1
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
2
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Kleski KA, Trabbic KR, Shi M, Bourgault JP, Andreana PR. Enhanced Immune Response Against the Thomsen-Friedenreich Tumor Antigen Using a Bivalent Entirely Carbohydrate Conjugate. Molecules 2020; 25:E1319. [PMID: 32183149 PMCID: PMC7144725 DOI: 10.3390/molecules25061319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
The Thomsen-Friedenreich (TF) antigen is a key target for the development of anticancer vaccines, and this ongoing challenge remains relevant due to the poor immunogenicity of the TF antigen. To overcome this challenge, we adopted a bivalent conjugate design which introduced both the TF antigen and the Thomsen-nouveau (Tn) antigen onto the immunologically relevant polysaccharide A1 (PS A1). The immunological results in C57BL/6 mice revealed that the bivalent, Tn-TF-PS A1 conjugate increased the immune response towards the TF antigen as compared to the monovalent TF-PS A1. This phenomenon was first observed with enzyme-linked immunosorbent assay (ELISA) where the bivalent conjugate generated high titers of IgG antibodies where the monovalent conjugate generated an exclusive IgM response. Fluorescence-activated cell sorting (FACS) analysis also revealed increased binding events to the tumor cell lines MCF-7 and OVCAR-5, which are consistent with the enhanced tumor cell lysis observed in a complement dependent cytotoxicity (CDC) assay. The cytokine profile generated by the bivalent construct revealed increased pro-inflammatory cytokines IL-17 and IFN-γ. This increase in cytokine concentration was matched with an increase in cytokine producing cells as observed by ELISpot. We hypothesized the mechanisms for this phenomenon to involve the macrophage galactose N-acetylgalactosamine specific lectin 2 (MGL2). This hypothesis was supported by using biotinylated probes and recombinant MGL2 to measure carbohydrate-protein interactions.
Collapse
Affiliation(s)
| | | | | | | | - Peter R. Andreana
- 2801 West Bancroft Street, Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA; (K.A.K.); (K.R.T.); (M.S.); (J.-P.B.)
| |
Collapse
|
4
|
Keith DJ, Townsend SD. Total Synthesis of the Congested, Bisphosphorylated Morganella morganii Zwitterionic Trisaccharide Repeating Unit. J Am Chem Soc 2019; 141:12939-12945. [PMID: 31329445 DOI: 10.1021/jacs.9b06830] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zwitterionic polysaccharides (ZPSs) activate T-cell-dependent immune responses by major histocompatibility complex class II presentation. Herein, we report the first synthesis of a Morganella morganii ZPS repeating unit as an enabling tool in the synthesis of novel ZPS materials. The repeating unit incorporates a 1,2-cis-α-glycosidic bond; the problematic 1,2-trans-galactosidic bond, Gal-β-(1 → 3)-GalNAc; and phosphoglycerol and phosphocholine residues which have not been previously observed together as functional groups on the same oligosaccharide. The successful third-generation approach leverages a first in class glycosylation of a phosphoglycerol-functionalized acceptor. To install the phosphocholine unit, a highly effective phosphocholine donor was synthesized.
Collapse
Affiliation(s)
- D Jamin Keith
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Steven D Townsend
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|
5
|
Wei MM, Wang YS, Ye XS. Carbohydrate-based vaccines for oncotherapy. Med Res Rev 2018; 38:1003-1026. [PMID: 29512174 DOI: 10.1002/med.21493] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
Cancer is still one of the most serious threats to human worldwide. Aberrant patterns of glycosylation on the surface of cancer cells, which are correlated with various cancer development stages, can differentiate the abnormal tissues from the healthy ones. Therefore, tumor-associated carbohydrate antigens (TACAs) represent the desired targets for cancer immunotherapy. However, these carbohydrate antigens may not able to evoke powerful immune response to combat with cancer for their poor immunogenicity and immunotolerance. Different approaches have been developed to address these problems. In this review, we want to summarize the latest advances in TACAs based anticancer vaccines.
Collapse
Affiliation(s)
- Meng-Man Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong-Shi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Shi M, Kleski KA, Trabbic KR, Bourgault JP, Andreana PR. Sialyl-Tn Polysaccharide A1 as an Entirely Carbohydrate Immunogen: Synthesis and Immunological Evaluation. J Am Chem Soc 2016; 138:14264-14272. [PMID: 27726393 DOI: 10.1021/jacs.6b05675] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mengchao Shi
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Kristopher A. Kleski
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Kevin R. Trabbic
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jean-Paul Bourgault
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Peter R. Andreana
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
7
|
Feng D, Shaikh AS, Wang F. Recent Advance in Tumor-associated Carbohydrate Antigens (TACAs)-based Antitumor Vaccines. ACS Chem Biol 2016; 11:850-63. [PMID: 26895482 DOI: 10.1021/acschembio.6b00084] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer cells can be distinguished from normal cells by displaying aberrant levels and types of carbohydrate structures on their surfaces. These carbohydrate structures are known as tumor-associated carbohydrate antigens (TACAs). TACAs were considered as promising targets for the design of anticancer vaccines. Unfortunately, carbohydrates alone can only evoke poor immunogenicity because they are unable to induce T-cell-dependent immune responses, which is critical for cancer therapy. Moreover, immunotolerance and immunosuppression are easily induced by using natural occurring TACAs as antigens due to their endogenous property. This review summarizes the recent strategies to overcome these obstacles: (1) covalently coupling TACAs to proper carriers to improve immunogenicity, including clustered or multivalent conjugate vaccines, (2) coupling TACAs to T-cell peptide epitopes or the built-in adjuvant to form multicomponent glycoconjugate vaccines, and (3) developing vaccines based on chemically modified TACAs, which is combined with metabolic engineering of cancer cells.
Collapse
Affiliation(s)
- Danyang Feng
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of education),
Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, Shandong, Peoples’ Republic of China
- National
Glycoengineering Research Center, Shandong University, Jinan 50012, Shandong, Peoples’ Republic of ChinaChina
| | - Abdul Sami Shaikh
- Institute
of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, Peoples’ Republic of China
| | - Fengshan Wang
- Key
Laboratory of Chemical Biology of Natural Products (Ministry of education),
Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, Shandong, Peoples’ Republic of China
- National
Glycoengineering Research Center, Shandong University, Jinan 50012, Shandong, Peoples’ Republic of ChinaChina
| |
Collapse
|
8
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
9
|
Bhatia S, Dimde M, Haag R. Multivalent glycoconjugates as vaccines and potential drug candidates. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00143e] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Cai H, Sun ZY, Chen MS, Zhao YF, Kunz H, Li YM. Synthetic Multivalent Glycopeptide-Lipopeptide Antitumor Vaccines: Impact of the Cluster Effect on the Killing of Tumor Cells. Angew Chem Int Ed Engl 2014; 53:1699-703. [DOI: 10.1002/anie.201308875] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Indexed: 01/04/2023]
|
11
|
Cai H, Sun ZY, Chen MS, Zhao YF, Kunz H, Li YM. Multivalente synthetische Glycopeptid-Lipopeptid-Antitumorvakzine: Auswirkung des Cluster-Effekts auf das Abtöten von Tumorzellen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Tang CK, Apostolopoulos V. Strategies used for MUC1 immunotherapy: preclinical studies. Expert Rev Vaccines 2014; 7:951-62. [DOI: 10.1586/14760584.7.7.951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Wilson RM, Danishefsky SJ. A vision for vaccines built from fully synthetic tumor-associated antigens: from the laboratory to the clinic. J Am Chem Soc 2013; 135:14462-72. [PMID: 23944352 PMCID: PMC3826082 DOI: 10.1021/ja405932r] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer cells may be distinguished from normal cells by cell surface displays of aberrant levels and types of carbohydrate domains. Accordingly, these tumor-associated carbohydrate antigens (TACAs) represent promising target structures for the design of anticancer vaccines. Over the past 20 years, our laboratory has sought to use the tools of chemical synthesis to develop TACA-based anticancer vaccine candidates. We provide herein a personal accounting of our laboratory's progress toward the long-standing goal of developing clinically viable fully synthetic carbohydrate-based anticancer vaccines.
Collapse
Affiliation(s)
- Rebecca M. Wilson
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065
| | - Samuel J. Danishefsky
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027
| |
Collapse
|
14
|
Sharma DK, Lambu MR, Sidiq T, Khajuria A, Tripathi AK, Yousuf SK, Mukherjee D. Ammonium chloride mediated synthesis of alkyl glycosides and evaluation of their immunomodulatory activity. RSC Adv 2013. [DOI: 10.1039/c3ra41050a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Carbohydrate-based cancer vaccines: target cancer with sugar bullets. Glycoconj J 2012; 29:259-71. [DOI: 10.1007/s10719-012-9399-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/12/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
|
16
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
17
|
Abstract
The development of carbohydrate based anti-cancer vaccines is of high current interests. Herein, the latest development in this exciting field is reviewed. After a general introduction about tumor associated carbohydrate antigens and immune responses, the review is focused on the various strategies that have been developed to enhance the immunogenecity of these antigens. The results from animal studies and clinical trials are presented.
Collapse
Affiliation(s)
- Zhaojun Yin
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
18
|
Abstract
Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design. This is enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. Here, we review the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer cells for vaccine purposes.
Collapse
|
19
|
Zhu J, Warren JD, Danishefsky SJ. Synthetic carbohydrate-based anticancer vaccines: the Memorial Sloan-Kettering experience. Expert Rev Vaccines 2009; 8:1399-413. [PMID: 19803761 DOI: 10.1586/erv.09.95] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malignantly transformed cells can express aberrant cell surface glycosylation patterns, which serve to distinguish them from normal cells. This phenotype provides an opportunity for the development of carbohydrate-based vaccines for cancer immunotherapy. Synthetic carbohydrate-based vaccines, properly introduced through vaccination of a subject with a suitable construct, should be recognized by the immune system. Antibodies induced against these carbohydrate antigens could then participate in the eradication of carbohydrate-displaying tumor cells. Advances in carbohydrate synthetic capabilities have allowed us to efficiently prepare a range of complex, synthetic anticancer vaccine candidates. We describe herein the progression of our longstanding carbohydrate-based anticancer vaccine program, which is now at the threshold of clinical evaluation in several contexts. Our carbohydrate-based anticancer vaccine program has evolved through a number of stages: monomeric vaccines, monomeric clustered vaccines, unimolecular multi-antigenic vaccines and dual-acting vaccines. This account will focus on our recently developed unimolecular multi-antigenic constructs and potential dual-acting constructs, which contain clusters of both carbohydrate and peptide epitopes.
Collapse
Affiliation(s)
- Jianglong Zhu
- Research Fellow, Bioorganic Chemistry Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
20
|
Zhu J, Wan Q, Lee D, Yang G, Spassova MK, Ouerfelli O, Ragupathi G, Damani P, Livingston PO, Danishefsky SJ. From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. J Am Chem Soc 2009; 131:9298-303. [PMID: 19518111 DOI: 10.1021/ja901415s] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fully synthetic anticancer vaccine 2 has been prepared via bioconjugation of unimolecular pentavalent construct 1-containing five prostate and breast cancer associated carbohydrate antigens, Globo-H, GM2, STn, TF and Tn-to maleimide-modified carrier protein KLH. An improved conjugation protocol has been developed, which allowed us to obtain a higher epitope ratio of the unimolecular pentavalent glycopeptide antigen to the carrier protein (505/1 versus 228/1 for the previous version). KLH conjugate 2 has been subsequently submitted to preclinical immunogenic evaluation in mice in the presence of QS-21 as an adjuvant. Through standard ELISA assay, this vaccine candidate showed high promise in inducing IgG and IgM antibodies against each of the five individual carbohydrate antigens. In addition, FACS analysis indicated that these antibodies were able to react with MCF-7 breast cancer cell lines expressing these five carbohydrate antigens.
Collapse
Affiliation(s)
- Jianglong Zhu
- Laboratory for Bioorganic Chemistry, Clinical Immunology Service, Department of Medicine, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Guo Z, Wang Q. Recent development in carbohydrate-based cancer vaccines. Curr Opin Chem Biol 2009; 13:608-17. [PMID: 19766052 DOI: 10.1016/j.cbpa.2009.08.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 11/20/2022]
Abstract
Tumor-associated carbohydrate antigens (TACAs) are important molecular markers on the cancer cell surface, useful for the development of therapeutic cancer vaccines or cancer immunotherapies. However, because of their poor immunogenicity and/or immunotolerance, most TACAs fail to induce T cell-mediated immunity that is critical for cancer therapy. This review summarizes the recent effort to overcome this problem via constructing TACA conjugates with improved immunogenicity, such as by covalently coupling TACAs to proper carrier molecules to form clustered or multi-epitopic conjugate vaccines, coupling TACAs to a T cell peptide epitope and/or an immunostimulant epitope to form fully synthetic multi-component glycoconjugate vaccines, and developing vaccines based on chemically modified TACAs, which is combined with metabolic engineering of cancer cells.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| | | |
Collapse
|
22
|
Developing vaccines against minor capsid antigen L2 to prevent papillomavirus infection. Immunol Cell Biol 2009; 87:287-99. [PMID: 19421199 DOI: 10.1038/icb.2009.13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A subset of human papillomavirus (HPV) genotypes is responsible for approximately 5% of all cancer deaths globally, and uterine cervical carcinoma accounts for the majority of these cases. The impact of HPV is greatest for women who do not have access to effective secondary preventive measures, and consequently over 80% of cervical cancer deaths worldwide occur in developing nations. The understanding that persistent infection by this 'oncogenic' subset of HPV genotypes is necessary for the development of cervical carcinoma has driven the development of preventive vaccines. Two preventive vaccines comprising recombinant HPV L1 virus-like particles (VLPs) have been licensed. However, the current cost of these vaccines precludes sustained global delivery, and they target only two of the approximately 15 known oncogenic HPV types, although approximately 70% of cervical cancer cases are attributed to these two types and there is evidence for some degree of cross-protection against other closely related types. A possible approach to broader immunity at lower cost is to consider vaccination against L2. L2 vaccines can be produced inexpensively and they also have the promise of conferring much broader cross-type protective immunity than that observed with L1 VLP immunization. However, L2 vaccine development lags behind L1 VLP vaccines and several technical hurdles remain.
Collapse
|
23
|
Abstract
Polymeric materials have been applied in therapeutic applications, such as drug delivery and tissue regeneration, for decades owing to their biocompatibility and suitable mechanical properties. In addition, select polymer-drug conjugates have been used as bioactive pharmaceuticals owing to their increased drug efficacy, solubility, and target specificity compared with small-molecule drugs. Increased synthetic control of polymer properties has permitted the production of polymer assemblies for the targeted and controlled delivery of drugs, and polymeric sequestrants take advantage of their lack of solubility for the sequestration of target molecules in vivo. In more recent studies reviewed in greater detail here, the properties of polymers that distinguish them from small-molecule drugs, such as their high molecular weight and their ability to display multiple pendant moieties, have been specifically exploited for activating cellular targets or inhibiting the binding of pathogens. The elucidation of relevant structure-function relationships in investigations of this kind has relied on the combination of living polymerization methods with chemical conjugation methods, and protein engineering methods have shown increasing potential in the manipulation of architectural features of such polymer therapeutics. Garnering a detailed understanding of the various mechanisms by which multivalent polymers engage biological targets is certain to expand the role of polymers as therapeutics, by enabling highly specific activities of designed polymers in the biological environment.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19711
| | | | | |
Collapse
|
24
|
Niederhafner P, Reinis M, Sebestík J, Jezek J. Glycopeptide dendrimers, part III: a review. Use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J Pept Sci 2008; 14:556-87. [PMID: 18275089 DOI: 10.1002/psc.1011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycopeptide dendrimers containing different types of tumor associated-carbohydrate antigens (T(N), TF, sialyl-T(N), sialyl-TF, sialyl-Le(x), sialyl-Le(a) etc.) were used in diagnosis and therapy of different sorts of cancer. These dendrimeric structures with incorporated T-cell epitopes and adjuvants can be used as antitumor vaccines. Best results were obtained with multiantigenic vaccines, containing, e.g. five or six different TAAs. The topic of TAAs and their dendrimeric forms at molecular level are reviewed, including structure, syntheses, and biological activities. Use of glycopeptide dendrimers as antiviral vaccines against HIV and influenza is also described. Their syntheses, physico-chemical properties, and biological activities are given with many examples.
Collapse
Affiliation(s)
- Petr Niederhafner
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | | | | | | |
Collapse
|
25
|
Oyelaran O, Gildersleeve JC. Application of carbohydrate array technology to antigen discovery and vaccine development. Expert Rev Vaccines 2008; 6:957-69. [PMID: 18377358 DOI: 10.1586/14760584.6.6.957] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbohydrate arrays are a new technology developed for high-throughput evaluation of interactions between carbohydrates and proteins, cells or viruses. Carbohydrate arrays contain many different carbohydrate structures on a solid support. The format allows one to probe hundreds or thousands of potential receptor-ligand interactions while using only tiny amounts of material. Recently, carbohydrate arrays have been applied to vaccine development in several ways. First, carbohydrate arrays have been utilized for the discovery and characterization of carbohydrate antigens. Second, they have been used to evaluate immune responses to vaccine candidates. Third, carbohydrate arrays have been used to identify and characterize reagents necessary for vaccine development. Although still at an early stage, carbohydrate array technology has tremendous potential for accelerating vaccine development.
Collapse
Affiliation(s)
- Oyindasola Oyelaran
- National Cancer Institute, Laboratory of Medicinal Chemistry, Center for Cancer Research, NIH, 376 Boyles Street, Building 376, Room 109, Frederick, MD 21702, USA.
| | | |
Collapse
|
26
|
Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:546-63. [PMID: 17988798 DOI: 10.1016/j.bbagen.2007.09.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/14/2007] [Indexed: 01/03/2023]
Abstract
Mucin-type O-glycans are found on mucins as well as many other glycoproteins. The initiation step in synthesis is catalyzed by a large family of polypeptide GalNAc-transferases attaching the first carbohydrate residue, GalNAc, to selected serine and threonine residues in proteins. During the last decade an increasing number of GalNAc-transferase isoforms have been cloned and their substrate-specificities partly characterized. These differences in substrate specificities have been exploited for in vitro site-directed O-glycosylation. In GlycoPEGylation, polyehylene glycol (PEG) is transferred to recombinant therapeutics to specific acceptor sites directed by GalNAc-transferases. GalNAc-transferases have also been used to control density of glycosylation in the development of glycopeptide-based cancer vaccines. The membrane-associated mucin-1 (MUC1) has long been considered a target for immunotherapeutic and immunodiagnostic measures, since it is highly overexpressed and aberrantly O-glycosylated in most adenocarcinomas, including breast, ovarian, and pancreatic cancers. By using vaccines mimicking the glycosylation pattern of cancer-cells, it is possible to overcome tolerance in transgenic animals expressing the human MUC1 protein as a self-antigen providing important clues for an improved MUC1 vaccine design. The present review will highlight some of the potential applications of site-directed O-glycosylation.
Collapse
Affiliation(s)
- Mads Agervig Tarp
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, 6.4, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
27
|
Sabbatini PJ, Ragupathi G, Hood C, Aghajanian CA, Juretzka M, Iasonos A, Hensley ML, Spassova MK, Ouerfelli O, Spriggs DR, Tew WP, Konner J, Clausen H, Abu Rustum N, Dansihefsky SJ, Livingston PO. Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clin Cancer Res 2007; 13:4170-7. [PMID: 17634545 DOI: 10.1158/1078-0432.ccr-06-2949] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize the safety and immunogenicity of a heptavalent antigen-keyhole limpet hemocyanin (KLH) plus QS21 vaccine construct in patients with epithelial ovarian, fallopian tube, or peritoneal cancer in second or greater complete clinical remission. EXPERIMENTAL DESIGN Eleven patients in this pilot trial received a heptavalent vaccine s.c. containing GM2 (10 microg), Globo-H (10 microg), Lewis Y (10 microg), Tn(c) (3 microg), STn(c) (3 microg), TF(c) (3 microg), and Tn-MUC1 (3 microg) individually conjugated to KLH and mixed with adjuvant QS21(100 microg). Vaccinations were administered at weeks 1, 2, 3, 7, and 15. Periodic blood and urine samples were obtained to monitor safety (complete blood count, comprehensive panel, amylase, thyroid-stimulating hormone, and urinalysis) and antibody production (ELISA, fluorescence-activated cell sorting, and complement-dependent cytotoxicity). RESULTS Eleven patients were included in the safety analysis; 9 of 11 patients remained on study for at least 2 weeks past fourth vaccination and were included in the immunologic analysis (two withdrew, disease progression). The vaccine was well tolerated. Self-limited and mild fatigue (maximum grade 2 in two patients), fever, myalgia, and localized injection site reactions were most frequent. No clinically relevant hematologic abnormalities were noted. No clinical or laboratory evidence of autoimmunity was seen. Serologic responses by ELISA were largely IgM against each antigen with the exception of Tn-MUC1 where both IgM and IgG responses were induced. Antibody responses were generally undetectable before immunization. After immunization, median IgM titers were as follows: Tn-MUC1, 1:640 (IgG 1:80); Tn, 1:160; TF, 1:640; Globo-H, 1:40; and STn, 1:80. Only one response was seen against Lewis Y; two were against GM2. Eight of nine patients developed responses against at least three antigens. Antibody titers peaked at weeks 4 to 8 in all patients. Fluorescence-activated cell sorting and complement-dependent cytotoxicity analysis showed substantially increased reactivity against MCF7 cells in seven of nine patients, with some increase seen in all patients. CONCLUSIONS This heptavalent-KLH conjugate plus QS21 vaccine safely induced antibody responses against five of seven antigens. Investigation in an adequately powered efficacy trial is warranted.
Collapse
Affiliation(s)
- Paul J Sabbatini
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaltgrad E, Sen Gupta S, Punna S, Huang CY, Chang A, Wong CH, Finn MG, Blixt O. Anti-Carbohydrate Antibodies Elicited by Polyvalent Display on a Viral Scaffold. Chembiochem 2007; 8:1455-62. [PMID: 17676704 DOI: 10.1002/cbic.200700225] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tetra- and hexasaccharides were arrayed on the exterior surface of cowpea mosaic virus by using a copper-catalyzed azide-alkyne cycloaddition reaction. Inoculation of chickens with these virus conjugates gave rise to large quantities of polyclonal anti-glycan IgY antibodies that displayed excellent avidity and specificity on analysis with printed glycan microarrays. Avian IgY antibodies are produced in significantly higher yield than is possible for mouse or rabbit IgG, and exhibit reduced cross reactivity with native mammalian proteins. For a tri-LacNAc antigen, affinity purification against immobilized mono-LacNAc was necessary to provide a set of antibodies with specific binding properties. Comparable performance was observed for the virus-based polyclonal versus a commercial monoclonal antibody raised against the globo-H tetrasaccharide; this highlights the utility of the glycan microarray for both quality control and rapid in-depth analysis. Virus-carbohydrate conjugates are promising candidates for development in diagnostic and immunotherapeutic applications.
Collapse
Affiliation(s)
- Eiton Kaltgrad
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ouerfelli O, Warren JD, Wilson RM, Danishefsky SJ. Synthetic carbohydrate-based antitumor vaccines: challenges and opportunities. Expert Rev Vaccines 2007; 4:677-85. [PMID: 16221069 DOI: 10.1586/14760584.4.5.677] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of a clinically effective, carbohydrate-based antitumor vaccine is a longstanding ambition in the prevention and treatment of cancer. This review seeks to provide a discussion of some of the unique challenges facing this particular field of immunology. The authors present a historic account of their ongoing research program devoted to the development of fully synthetic, carbohydrate-based anticancer vaccines of clinical value. As will be seen, remarkable advances in carbohydrate and glycopeptide assembly techniques have allowed for the preparation of synthetic constructs of progressively increasing structural complexity. The authors describe the evolution of their synthetic carbohydrate program from first-generation constructs, which were monovalent in nature, to highly complex unimolecular multivalent vaccines, in which multiple carbohydrate antigens are displayed in the context of a single polypeptide backbone. It is the hope that each generation of vaccines represents a move closer to achieving the ultimate objective of developing broadly useful, robust anticancer vaccines.
Collapse
|
30
|
Yu H, Chokhawala HA, Varki A, Chen X. Efficient chemoenzymatic synthesis of biotinylated human serum albumin-sialoglycoside conjugates containing O-acetylated sialic acids. Org Biomol Chem 2007; 5:2458-63. [PMID: 17637967 PMCID: PMC2769491 DOI: 10.1039/b706507h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sialyl Tn (STn) and sialyl lactoside derivatives containing O-acetylated sialic acid residues have been chemoenzymatically synthesized using a one-pot three-enzyme system and conjugated to biotinylated human serum albumin (HSA) using an adipic acid para-nitrophenyl ester coupling reagent. This approach provides an efficient and general protocol for preparing carbohydrate-protein conjugates containing base-sensitive groups.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA. Fax: 01 530 752 8995; Tel: 01 530 754 6037; E-mail:
| | - Harshal A. Chokhawala
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA. Fax: 01 530 752 8995; Tel: 01 530 754 6037; E-mail:
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA. Fax: 01 530 752 8995; Tel: 01 530 754 6037; E-mail:
| |
Collapse
|
31
|
Kircheis R, Siegl P, Grunt S, Halanek N, Loibner H, Mudde GC, Nechansky A. Immunization of Rhesus monkeys with a SialylTn-mAb17-1A conjugate vaccine co-formulated with QS-21 induces a temporary systemic cytokine release and NK cytotoxicity against tumor cells. Cancer Immunol Immunother 2007; 56:863-73. [PMID: 17009044 PMCID: PMC11030659 DOI: 10.1007/s00262-006-0231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/26/2006] [Indexed: 01/20/2023]
Abstract
Tumor-associated antigens resulting from aberrant glycosylation, such as the SialylTn carbohydrate antigen, are frequently over-expressed on cancer cells and provide potential targets for cancer vaccination. Immunization of Rhesus monkeys with SialylTn coupled to a highly immunogenic carrier molecule and formulated on aluminum hydroxide induced a strong immune response against the carrier protein but only a moderate IgM immune response against the SialylTn carbohydrate antigen. Co-formulation with QS-21 adjuvant dramatically enhanced the anti-SialylTn immune response and resulted in a SialylTn-specific IgG switch. The kinetics of the carbohydrate-specific IgG response correlated with a temporary release of cytokines such as IFNgamma, IL-2, IL-1beta, TNFalpha and GM-CSF which was measurable in the immune serum by xMAP Multiplex technology. Furthermore, tumor cell killing by activated natural killer cells was induced. These data demonstrate that immunization with a tumor-associated carbohydrate antigen in a highly immunogenic formulation results in a temporary release of type 1 cytokines which may be required for the induction of a specific IgG immune response against the carbohydrate antigen as well as for activation of effector cells against tumor cells.
Collapse
Affiliation(s)
- Ralf Kircheis
- Igeneon GmbH, Immunotherapy of Cancer, Brunnerstrasse 69/3, 1230 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ragupathi G, Koide F, Livingston PO, Cho YS, Endo A, Wan Q, Spassova MK, Keding SJ, Allen J, Ouerfelli O, Wilson RM, Danishefsky SJ. Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates. J Am Chem Soc 2006; 128:2715-25. [PMID: 16492059 DOI: 10.1021/ja057244+] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several novel, fully synthetic, carbohydrate-based antitumor vaccines have been assembled. Each construct consists of multiple cancer-related antigens displayed on a single polypeptide backbone. Recent advances in synthetic methodology have allowed for the incorporation of a complex oligosaccharide terminating in a sialic acid residue (i.e., GM2) as one of the carbohydrate antigens. Details of the vaccine synthesis as well as the results of preliminary immunological investigations are described herein.
Collapse
Affiliation(s)
- Govind Ragupathi
- Laboratory of Tumor Vaccinology, Clinical Immunology Service, Department of Medicine, the Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kircheis R, Vondru P, Zinöcker I, Häring D, Nechansky A, Loibner H, Mudde GC. Immunization of Rhesus monkeys with the conjugate vaccine IGN402 induces an IgG immune response against carbohydrate and protein antigens, and cancer cells. Vaccine 2006; 24:2349-57. [PMID: 16406172 DOI: 10.1016/j.vaccine.2005.11.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 11/15/2005] [Accepted: 11/24/2005] [Indexed: 11/25/2022]
Abstract
Tumor-associated antigens resulting from aberrant glycosylation, such as the SialylTn carbohydrate antigen, are over-expressed on cancer cells and provide potential targets for cancer vaccination. However, as T-cell-independent antigens carbohydrates are poorly immunogenic, and fail to induce memory. In order to increase the immunogenicity we have coupled the SialylTn carbohydrate antigen to a highly immunogenic carrier molecule, the murine monoclonal antibody mAb17-1A. An immunogenic formulation of the SialylTn-mAb17-1A conjugate on alhydrogel, IGN402, with or without additional adjuvants was tested in Rhesus monkeys for tolerability and immunogenicity. A significant antibody response against mAb17-1A antibody was found. Importantly, also a specific immune response against SialylTn carbohydrate and binding to tumor cells was induced. Immunization in the presence of additional adjuvants, such as QS-21, strongly enhanced the immune response against the carbohydrate antigen, and resulted in induction of SialylTn-specific IgG antibodies. Noteworthy, also an induced temporary release of cytokines including IFNgamma and IL-2, indicative for T-cell activation, was measured. The data indicate that carrier-induced T-cell help together with strong adjuvant is sufficient for carbohydrate specific class switch induction.
Collapse
Affiliation(s)
- Ralf Kircheis
- Igeneon AG, Immunotherapy of Cancer, Brunnerstrasse 69/3, A-1230 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
34
|
Jacques S, Rich JR, Ling CC, Bundle DR. Chemoenzymatic synthesis of GM3and GM2gangliosides containing a truncated ceramide functionalized for glycoconjugate synthesis and solid phase applications. Org Biomol Chem 2006; 4:142-54. [PMID: 16358009 DOI: 10.1039/b513595h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analogues of GM3 and GM2 gangliosides were chemoenzymatically synthesized on a multifunctional ceramide-type tether designed to facilitate diverse strategies for glycoconjugate synthesis. The truncated ceramide aglycon maintains the stereogenic centres of natural ceramide while avoiding extensive hydrophobicity that can hamper synthesis and purification of the glycolipids. Tetanus toxoid and BSA glycoconjugates of these two gangliosides were prepared for immunization of mice, and for solid phase assays to screen for ganglioside-specific antibodies. Inhibition experiments showed that antibodies generated by tetanus toxoid conjugates of GM3 and GM2 exhibited specificity for the carbohydrate epitope and the stereogenic centres of the ceramide.
Collapse
Affiliation(s)
- Sandra Jacques
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | |
Collapse
|
35
|
Livingston PO, Hood C, Krug LM, Warren N, Kris MG, Brezicka T, Ragupathi G. Selection of GM2, fucosyl GM1, globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy. Cancer Immunol Immunother 2005; 54:1018-25. [PMID: 15926079 PMCID: PMC11034315 DOI: 10.1007/s00262-005-0663-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
Glycolipids GM2, GD2, GD3, fucosyl GM1, sialyl Lewis a (sLe(a)) and globo H, and polysialic acid on embryonal NCAM, are cell-surface antigens expressed on small cell lung cancer (SCLC) biopsy specimens. They are all candidates for inclusion in a polyvalent, antibody-inducing vaccine or for adoptive therapy with monoclonal antibodies (mAbs) against SCLC. To identify the minimum optimal combination of target antigens on SCLC and to confirm that antibodies against this combination might be able to mediate complement activation and lysis in the majority of cases, we tested ten SCLC cell lines with fluorescence activated cell sorter (FACS) and complement dependent cytotoxicity (CDC) assays using mAbs against these seven target antigens individually or pooled in different combinations. We find that (1) none of these mAbs demonstrated strong FACS reactivity with more than 6 of the 10 cell lines, (2) no mAb had strong CDC reactivity with more than 4 of the cell lines, (3) when the mAbs were pooled, nine cell lines were strongly positive by FACS and nine cell lines were strongly positive by CDC, and (4) mAbs against GM2, FucGM1, globo H and polysialic acid was the minimum optimal combination for inducing FACS reactivity. The addition of mAbs against sLe(a), GD2 and GD3 had no additional impact by FACS and only minimal additional impact in CDC assays. H345, the only cell line that had less than 30% CDC with the four mAb pool was strongly positive by FACS. To understand the lack of correlation between FACS and CDC in the case of H345, the ten cell lines were screened for expression of complement resistance factors CD55 and CD59. Three cell lines were strongly positive for CD55 and eight were strongly positive for CD59. Overall, no correlation was seen between expression of either of these factors on the ten cell lines and sensitivity to CDC. In the case of H345 however, complement resistance of H345 is demonstrated to be mediated primarily by CD59, and in the presence of mAb against CD59, the four mAb MEM-43 pool induced strong (94%) CDC. CD59 inhibits membrane attack complex formation but not activation of earlier complement components. Consequently, all ten cell lines are good targets for complement activation by the four antibody pool and for elimination by effector mechanisms including complement mediated inflammation and opsonization. These findings support our plan to develop a tetravalent vaccine against SCLC targeting GM2, fucosyl GM1, globo H and polysialic acid.
Collapse
Affiliation(s)
- P O Livingston
- Department of Medicine, Clinical Immunology Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Spassova MK, Bornmann WG, Ragupathi G, Sukenick G, Livingston PO, Danishefsky SJ. Synthesis of Selected LeY and KH-1 Analogues: A Medicinal Chemistry Approach to Vaccine Optimization. J Org Chem 2005; 70:3383-95. [PMID: 15844973 DOI: 10.1021/jo048016l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] As part of our ongoing anticancer vaccine program, we recently found that antibodies generated in response to the KH-1-KLH construct recognized not only KH-1 antigen but also the Lewis Y (Le(y)) antigen as well, with antibody titer levels much higher than those observed after immunization with individual Le(y)-KLH vaccine constructs. In an attempt to explore the structure-antigenic relationship of these carbohydrate epitopes, several analogues of both KH-1 and Le(y) were synthesized. A convergent synthetic approach to the analogues was designed on the basis of well-established glycal methodology, employing a minimum number of building blocks to generate competent antigens with high stereoselectivity and reasonable yield.
Collapse
Affiliation(s)
- Maria K Spassova
- Organic Synthesis Core Facility, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Seibel J, Hillringhaus L, Moraru R. Microwave-assisted glycosylation for the synthesis of glycopeptides. Carbohydr Res 2005; 340:507-11. [PMID: 15680608 DOI: 10.1016/j.carres.2004.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 11/30/2004] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
An efficient one-step synthesis of O-linked glycosylamino acids is described. This methodology converts commercially available peracetylated mono- and disaccharides activated by cheap and environmentally safe FeCl(3) under microwave irradiation with Fmoc-Ser-OBn to the corresponding beta-glycosides in short reaction times and moderate yields.
Collapse
Affiliation(s)
- Jürgen Seibel
- Technical University of Braunschweig, Department for Carbohydrate Technology, Langer Kamp 5, D-38106 Braunschweig, Germany.
| | | | | |
Collapse
|
38
|
Abstract
The great majority of cancer patients can initially be rendered free of detectable disease by surgery and/or chemotherapy. Adjuvant chemotherapy or radiation therapy are generally only minimally beneficial, so there is real need for additional methods of eliminating residual circulating cancer cells and micrometastases. This is the ideal setting for treatment with a cancer vaccine. The immune response induced is critically dependent on the antigenic epitope and vaccine design. For antibody induction there is one best vaccine design, conjugation of the antigen to an immunogenic protein such as KLH and the use of a potent adjuvant such as the saponins QS-21 and GPI-0100. This approach alone induced strong antibody responses against the glycolipids GM2, fucosyl GM1 and globo H and the mucin backbone MUC1, and cancer cells expressing these antigens. Other antigens required additional modifications to augment relevant immunogenicity. GD2 and GD3 lactones and N-propionylated polysialic acid were significantly more effective at inducing antibodies against tumor cells than the unmodified antigens. Tn, sTn and TF trimers (clusters) were significantly more effective than the monomers at inducing antibodies reactive with the cancer cell surface. The optimal approach for Le(Y), KSA, PSMA, and CA125 (MUC16) remains to be determined. Antibodies are ideally suited for eradicating pathogens from the bloodstream and from early tissue invasion. Passively administered and vaccine induced antibodies have accomplished this, eliminating circulating tumor cells and systemic or intraperitoneal micrometastases in a variety of preclinical models, so antibody-inducing vaccines offer real promise in the adjuvant setting. Polyvalent vaccines will probably be required due to tumor cell heterogeneity, heterogeneity of the human immune response and the correlation between overall antibody titer against tumor cells and antibody effector mechanisms. Over the next several years, Phase II clinical trials designed to determine the clinical impact of polyvalent conjugate vaccines will be initiated in the adjuvant setting in patients with SCLC and several epithelial cancers.
Collapse
Affiliation(s)
- Govind Ragupathi
- Laboratory of Tumor Vaccinology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York City New York, USA
| | | | | |
Collapse
|
39
|
Roy R. New trends in carbohydrate-based vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:327-36. [PMID: 24981502 DOI: 10.1016/j.ddtec.2004.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Marcos NT, Pinho S, Grandela C, Cruz A, Samyn-Petit B, Harduin-Lepers A, Almeida R, Silva F, Morais V, Costa J, Kihlberg J, Clausen H, Reis CA. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res 2004; 64:7050-7. [PMID: 15466199 DOI: 10.1158/0008-5472.can-04-1921] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Sialyl-Tn antigen (Neu5Acalpha2-6GalNAc-O-Ser/Thr) is highly expressed in several human carcinomas and is associated with carcinoma aggressiveness and poor prognosis. We characterized two human sialyltransferases, CMP-Neu5Ac:GalNAc-R alpha2,6-sialyltransferase (ST6GalNAc)-I and ST6GalNAc-II, that are candidate enzymes for Sialyl-Tn synthases. We expressed soluble recombinant hST6GalNAc-I and hST6GalNAc-II and characterized the substrate specificity of both enzymes toward a panel of glycopeptides, glycoproteins, and other synthetic glycoconjugates. The recombinant ST6GalNAc-I and ST6GalNAc-II showed similar substrate specificity toward glycoproteins and GalNAcalpha-O-Ser/Thr glycopeptides, such as glycopeptides derived from the MUC2 mucin and the HIVgp120. We also observed that the amino acid sequence of the acceptor glycopeptide contributes to the in vitro substrate specificity of both enzymes. We additionally established a gastric cell line, MKN45, stably transfected with the full length of either ST6GalNAc-I or ST6GalNAc-II and evaluated the carbohydrate antigens expression profile induced by each enzyme. MKN45 transfected with ST6GalNAc-I showed high expression of Sialyl-Tn, whereas MKN45 transfected with ST6GalNAc-II showed the biosynthesis of the Sialyl-6T structure [Galbeta1-3 (Neu5Acalpha2-6)GalNAc-O-Ser/Thr]. In conclusion, although both enzymes show similar in vitro activities when Tn antigen alone is available, whenever both Tn and T antigens are present, ST6GalNAc-I acts preferentially on Tn antigen, whereas the ST6GalNAc-II acts preferentially on T antigen. Our results show that ST6GalNAc-I is the major Sialyl-Tn synthase and strongly support the hypothesis that the expression of the Sialyl-Tn antigen in cancer cells is due to ST6GalNAc-I activity.
Collapse
Affiliation(s)
- Nuno T Marcos
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Keding SJ, Danishefsky SJ. Prospects for total synthesis: a vision for a totally synthetic vaccine targeting epithelial tumors. Proc Natl Acad Sci U S A 2004; 101:11937-42. [PMID: 15280546 PMCID: PMC514412 DOI: 10.1073/pnas.0401894101] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccines derived from totally synthetic carbohydrate antigens have been shown to elicit an immune response in both preclinical and clinical settings. The vaccines have been proven safe when administered in human clinical trials and are also competent at inducing antibodies that react with aberrant cells expressing the corresponding carbohydrate antigen. The most well studied vaccines have hitherto focused on single carbohydrate antigens, notwithstanding the known heterogeneity of transformed cells. Advances in synthetic organic chemistry have enabled the preparation and subsequent investigation of vaccines that contain several different tumor-associated carbohydrate antigens in a single molecule. These unimolecular constructs could, in principle, serve as superior mimics of cell surface antigens and hence, as multifaceted cancer vaccines. We report here the synthesis of a pentameric vaccine targeting a specific cancer. The new vaccine contains prostate tumor-associated antigens, Tn, TF, STn, Lewis(y), and Globo-H. To reach our goal, antigen-containing amino acid monomers were assembled in a linear fashion to form a glycopeptide containing the five distinct carbohydrate antigen units. The attachment of a linker to the glycopeptide followed by an extraordinary global deprotection and subsequent conjugation to two different immunogenic carriers, keyhole limpet hemocyanin and N-alpha-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, resulted in the vaccine constructs. The results described herein indicate that complex unimolecular multivalent vaccines can be efficiently produced in the laboratory. These fully synthetic vaccines have the potential to stimulate a multifaceted immune response against prostate cancer.
Collapse
Affiliation(s)
- Stacy J Keding
- Laboratory for Bioorganic Chemistry, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
42
|
Abstract
Inactivated vaccines require adjuvants to stimulate an immune response. The choice of adjuvant or immune enhancer determines whether the immune response is effective, ineffective or damaging. Accordingly, there is a need for new adjuvants that stimulate the appropriate immunity, for example, T cell immunity for intracellular pathogens and cancer vaccines. In several adjuvants, the identification of chemical groups that interact with specific cell toll-like receptors (innate immunity) or receptors for co-stimulatory ligands (adaptive immunity), has enabled the establishment of structure-function relationships that are useful in the design of new adjuvants. Because of the crucial immunomodulating role of adjuvants, sub-unit vaccine development will remain dependent on new adjuvants.
Collapse
Affiliation(s)
- Dante J Marciani
- Galenica Pharmaceuticals, Inc., 2800 Milan Court, Suite 118, Birmingham, Alabama 35211, USA.
| |
Collapse
|