1
|
Accogli T, Bruchard M, Végran F. Modulation of CD4 T Cell Response According to Tumor Cytokine Microenvironment. Cancers (Basel) 2021; 13:cancers13030373. [PMID: 33498483 PMCID: PMC7864169 DOI: 10.3390/cancers13030373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The advancement of knowledge on tumor biology over the past decades has demonstrated a close link between tumor cells and cells of the immune system. In this context, cytokines have a major role because they act as intermediaries in the communication into the tumor bed. Cytokines play an important role in the homeostasis of innate and adaptive immunity. In particular, they participate in the differentiation of CD4 T lymphocytes. These cells play essential functions in the anti-tumor immune response but can also be corrupted by tumors. The differentiation of naïve CD4 T cells depends on the cytokine environment in which they are activated. Additionally, at the tumor site, their activity can also be modulated according to the cytokines of the tumor microenvironment. Thus, polarized CD4 T lymphocytes can see their phenotype evolve, demonstrating functional plasticity. Knowledge of the impact of these cytokines on the functions of CD4 T cells is currently a source of innovation, for therapeutic purposes. In this review, we discuss the impact of the major cytokines present in tumors on CD4 T cells. In addition, we summarize the main therapeutic strategies that can modulate the CD4 response through their impact on cytokine production.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, 21000 Dijon, France; (T.A.); (M.B.)
- Team “CAdIR”, CRI INSERM UMR1231 “Lipids, Nutrition and Cancer”, Dijon 21000, France
- LipSTIC LabEx, 21000 Dijon, France
| | - Mélanie Bruchard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, 21000 Dijon, France; (T.A.); (M.B.)
- Team “CAdIR”, CRI INSERM UMR1231 “Lipids, Nutrition and Cancer”, Dijon 21000, France
- LipSTIC LabEx, 21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
| | - Frédérique Végran
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, 21000 Dijon, France; (T.A.); (M.B.)
- Team “CAdIR”, CRI INSERM UMR1231 “Lipids, Nutrition and Cancer”, Dijon 21000, France
- LipSTIC LabEx, 21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
2
|
Goracci M, Pignochino Y, Marchiò S. Phage Display-Based Nanotechnology Applications in Cancer Immunotherapy. Molecules 2020; 25:E843. [PMID: 32075083 PMCID: PMC7071019 DOI: 10.3390/molecules25040843] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Phage display is a nanotechnology with limitless potential, first developed in 1985 and still awaiting to reach its peak. Awarded in 2018 with the Nobel Prize for Chemistry, the method allows the isolation of high-affinity ligands for diverse substrates, ranging from recombinant proteins to cells, organs, even whole organisms. Personalized therapeutic approaches, particularly in oncology, depend on the identification of new, unique, and functional targets that phage display, through its various declinations, can certainly provide. A fast-evolving branch in cancer research, immunotherapy is now experiencing a second youth after being overlooked for years; indeed, many reports support the concept of immunotherapy as the only non-surgical cure for cancer, at least in some settings. In this review, we describe literature reports on the application of peptide phage display to cancer immunotherapy. In particular, we discuss three main outcomes of this procedure: (i) phage display-derived peptides that mimic cancer antigens (mimotopes) and (ii) antigen-carrying phage particles, both as prophylactic and/or therapeutic vaccines, and (iii) phage display-derived peptides as small-molecule effectors of immune cell functions. Preclinical studies demonstrate the efficacy and vast potential of these nanosized tools, and their clinical application is on the way.
Collapse
Affiliation(s)
- Martina Goracci
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy
| | | | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy
| |
Collapse
|
3
|
Voeller J, Erbe AK, Slowinski J, Rasmussen K, Carlson PM, Hoefges A, VandenHeuvel S, Stuckwisch A, Wang X, Gillies SD, Patel RB, Farrel A, Rokita JL, Maris J, Hank JA, Morris ZS, Rakhmilevich AL, Sondel PM. Combined innate and adaptive immunotherapy overcomes resistance of immunologically cold syngeneic murine neuroblastoma to checkpoint inhibition. J Immunother Cancer 2019; 7:344. [PMID: 31810498 PMCID: PMC6898936 DOI: 10.1186/s40425-019-0823-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Unlike some adult cancers, most pediatric cancers are considered immunologically cold and generally less responsive to immunotherapy. While immunotherapy has already been incorporated into standard of care treatment for pediatric patients with high-risk neuroblastoma, overall survival remains poor. In a mouse melanoma model, we found that radiation and tumor-specific immunocytokine generate an in situ vaccination response in syngeneic mice bearing large tumors. Here, we tested whether a novel immunotherapeutic approach utilizing radiation and immunocytokine together with innate immune stimulation could generate a potent antitumor response with immunologic memory against syngeneic murine neuroblastoma. METHODS Mice bearing disialoganglioside (GD2)-expressing neuroblastoma tumors (either NXS2 or 9464D-GD2) were treated with radiation and immunotherapy (including anti-GD2 immunocytokine with or without anti-CTLA-4, CpG and anti-CD40 monoclonal antibody). Tumor growth, animal survival and immune cell infiltrate were analyzed in the tumor microenvironment in response to various treatment regimens. RESULTS NXS2 had a moderate tumor mutation burden (TMB) while N-MYC driven 9464D-GD2 had a low TMB, therefore the latter served as a better model for high-risk neuroblastoma (an immunologically cold tumor). Radiation and immunocytokine induced a potent in situ vaccination response against NXS2 tumors, but not in the 9464D-GD2 tumor model. Addition of checkpoint blockade with anti-CTLA-4 was not effective alone against 9464D-GD2 tumors; inclusion of CpG and anti-CD40 achieved a potent antitumor response with decreased T regulatory cells within the tumors and induction of immunologic memory. CONCLUSIONS These data suggest that a combined innate and adaptive immunotherapeutic approach can be effective against immunologically cold syngeneic murine neuroblastoma. Further testing is needed to determine how these concepts might translate into development of more effective immunotherapeutic approaches for the treatment of clinically high-risk neuroblastoma.
Collapse
Affiliation(s)
- Julie Voeller
- Department of Pediatrics, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Jacob Slowinski
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Kayla Rasmussen
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Peter M Carlson
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Anna Hoefges
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Sabrina VandenHeuvel
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Ashley Stuckwisch
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Xing Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | | | - Ravi B Patel
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Alvin Farrel
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - John Maris
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Paul M Sondel
- Department of Pediatrics, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| |
Collapse
|
4
|
IL-15/IL-15Rα/CD80-expressing AML cell vaccines eradicate minimal residual disease in leukemic mice. Blood Adv 2019; 2:3177-3192. [PMID: 30482760 DOI: 10.1182/bloodadvances.2018019026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022] Open
Abstract
Engineered autologous acute myeloid leukemia (AML) cells present multiple leukemia-associated and patient-specific antigens and as such hold promise as immunotherapeutic vaccines. However, prior vaccines have not reliably induced effective antileukemic immunity, in part because AML blasts have immune inhibitory effects and lack expression of the critical costimulatory molecule CD80. To enhance induction of leukemia-specific cytolytic activity, 32Dp210 murine AML cells were engineered to express either CD80 alone, or the immunostimulatory cytokine interleukin-15 (IL-15) with its receptor α (IL-15Rα), or heterodimeric IL-15/IL-15Rα together with CD80 and tested as irradiated cell vaccines. IL-15 is a γc-chain cytokine, with unique properties suited to stimulating antitumor immunity, including stimulation of both natural killer and CD8+ memory T cells. Coexpression of IL-15 and IL-15Rα markedly increases IL-15 stability and secretion. Non-tumor-bearing mice vaccinated with irradiated 32Dp210-IL-15/IL-15Rα/CD80 and challenged with 32Dp210 leukemia had greater survival than did mice treated with 32Dp210-CD80 or 32Dp210-IL-15/IL-15Rα vaccines, whereas no unvaccinated mice inoculated with leukemia survived. In mice with established leukemia, treatment with 32Dp210-IL-15/IL-15Rα/CD80 vaccination stimulated unprecedented antileukemic immunity enabling 80% survival, an effect that was abrogated by anti-CD8 antibody-mediated depletion in vivo. Because, clinically, AML vaccines are administered as postremission therapy, we established a novel model in which mice with high leukemic burdens were treated with cytotoxic therapy to induce remission (<5% marrow blasts). Postremission vaccination with 32Dp210-IL-15/IL-15Rα/CD80 achieved 50% overall survival in these mice, whereas all unvaccinated mice achieving remission subsequently relapsed. These studies demonstrate that combined expression of IL-15/IL-15Rα and CD80 by syngeneic AML vaccines stimulates effective and long-lasting antileukemic immunity.
Collapse
|
5
|
Croce M, Corrias MV, Rigo V, Ferrini S. New immunotherapeutic strategies for the treatment of neuroblastoma. Immunotherapy 2016; 7:285-300. [PMID: 25804480 DOI: 10.2217/imt.14.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The prognosis of high-risk neuroblastoma (NB) is still poor, in spite of aggressive multimodal treatment. Recently, adjuvant immunotherapy with anti-GD2 antibodies combined with IL-2 or GM-CSF has been shown to improve survival. Several other immunotherapy strategies proved efficacy in preclinical models of NB, including different types of vaccines, adoptive cell therapies and combined approaches. The remarkable differences in the immunobiology of syngeneic models and human NB may, at least in part, limit the translation of preclinical therapies to a clinical setting. Nonetheless, several preliminary evidences suggest that new antibodies, cancer vaccines and adoptive transfer of lymphocytes, genetically engineered to acquire NB specificity, may result in clinical benefit, and clinical studies are currently ongoing.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS-A.O.U. San-Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Biotherapy Unit c/o CBA Torre C2, Largo R. Benzi 10, 16132 Genoa, Italy
| | | | | | | |
Collapse
|
6
|
IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015:696578. [PMID: 25961061 PMCID: PMC4413888 DOI: 10.1155/2015/696578] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022] Open
Abstract
Interleukin- (IL-) 21 is a pleiotropic cytokine that regulates the activity of both innate and specific immunity. Indeed, it costimulates T and natural killer (NK) cell proliferation and function and regulates B cell survival and differentiation and the function of dendritic cells. In addition, IL-21 exerts divergent effects on different lymphoid cell leukemia and lymphomas, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the neoplastic lymphoid cells. Several preclinical studies showed that IL-21 has antitumor activity in different tumor models, through mechanism involving the activation of NK and T or B cell responses. Moreover, IL-21's antitumor activity can be potentiated by its combination with other immune-enhancing molecules, monoclonal antibodies recognizing tumor antigens, chemotherapy, or molecular targeted agents. Clinical phase I-II studies of IL-21 in cancer patients showed immune stimulatory properties, acceptable toxicity profile, and antitumor effects in a fraction of patients. In view of its tolerability, IL-21 is also suitable for combinational therapeutic regimens with other agents. This review will summarize the biological functions of IL-21, and address its role in lymphoid malignancies and preclinical and clinical studies of cancer immunotherapy.
Collapse
|
7
|
Van den Bergh JMJ, Van Tendeloo VFI, Smits ELJM. Interleukin-15: new kid on the block for antitumor combination therapy. Cytokine Growth Factor Rev 2014; 26:15-24. [PMID: 25306466 DOI: 10.1016/j.cytogfr.2014.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022]
Abstract
Interleukin (IL)-15 is one of the most promising molecules to be used in antitumor immune therapy, as it is able to stimulate the main killer cells of both the innate and adaptive immune system. Although this cytokine can be used as a stand-alone immunotherapeutic agent, IL-15 will probably be most efficient in combination with other strategies to overcome high tumor burden, immune suppression of the tumor microenvironment and/or the short half-life of IL-15. In this review, we will discuss the combination strategies with IL-15 that have been tested to date in different animal tumor models, which include chemotherapy, other immunostimulatory cytokines, targeted therapy, adoptive cell transfer and gene therapy. In addition, we give an overview of IL-15 combination therapies that are currently tested in clinical studies to treat patients with hematological or advanced solid tumors.
Collapse
Affiliation(s)
- Johan M J Van den Bergh
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F I Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evelien L J M Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research Antwerp, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
8
|
Rigo V, Corrias MV, Orengo AM, Brizzolara A, Emionite L, Fenoglio D, Filaci G, Croce M, Ferrini S. Recombinant IL-21 and anti-CD4 antibodies cooperate in syngeneic neuroblastoma immunotherapy and mediate long-lasting immunity. Cancer Immunol Immunother 2014; 63:501-11. [PMID: 24647609 PMCID: PMC11028713 DOI: 10.1007/s00262-014-1536-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 03/09/2014] [Indexed: 11/28/2022]
Abstract
IL-21 is an immune-enhancing cytokine, which showed promising results in cancer immunotherapy. We previously observed that the administration of anti-CD4 cell-depleting antibody strongly enhanced the anti-tumor effects of an IL-21-engineered neuroblastoma (NB) cell vaccine. Here, we studied the therapeutic effects of a combination of recombinant (r) IL-21 and anti-CD4 monoclonal antibodies (mAb) in a syngeneic model of disseminated NB. Subcutaneous rIL-21 therapy at 0.5 or 1 μg/dose (at days 2, 6, 9, 13 and 15 after NB induction) had a limited effect on NB development. However, coadministration of rIL-21 at the two dose levels and a cell-depleting anti-CD4 mAb cured 28 and 70 % of mice, respectively. Combined immunotherapy was also effective if started 7 days after NB implant, resulting in a 30 % cure rate. Anti-CD4 antibody treatment efficiently depleted CD4(+) CD25(high) Treg cells, but alone had limited impact on NB. Combination immunotherapy by anti-CD4 mAb and rIL-21 induced a CD8(+) cytotoxic T lymphocyte response, which resulted in tumor eradication and long-lasting immunity. CD4(+) T cells, which re-populated mice after combination immunotherapy, were required for immunity to NB antigens as indicated by CD4(+) T cell depletion and re-challenge experiments. In conclusion, these data support a role for regulatory CD4(+) T cells in a syngeneic NB model and suggest that rIL-21 combined with CD4(+) T cell depletion reprograms CD4(+) T cells from immune regulatory to anti-tumor functions. These observations open new perspectives for the use of IL-21-based immunotherapy in conjunction with transient CD4(+) T cell depletion, in human metastatic NB.
Collapse
Affiliation(s)
- Valentina Rigo
- IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo R. Benzi 10, 16132 Genoa, Italy
- CEBR Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
| | | | - Anna Maria Orengo
- IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Antonella Brizzolara
- IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Laura Emionite
- IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Daniela Fenoglio
- IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo R. Benzi 10, 16132 Genoa, Italy
- CEBR Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV n. 6, 16132 Genoa, Italy
| | - Gilberto Filaci
- IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo R. Benzi 10, 16132 Genoa, Italy
- CEBR Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV n. 7, 16132 Genoa, Italy
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV n. 6, 16132 Genoa, Italy
| | - Michela Croce
- IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Silvano Ferrini
- IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo R. Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
9
|
Tumor-associated antigen/IL-21-transduced dendritic cell vaccines enhance immunity and inhibit immunosuppressive cells in metastatic melanoma. Gene Ther 2014; 21:457-67. [PMID: 24572790 DOI: 10.1038/gt.2014.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/09/2013] [Accepted: 01/10/2014] [Indexed: 12/22/2022]
Abstract
Dendritic cell (DC)-based vaccine approaches are being actively evaluated for developing immunotherapeutic agents against cancers. In this study, we investigated the use of engineered DCs expressing transgenic tumor-associated antigen hgp100 and the regulatory cytokine interleukin-21, namely DC-hgp100/mIL-21, as a therapeutic vaccine against melanoma. Tumor-bearing mice were injected intratumorally with transgenic DCs followed by three booster injections. Transgenic DC-hgp100/mIL-21 showed significant reduction in primary tumor growth and metastasis compared with DC-hgp100 alone and DC-mIL-21 alone. In vivo depletion of specific immune cell types (CD8(+) T, CD4(+) T and Natural killer (NK)-1.1(+) cells) effectively blocked the protective effect of this combinational vaccine. In adoptive transfer experiments, a survival rate of nearly 90% was observed at 60 days post-tumor inoculation for the combinational vaccine group. In contrast, all mice in the DC-hgp100 and DC-mIL-21-only groups died within 43-46 days after tumor challenge. Considerably increased levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, granulocyte macrophage colony-stimulating factor (GM-CSF) and cytotoxic T lymphocytes (CTLs) were detected with the combination vaccine group compared with other individual treatment groups. In comparison with the DC-hgp100 or mIL-21 groups, the combinational DC-hgp100/mIL-21 vaccine also drastically suppressed the myeloid-derived suppressor cells (MDSCs) and T-regulatory (Treg) cell populations. Our findings suggest that a combinational DC- and gene-based hgp100 and mIL-21 vaccine therapy strategy warrants further evaluation as a clinically relevant cancer vaccine approach for human melanoma patients.
Collapse
|
10
|
Horwacik I, Durbas M, Boratyn E, Węgrzyn P, Rokita H. Targeting GD2 ganglioside and aurora A kinase as a dual strategy leading to cell death in cultures of human neuroblastoma cells. Cancer Lett 2013; 341:248-64. [PMID: 23962557 DOI: 10.1016/j.canlet.2013.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022]
Abstract
The mechanism of the inhibitory effect of anti-GD2 ganglioside (GD2) 14G2a mouse monoclonal antibody (mAb) on human neuroblastoma cells survival was studied in vitro. It was recently shown in IMR-32 cells that death induced by this antibody exhibited several characteristics typical of apoptosis. In this study we used cytotoxixity assays, qRT-PCR and immunoblotting to evaluate the response of several human neuroblastoma cell lines to the anti-GD2 14G2a mAb. We showed that the mAb decreases all three aurora kinases expression and phosphorylation in IMR-32 and LA-N-1 cells. Most importantly, we show, that MK-5108 specific aurora A kinase inhibitor decreases neuroblastoma cell survival, and when used in combination with the mAb, significantly potentiates cytotoxicity against IMR-32, CHP-134, and LA-N-5 neuroblastoma cells in vitro. It was shown that downregulation of aurora A kinase by the therapeutic antibody is associated with decreased levels of MYCN protein in cytoplasm, and induced expression of PHLDA1 and P53 proteins.
Collapse
Affiliation(s)
- Irena Horwacik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7, Gronostajowa St., 30-387 Kraków, Poland
| | | | | | | | | |
Collapse
|
11
|
Santilli G, Anderson J, Thrasher AJ, Sala A. Catechins and antitumor immunity: Not MDSC's cup of tea. Oncoimmunology 2013; 2:e24443. [PMID: 23894704 PMCID: PMC3716739 DOI: 10.4161/onci.24443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
Numerous laboratory and clinical studies have reported that the green tea catechin extract Polyphenon E exert anticancer activity, but the underlying mechanism of action was elusive. We have recently shown that Polyphenon E exerts antineoplastic effects by antagonizing tumor-induced myeloid derived suppressor cells (MDSCs).
Collapse
Affiliation(s)
- Giorgia Santilli
- Molecular Immunology Unit; UCL Institute of Child Health; London, UK
| | | | | | | |
Collapse
|
12
|
Santilli G, Piotrowska I, Cantilena S, Chayka O, D'Alicarnasso M, Morgenstern DA, Himoudi N, Pearson K, Anderson J, Thrasher AJ, Sala A. Polyphenon [corrected] E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin Cancer Res 2013; 19:1116-25. [PMID: 23322899 DOI: 10.1158/1078-0432.ccr-12-2528] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Neuroblastoma is a rare childhood cancer whose high risk, metastatic form has a dismal outcome in spite of aggressive therapeutic interventions. The toxicity of drug treatments is a major problem in this pediatric setting. In this study, we investigated whether Polyphenon E, a clinical grade mixture of green tea catechins under evaluation in multiple clinical cancer trials run by the National Cancer Institute (Bethesda, MD), has anticancer activity in mouse models of neuroblastoma. EXPERIMENTAL DESIGN We used three neuroblastoma models: (i) transgenic TH-MYCN mouse developing spontaneous neuroblastomas; (ii) nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice xenotransplanted with human SHSY5Y cells; and (iii) A/J mice transplanted with syngeneic Neuro 2A cells. Mice were randomized in control and Polyphenon E-drinking groups. Blood from patients with neuroblastoma and normal controls was used to assess the phenotype and function of myeloid cells. RESULTS Polyphenon E reduced the number of tumor-infiltrating myeloid cells, and inhibited the development of spontaneous neuroblastomas in TH-MYCN transgenic mice. In therapeutic models of neuroblastoma in A/J, but not in immunodeficient NOD/SCID mice, Polyphenon E inhibited tumor growth by acting on myeloid-derived suppressor cells (MDSC) and CD8 T cells. In vitro, Polyphenon E impaired the development and motility of MDSCs and promoted differentiation to more neutrophilic forms through the 67 kDa laminin receptor signaling and induction of granulocyte colony-stimulating factor. The proliferation of T cells infiltrating a patient metastasis was reactivated by Polyphenon E. CONCLUSIONS These findings suggest that the neuroblastoma-promoting activity of MDSCs can be manipulated pharmacologically in vivo and that green tea catechins operate, at least in part, through this mechanism.
Collapse
Affiliation(s)
- Giorgia Santilli
- Molecular Immunology Unit, UCL Institute of Child Health, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Castel V, Segura V, Cañete A. Treatment of high-risk neuroblastoma with anti-GD2 antibodies. Clin Transl Oncol 2012; 12:788-93. [DOI: 10.1007/s12094-010-0600-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Jensen-Jarolim E, Singer J. Cancer vaccines inducing antibody production: more pros than cons. Expert Rev Vaccines 2012; 10:1281-9. [PMID: 21919618 DOI: 10.1586/erv.11.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To date, passive immunotherapy with monoclonal antibodies is a well-established option in clinical oncology. By contrast, anticancer vaccines are less advanced, with the exception of successfully applied prophylactic vaccines against oncogenic virus infections. The creation of therapeutic vaccines is still a great challenge mostly due to the self-nature of tumor antigens. Therapeutic vaccines may be based on patient-specific material including pulsed effector cells, or tumor-associated antigens and derivatives thereof, such as peptides, mimotopes and nucleic acids. The latter represents a more universal approach, which would set an ideal economic framework resulting in broad patient access. In this article we focus on cancer vaccines for antibody production, in particular mimotope vaccines. The collected evidence suggests that they will open up new treatment options in minimal residual disease and early stage disease.
Collapse
Affiliation(s)
- Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | |
Collapse
|
15
|
Kim SK, Wu X, Ragupathi G, Gathuru J, Koide F, Cheung NK, Panageas K, Livingston PO. Impact of minimal tumor burden on antibody response to vaccination. Cancer Immunol Immunother 2011; 60:621-7. [PMID: 21267719 PMCID: PMC3734789 DOI: 10.1007/s00262-011-0975-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Four randomized phase III trials conducted recently in melanoma patients in the adjuvant setting have been based in part on the correlation between antibody responses in immunized patients and improved survival. Each of these randomized trials demonstrated no clinical benefit, although again there was a significant correlation between antibody response after vaccination and disease free and overall survival. To better understand this paradox, we established a surgical adjuvant model targeting GD2 ganglioside on EL4 lymphoma cells injected into the foot pad followed by amputation at variable intervals. Our findings are (1) comparable strong therapeutic benefit resulted from treatment of mice after amputation with a GD2-KLH conjugate vaccine or with anti-GD2 monoclonal antibody 3F8. (2) The strongest correlation was between antibody induction in response to vaccination and prolonged survival. (3) Antibody titers in response to vaccination in tumor challenged mice as compared to unchallenged mice were far lower despite the absence of detectable recurrences at the time. (4) The half life of administered 3F8 monoclonal antibody (but not control antibody) in challenged mice administered was significantly shorter than the half life of 3F8 antibody in unchallenged controls. The correlation between vaccine-induced antibody titers and prolonged survival may reflect, at least in part, increased tumor burden in antibody-negative mice. Absorption of vaccine-induced antibodies by increased, although not detected tumor burden may also explain the correlation between vaccine-induced antibody titers and survival in the adjuvant clinical trials described above.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Murine-Derived
- Antibodies, Neoplasm/biosynthesis
- Antibody-Dependent Cell Cytotoxicity
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor
- Disease-Free Survival
- Enzyme-Linked Immunosorbent Assay
- Gangliosides/immunology
- Hemocyanins/immunology
- Immunoglobulin G/immunology
- Immunoglobulin G/therapeutic use
- Lymphoma/immunology
- Lymphoma/pathology
- Lymphoma/therapy
- Mice
- Mice, Inbred C57BL
- Tumor Burden
- Vaccination
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/therapeutic use
Collapse
Affiliation(s)
| | - Xiaohong Wu
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Govind Ragupathi
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Katherine Panageas
- Department of Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Philip O. Livingston
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
16
|
DNA vaccination: using the patient's immune system to overcome cancer. Clin Dev Immunol 2010; 2010:169484. [PMID: 21197271 PMCID: PMC3010826 DOI: 10.1155/2010/169484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/08/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022]
Abstract
Cancer is one of the most challenging diseases of today. Optimization of standard treatment protocols consisting of the main columns of chemo- and radiotherapy followed or preceded by surgical intervention is often limited by toxic side effects and induction of concomitant malignancies and/or development of resistant mechanisms. This requires the development of therapeutic strategies which are as effective as standard therapies but permit the patients a life without severe negative side effects. Along this line, the development of immunotherapy in general and the innovative concept of DNA vaccination in particular may provide a venue to achieve this goal. Using the patient's own immune system by activation of humoral and cellular immune responses to target the cancer cells has shown first promising results in clinical trials and may allow reduced toxicity standard therapy regimen in the future. The main challenge of this concept is to transfer the plethora of convincing preclinical and early clinical results to an effective treatment of patients.
Collapse
|
17
|
Abstract
The GD2 ganglioside, displayed by five carbohydrate Neu5Acalpha2-8Neu5Acalpha2-3(GalNAcbeta1-4)Galbeta1-4Glcbeta residues attached to a ceramide chain that anchors the ganglioside in the cell membrane, is expressed on neuroectodermally derived tumors. GD2 has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have generated 47-LDA mimotope of GD2 by screening a phage display peptide library with anti-GD2 mAb 14G2a and reported that vaccination with the 47-LDA mimotope elicited GD2 cross-reactive IgG antibody responses as well as MHC class I-restricted CD8(+) T cells to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated antigen cross-reacting with 47-LDA. Immunoblotting studies using 14G2a mAb demonstrated that this antibody cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional (3D) collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by 105 kDa activated leukocyte cell adhesion molecules (ALCAM/CD166). The CD166 glycoprotein was shown to be recognized by 14G2a antibody, and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166 and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate antigens.
Collapse
|
18
|
Gil M, Bieniasz M, Wierzbicki A, Bambach BJ, Rokita H, Kozbor D. Targeting a mimotope vaccine to activating Fcgamma receptors empowers dendritic cells to prime specific CD8+ T cell responses in tumor-bearing mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:6808-18. [PMID: 19846865 DOI: 10.4049/jimmunol.0900364] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A major challenge for inducing antitumor immune responses with native or modified tumor/self-Ags in tumor-bearing hosts relates to achieving efficient uptake and processing by dendritic cells (DCs) to activate immune effector cells and limit the generation of regulatory T cell activity. We analyzed the ability of therapeutic DC vaccines expressing a CD166 cross-reactive mimotope of the GD2 ganglioside, 47-LDA, to selectively expand adoptively transferred, tumor-specific T cells in NXS2 neuroblastoma tumor-bearing syngeneic mice. Before the adoptive cell transfer and DC vaccination, the tumor-bearing mice were lymphodepleted by nonmyeloablative total body irradiation or a myeloablative regimen that required bone marrow transplantation. The 47-LDA mimotope was presented to DCs either as a linear polypeptide in conjunction with universal Th epitopes or as a fusion protein with the murine IgG2a Fc fragment (47-LDA-Fcgamma2a) to deliver the antigenic cassette to the activating Fcgamma receptors. We demonstrate that immunization of adoptively transferred T cells in tumor-bearing mice with the 47-LDA mimotope expressed in the context of the activating Fc fusion protein induced higher levels of antitumor immune responses and protection than the 47-LDA polypeptide-DC vaccine. The antitumor efficacy of the therapeutic 47-LDA-Fcgamma2a-DC vaccine was comparable to that achieved by a virotherapy-associated cancer vaccine using a recombinant oncolytic vaccinia virus expressing the 47-LDA-Fcgamma2a fusion protein. The latter treatment, however, did not require total body irradiation or adoptive cell transfer and resulted in induction of antitumor immune responses in the setting of established tolerance, paving the way for testing novel anticancer treatment strategies.
Collapse
Affiliation(s)
- Margaret Gil
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Neuroblastoma is the third most common pediatric cancer in the United States and is responsible for 15% of pediatric cancer-related deaths. Despite major advances in multimodal therapy, the clinical outcome for several patients remains poor. Due to the desperate need for innovativation and improved success in the treatment and management of neuroblastoma, research interests in immunotherapy have been on the rise in recent years. Current immunotherapeutic approaches under investigation include antibodies targeting the neuroblastoma antigen GD2, cytokine stimulation of immune cells, use of immunocytokine conjugates, radioimmunotherapy, and tumor-primed dendritic cells. Immunotherapy could serve as a safe alternative or adjunct to current therapeutic protocols and would presumptively have fewer deleterious effects making it more favorable to patients.
Collapse
Affiliation(s)
- Latania Y Booker
- Department of Surgery The University of Texas Medical Branch Galveston, TX 77555
| | | | | | | |
Collapse
|
20
|
Kowalczyk A, Gil M, Horwacik I, Odrowaz Z, Kozbor D, Rokita H. The GD2-specific 14G2a monoclonal antibody induces apoptosis and enhances cytotoxicity of chemotherapeutic drugs in IMR-32 human neuroblastoma cells. Cancer Lett 2009; 281:171-82. [PMID: 19339105 DOI: 10.1016/j.canlet.2009.02.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/18/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. The majority of children suffers from high risk neuroblastoma and has disseminated disease at the time of diagnosis. Despite recent advances in chemotherapy, the prognoses for children with high risk NB remain poor. Therefore, new treatment modalities are urgently needed. GD2 ganglioside is an antigen that is highly expressed on NB cells with only limited distribution on healthy tissues. Consequently, it appears to be an ideal target for both active and passive immunotherapy. The immunological effector mechanisms mediated by anti-GD2 monoclonal antibodies (mAbs) have been already well characterized. However, a growing number of reports suggest that GD2-specific antibodies may exhibit anti-proliferative effects without the immune system involvement. Here, we have shown that anti-GD2 14G2a mAb is capable of decreasing survival of IMR-32 human neuroblastoma cells in a dose-dependent manner. Death induced by this antibody exhibited several characteristics typical for apoptosis such as increased number of Annexin V- and propidium iodide-positive cells, cleavage of caspase 3 and prominent rise in caspase activity. The use of a pan caspase inhibitor Z-VAD-fmk suggested that the killing potential of this mAb is partially caspase-dependent. 14G2a mAb was rapidly endocytosed upon antigen binding. Employment of chloroquine, an inhibitor of lysosomal degradation, did not rescue IMR-32 cells from antibody-induced cell death suggesting lack of ceramide involvement in the observed effect. Most importantly, our studies showed that at particular drug concentrations 14G2a mAb exerts a synergistic effect with doxorubicin and topotecan, as well as an additive effect with carboplatin in killing IMR-32 cells in vitro. Our results provide guidance regarding how to best combine GD2-specific 14G2a antibody with existing cancer therapeutic agents to improve available treatment modalities for neuroblastoma.
Collapse
|
21
|
Wierzbicki A, Gil M, Ciesielski M, Fenstermaker RA, Kaneko Y, Rokita H, Lau JT, Kozbor D. Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:6644-53. [PMID: 18941255 DOI: 10.4049/jimmunol.181.9.6644] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The GD2 ganglioside expressed on neuroectodermal tumor cells has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have reported that immunization of mice with a 47-LDA mimotope of GD2, isolated from a phage display peptide library with anti-GD2 mAb 14G2a, induces MHC class I-restricted CD8(+) T cell responses to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated Ag cross-reacting with 47-LDA. Glycan microarray and immunoblotting studies using 14G2a mAb demonstrated that this Ab is highly specific for the entire carbohydrate motif of GD2 but also cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by the 105 kDa-activated leukocyte cell adhesion molecule (ALCAM/CD166). A recombinant CD166 glycoprotein was shown to be recognized by 14G2a Ab and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. The binding of 14G2a to CD166 was not disruptable by a variety of exo- and endo-glycosidases, implying recognition of a non-glycan epitope on CD166. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166, and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate Ags.
Collapse
Affiliation(s)
- Andrzej Wierzbicki
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao L, Liu Z, Fan D. Overview of mimotopes and related strategies in tumor vaccine development. Expert Rev Vaccines 2009; 7:1547-55. [PMID: 19053210 DOI: 10.1586/14760584.7.10.1547] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor vaccine has been studied extensively as an alternative or adjuvant therapy in the treatment of malignant tumors in the hope of prolonging the overall survival rates of cancer patients. The efficacy largely relies on the specificity of the target. In the last decade, many antibody epitopes, called mimotopes, have been revealed as candidates through phage-display technology. These mimotopes do not necessarily consist of amino acid sequences that are identical to the native antigen but they do mimic their structure. Tumor vaccines based on these mimotopes have been proposed as an important developing strategy. Some peptide mimotopes have produced encouraging clinical outcomes. Although most studies are still in the preclinical phase, these findings will possibly pave the way for the development of novel mimotope-based tumor vaccines.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Cancer Biology, Institute of Digestive Disease, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | | | | |
Collapse
|
23
|
Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O'Shea MA, Fauci AS. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. THE JOURNAL OF IMMUNOLOGY 2008; 181:6738-46. [PMID: 18981091 DOI: 10.4049/jimmunol.181.10.6738] [Citation(s) in RCA: 401] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The programmed death (PD)-1 molecule and its ligands (PD-L1 and PD-L2), negative regulatory members of the B7 family, play an important role in peripheral tolerance. Previous studies have demonstrated that PD-1 is up-regulated on T cells following TCR-mediated activation; however, little is known regarding PD-1 and Ag-independent, cytokine-induced T cell activation. The common gamma-chain (gamma c) cytokines IL-2, IL-7, IL-15, and IL-21, which play an important role in peripheral T cell expansion and survival, were found to up-regulate PD-1 and, with the exception of IL-21, PD-L1 on purified T cells in vitro. This effect was most prominent on memory T cells. Furthermore, these cytokines induced, indirectly, the expression of PD-L1 and PD-L2 on monocytes/macrophages in PBMC. The in vivo correlate of these observations was confirmed on PBMC isolated from HIV-infected individuals receiving IL-2 immunotherapy. Exposure of gamma c cytokine pretreated T cells to PD-1 ligand-IgG had no effect on STAT5 activation, T cell proliferation, or survival driven by gamma c cytokines. However, PD-1 ligand-IgG dramatically inhibited anti-CD3/CD28-driven proliferation and Lck activation. Furthermore, following restimulation with anti-CD3/CD28, cytokine secretion by both gamma c cytokine and anti-CD3/CD28 pretreated T cells was suppressed. These data suggest that gamma c cytokine-induced PD-1 does not interfere with cytokine-driven peripheral T cell expansion/survival, but may act to suppress certain effector functions of cytokine-stimulated cells upon TCR engagement, thereby minimizing immune-mediated damage to the host.
Collapse
Affiliation(s)
- Audrey L Kinter
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Croce M, Meazza R, Orengo AM, Fabbi M, Borghi M, Ribatti D, Nico B, Carlini B, Pistoia V, Corrias MV, Ferrini S. Immunotherapy of neuroblastoma by an Interleukin-21-secreting cell vaccine involves survivin as antigen. Cancer Immunol Immunother 2008; 57:1625-34. [PMID: 18324400 PMCID: PMC11030971 DOI: 10.1007/s00262-008-0496-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
AIM IL-21 is the most recently identified member of the IL-2 cytokine family. Here we studied the therapeutic efficacy of IL-21-gene-modified cells (Neuro2a/IL-21) in a syngeneic metastatic neuroblastoma (NB) model. MATERIALS AND METHODS Neuro2a/IL-21 cells were tested as subcutaneous (sc) vaccine both in prophylactic and therapeutic settings. Depletion studies, cytotoxicity assay and immunohistochemical analyses were carried out to evaluate the mechanisms involved in tumor rejection. RESULTS When injected sc in syngeneic A/J mice viable Neuro2a/IL-21 cells were rejected and induced resistance to a subsequent iv challenge with Neuro2a parental cells (Neuro2a/pc), suggesting the involvement of an immune response. More importantly, in mice bearing Neuro2a/pc micrometastases, a single sc injection of Neuro2a/IL-21 cells significantly increased the mean tumor-free survival of treated animals (43 vs. 22 days) and cured 14% of them. The administration of two or three doses of Neuro2a/IL-21 cell vaccine further increased the mean survival time to 54 and 75 days, and the cure rate to 27 and 33%, respectively, whereas the use of unmodified Neuro2a or mock-transfected cells had no effect. In vivo cell subset depletion and a Winn-assay indicated the involvement of CD8 + CTLs. Immunohistochemical analysis indicated a reduction of CD31+ and VEGFR2+ microvessels in late metastases from therapeutically vaccinated mice. A role of survivin as antigen was suggested by in vitro assays using survivin-synthetic CTL-epitopes. CONCLUSIONS Our present data indicate that IL-21-secreting NB cells are effective as therapeutic vaccine in mice bearing metastatic NB, through a specific CTL response involving survivin as antigen, and suggest a potential interest for IL-21 in NB immuno-gene therapy.
Collapse
Affiliation(s)
- Michela Croce
- Laboratory of Immunological Therapy, Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16132 Genoa, Italy
| | - Raffaella Meazza
- Laboratory of Clinical and Experimental Immunology, Gaslini Institute, 16147 Genoa, Italy
| | - Anna M. Orengo
- Laboratory of Immunological Therapy, Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16132 Genoa, Italy
| | - Marina Fabbi
- Laboratory of Immunological Therapy, Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16132 Genoa, Italy
| | - Martina Borghi
- Laboratory of Immunological Therapy, Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16132 Genoa, Italy
| | | | - Beatrice Nico
- Department of Human Anatomy, Policlinico, 70124 Bari, Italy
| | - Barbara Carlini
- Laboratory of Oncology, Gaslini Institute, 16147 Genoa, Italy
| | - Vito Pistoia
- Laboratory of Oncology, Gaslini Institute, 16147 Genoa, Italy
| | | | - Silvano Ferrini
- Laboratory of Immunological Therapy, Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16132 Genoa, Italy
| |
Collapse
|