range, percentiles (50, 75, and 90th) of D* maps between the groups were significant differences (all P < 0.05). Area under the ROC curve (AUC) of the mean, Iq range, 50, 75, and 90th percentile of D* maps for identifying significant LF (≥F2 stage) was 0.901, 0.859, 0.876, 0.943, and 0.886 (all P < 0.0001), respectively; for diagnosing severe fibrosis or cirrhosis (F4), AUC was 0.917, 0.922, 0.943, 0.985, and 0.939 (all P < 0.0001), respectively. The histogram metrics of ADC, D, and f maps demonstrated no significant difference among the groups (all P > 0.05). CONCLUSION Histogram analysis of D* map derived from IVIM can be used to stage liver fibrosis in patients with CLDs and provide more quantitative information beyond the mean value.
Collapse
Affiliation(s)
- Fubi Hu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, Sichuan, China
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, 278# Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Ru Yang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, 278# Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, Sichuan, China
| | - Min Wang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, Sichuan, China
| | - Hanmei Zhang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, Sichuan, China
| | - Xu Yan
- Siemens Healthcare, MR Collaborations NE Asia, Shanghai, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Abstract
Diffusion-weighted imaging (DWI) is increasingly incorporated into routine body magnetic resonance imaging protocols. DWI can assist with lesion detection and even in characterization. Quantitative DWI has exhibited promise in the discrimination between benign and malignant pathology, in the evaluation of the biologic aggressiveness, and in the assessment of the response to treatment. Unfortunately, inconsistencies in DWI acquisition parameters and analysis have hampered widespread clinical utilization. Focusing primarily on liver applications, this article will review the basic principles of quantitative DWI. In addition to standard mono-exponential fitting, the authors will discuss intravoxel incoherent motion and diffusion kurtosis imaging that involve more sophisticated approaches to diffusion quantification.
Collapse
Affiliation(s)
- Myles T Taffel
- Department of Radiology, New York University School of Medicine, New York, NY
| | | | | |
Collapse
|