1
|
Dréno B, Khammari A, Fortun A, Vignard V, Saiagh S, Beauvais T, Jouand N, Bercegay S, Simon S, Lang F, Labarrière N. Phase I/II clinical trial of adoptive cell transfer of sorted specific T cells for metastatic melanoma patients. Cancer Immunol Immunother 2021; 70:3015-3030. [PMID: 34120214 PMCID: PMC8423703 DOI: 10.1007/s00262-021-02961-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Adoptive cell transfer (ACT) of tumor-specific T lymphocytes represents a relevant therapeutic strategy to treat metastatic melanoma patients. Ideal T-cells should combine tumor specificity and reactivity with survival in vivo, while avoiding autoimmune side effects. Here we report results from a Phase I/II clinical trial (NCT02424916, performed between 2015 and 2018) in which 6 metastatic HLA-A2 melanoma patients received autologous antigen-specific T-cells produced from PBMC, after peptide stimulation in vitro, followed by sorting with HLA-peptide multimers and amplification. Each patient received a combination of Melan-A and MELOE-1 polyclonal specific T-cells, whose specificity and anti-tumor reactivity were checked prior to injection, with subcutaneous IL-2. Transferred T-cells were also characterized in terms of functional avidity, diversity and phenotype and their blood persistence was evaluated. An increase in specific T-cells was detected in the blood of all patients at day 1 and progressively disappeared from day 7 onwards. No serious adverse events occurred after this ACT. Clinically, five patients progressed and one patient experienced a partial response following therapy. Melan-A and MELOE-1 specific T-cells infused to this patient were diverse, of high avidity, with a high proportion of T lymphocytes co-expressing PD-1 and TIGIT but few other exhaustion markers. In conclusion, we demonstrated the feasibility and safety of ACT with multimer-sorted Melan-A and MELOE-1 specific T cells to metastatic melanoma patients. The clinical efficacy of such therapeutic strategy could be further enhanced by the selection of highly reactive T-cells, based on PD-1 and TIGIT co-expression, and a combination with ICI, such as anti-PD-1.
Collapse
Affiliation(s)
- Brigitte Dréno
- Dermato-Cancerology Department, CIC 1413, CHU Nantes, Nantes, France.,UTCG, CHU Nantes, Nantes, France.,CRCINA, Inserm, Université de Nantes, 44000, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes, France
| | - Amir Khammari
- Dermato-Cancerology Department, CIC 1413, CHU Nantes, Nantes, France.,CRCINA, Inserm, Université de Nantes, 44000, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes, France
| | - Agnès Fortun
- CRCINA, Inserm, Université de Nantes, 44000, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Virginie Vignard
- CRCINA, Inserm, Université de Nantes, 44000, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes, France
| | | | - Tiffany Beauvais
- CRCINA, Inserm, Université de Nantes, 44000, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,CHU Nantes, Nantes, France
| | - Nicolas Jouand
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,SFR Santé, CNRS, Inserm, Inserm UMS 016, CNRS UMS 3556, Université de Nantes, CHU Nantes, 44000, Nantes, France
| | | | - Sylvain Simon
- CRCINA, Inserm, Université de Nantes, 44000, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - François Lang
- CRCINA, Inserm, Université de Nantes, 44000, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| | - Nathalie Labarrière
- CRCINA, Inserm, Université de Nantes, 44000, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France. .,SFR Santé, CNRS, Inserm, Inserm UMS 016, CNRS UMS 3556, Université de Nantes, CHU Nantes, 44000, Nantes, France.
| |
Collapse
|
2
|
Simon S, Vignard V, Varey E, Parrot T, Knol AC, Khammari A, Gervois N, Lang F, Dreno B, Labarriere N. Emergence of High-Avidity Melan-A–Specific Clonotypes as a Reflection of Anti–PD-1 Clinical Efficacy. Cancer Res 2017; 77:7083-7093. [DOI: 10.1158/0008-5472.can-17-1856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
Abstract
Therapeutic strategies using anti–PD-1–blocking antibodies reported unparalleled effectiveness for melanoma immunotherapy, but deciphering immune responses modulated by anti–PD-1 treatment remains a crucial issue. Here, we analyzed the composition and functions of the large Melan-A–specific T-cell repertoire in the peripheral blood of 9 melanoma patients before and after 2 months of treatment with anti–PD-1. We observed amplification of Melan-A–specific Vß subfamilies undetectable before therapy (thereafter called emerging Vß subfamilies) in responding patients, with a predominant expansion in patients with a complete response. These emerging Vß subfamilies displayed a higher functional avidity for their cognate antigen than Vß subfamilies not amplified upon anti–PD-1 therapy and could be identified by a sustained coexpression of PD-1 and TIGIT receptors. Thus, in addition to the emergence of neoantigen-specific T cells previously documented upon anti–PD-1 therapy, our work describes the emergence of high-avidity Melan-A–specific clonotypes as a surrogate marker of treatment efficacy. Cancer Res; 77(24); 7083–93. ©2017 AACR.
Collapse
Affiliation(s)
- Sylvain Simon
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
| | - Virginie Vignard
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
- 3CHU Nantes, Nantes, France
| | - Emilie Varey
- 4Department of Dermato-cancerology of Nantes Hospital, Nantes, France
| | - Tiphaine Parrot
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
| | - Anne-Chantal Knol
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
- 4Department of Dermato-cancerology of Nantes Hospital, Nantes, France
| | - Amir Khammari
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
- 4Department of Dermato-cancerology of Nantes Hospital, Nantes, France
| | - Nadine Gervois
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
| | - Francois Lang
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
| | - Brigitte Dreno
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
- 4Department of Dermato-cancerology of Nantes Hospital, Nantes, France
| | - Nathalie Labarriere
- 1CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- 2LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
- 3CHU Nantes, Nantes, France
| |
Collapse
|
3
|
Schober K, Busch DH. TIL 2.0: More effective and predictive T-cell products by enrichment for defined antigen specificities. Eur J Immunol 2017; 46:1335-9. [PMID: 27280482 DOI: 10.1002/eji.201646436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 12/21/2022]
Abstract
Adoptive transfer of in vitro-expanded T cells derived from tumor-infiltrating lymphocytes (TILs) in melanoma patients started the era of tumor immunotherapy three decades ago. The approach has demonstrated remarkable clinical responses in several studies since. Reinfusion of TIL-derived T cells represents a highly personalized form of immunotherapy, taking into account the enormous interindividual tumor heterogeneity. However, despite its successes, TIL therapy does not lead to objective clinical responses in all cases. It is thus crucial to find out which tumor antigens are particularly valuable targets and to develop strategies to enhance the reactivity of T-cell products toward them. In this issue of the European Journal of Immunology, Kelderman et al. [Eur. J. Immunol. 2016. 46: 1351-1360] present a platform for the generation of antigen-specific TIL therapy. Combining recently developed technologies for clinical identification and enrichment of antigen-specific CD8(+) T cells, such as MHC Streptamers and UV-mediated peptide exchange, the authors could enrich T-cell populations with defined antigen specificities from melanoma-derived TILs. This T-cell product showed higher reactivity against autologous tumor cell lines than bulk TIL-derived T cells. The novel platform might enable the generation of more effective and predictable TIL-derived T-cell products for future clinical applications.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.,DZIF - National Centre for Infection Research, Munich, Germany.,Focus Group "Clinical Cell Processing and Purification,", Institute for Advanced Study, Technische Universität München, Munich, Germany
| |
Collapse
|
4
|
Kuznetsova M, Lopatnikova J, Khantakova J, Maksyutov R, Maksyutov A, Sennikov S. Generation of populations of antigen-specific cytotoxic T cells using DCs transfected with DNA construct encoding HER2/neu tumor antigen epitopes. BMC Immunol 2017. [PMID: 28633645 PMCID: PMC5479015 DOI: 10.1186/s12865-017-0219-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Recent fundamental and clinical studies have confirmed the effectiveness of utilizing the potential of the immune system to remove tumor cells disseminated in a patient's body. Cytotoxic T lymphocytes (CTLs) are considered the main effectors in cell-mediated antitumor immunity. Approaches based on antigen presentation to CTLs by dendritic cells (DCs) are currently being intensively studied, because DCs are more efficient in tumor antigen presentation to T cells through their initiation of strong specific antitumor immune responses than other types of antigen-presenting cells. Today, it has become possible to isolate CTLs specific for certain antigenic determinants from heterogeneous populations of mononuclear cells. This enables direct and specific cell-mediated immune responses against cells carrying certain antigens. The aim of the present study was to develop an optimized protocol for generating CTL populations specific for epitopes of tumor-associated antigen HER2/neu, and to assess their cytotoxic effects against the HER2/neu-expressing MCF-7 tumor cell line. METHODS The developed protocol included sequential stages of obtaining mature DCs from PBMCs from HLA A*02-positive healthy donors, magnet-assisted transfection of mature DCs with the pMax plasmid encoding immunogenic peptides HER2 p369-377 (E75 peptide) and HER2 p689-697 (E88 peptide), coculture of antigen-activated DCs with autologous lymphocytes, magnetic-activated sorting of CTLs specific to HER2 epitopes, and stimulation of isolated CTLs with cytokines (IL-2, IL-7, and IL-15). RESULTS The resulting CTL populations were characterized by high contents of CD8+ cells (71.5% in cultures of E88-specific T cells and 90.2% in cultures of E75-specific T cells) and displayed strong cytotoxic effects against the MCF-7 cell line (percentages of damaged tumor cells in samples under investigation were 60.2 and 65.7% for E88- and E75-specific T cells, respectively; level of spontaneous death of target cells was 17.9%). CONCLUSIONS The developed protocol improves the efficiency of obtaining HER2/neu-specific CTLs and can be further used to obtain cell-based vaccines for eradicating targeted tumor cells to prevent tumor recurrence after the major tumor burden has been eliminated and preventing metastasis in patients with HER2-overexpressing tumors.
Collapse
Affiliation(s)
- Maria Kuznetsova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia
| | - Julia Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia
| | - Julia Khantakova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia
| | - Rinat Maksyutov
- State Research Center of Virology and Biotechnology "VECTOR", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Amir Maksyutov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia.,State Research Center of Virology and Biotechnology "VECTOR", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Sergey Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Yadrintsevskaya str., 14, Novosibirsk, 630099, Russia.
| |
Collapse
|
5
|
Potential use of lymph node-derived HPV-specific T cells for adoptive cell therapy of cervical cancer. Cancer Immunol Immunother 2016; 65:1451-1463. [PMID: 27619514 PMCID: PMC5099359 DOI: 10.1007/s00262-016-1892-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
Adoptive transfer of tumor-specific T cells, expanded from tumor-infiltrating lymphocytes or from peripheral blood, is a promising immunotherapeutic approach for the treatment of cancer. Here, we studied whether the tumor-draining lymph nodes (TDLN) of patients with human papillomavirus (HPV)-induced cervical cancer can be used as a source for ACT. The objectives were to isolate lymph node mononuclear cells (LNMC) from TDLN and optimally expand HPV-specific CD4+ and CD8+ T cells under clinical grade conditions. TDLN were isolated from 11 patients with early-stage cervical cancer during radical surgery. Isolated lymphocytes were expanded in the presence of HPV16 E6 and E7 clinical grade synthetic long peptides and IL-2 for 22 days and then analyzed for HPV16 specificity by proliferation assay, multiparameter flow cytometry and cytokine analysis as well as for CD25 and FoxP3 expression. Stimulation of LNMC resulted in expansion of polyclonal HPV-specific T cells in all patients. On average a 36-fold expansion of a CD4+ and/or CD8+ HPV16-specific T cell population was observed, which maintained its capacity for secondary expansion. The T helper type 1 cytokine IFNγ was produced in all cell cultures and in some cases also the Th2 cytokines IL-10 and IL-5. The procedure was highly reproducible, as evidenced by complete repeats of the stimulation procedures under research and under full good manufacturing practice conditions. In conclusion, TDLN represent a rich source of polyclonal HPV16 E6- and E7-specific T cells, which can be expanded under clinical grade conditions for adoptive immunotherapy in patients with cervical cancer.
Collapse
|
6
|
Kelderman S, Heemskerk B, Fanchi L, Philips D, Toebes M, Kvistborg P, van Buuren MM, van Rooij N, Michels S, Germeroth L, Haanen JBAG, Schumacher NM. Antigen-specific TIL therapy for melanoma: A flexible platform for personalized cancer immunotherapy. Eur J Immunol 2016; 46:1351-60. [DOI: 10.1002/eji.201545849] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 02/01/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sander Kelderman
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Bianca Heemskerk
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Lorenzo Fanchi
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Daisy Philips
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Mireille Toebes
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Pia Kvistborg
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Marit M. van Buuren
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Nienke van Rooij
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Samira Michels
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | | | - John B. A. G. Haanen
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - N. M. Schumacher
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| |
Collapse
|
7
|
Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, Labarriere N. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology 2015; 5:e1104448. [PMID: 26942093 PMCID: PMC4760290 DOI: 10.1080/2162402x.2015.1104448] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/22/2023] Open
Abstract
Despite its negative regulatory role on tumor-specific T cells, Programmed cell death 1 (PD-1) is also a marker of activated tumor-infiltrating T cells. In cancer, PD-1 blockade partially reverses T cell dysfunction allowing the amplification of tumor reactive T cells. Here, we investigated the role of PD-1 signaling on effector/memory human T cells specific for shared melanoma antigens, derived from blood. We documented for the first time the existence of melanoma-specific T cell clones unable to express PD-1. This stable feature was due to the persistent methylation of the PDCD1 promoter. These PD-1neg clones were of lower avidity than their PD-1pos counterparts, suggesting that high-affinity-specific T cell clones unable to express PD-1 are not or rarely present in peripheral blood, as they are probably eliminated by negative selection, due to their high reactivity. We also documented the existence of such PD-1neg T cell clones in melanoma tumor-infiltrating lymphocytes (TIL), which also exhibited a lower functional avidity than PD-1pos TIL clones. This clearly shows that PD-1 expression identifies antigen-specific T cell clonotypes of high functional avidity. Finally, we demonstrated that PD-1 blockade during the in vitro selection process of Melan-A-specific T cells favored the amplification of higher avidity T cell clonotypes. This preferential amplification of high-avidity memory T cells upon PD-1 blockade resonates with the expansion of reactive T cells, including neo-antigen-specific T cells observed in anti-PD-1-treated patients. This feature should also be a useful biomarker of clinical efficiency, while providing new insights for adoptive transfer treatments.
Collapse
Affiliation(s)
- Sylvain Simon
- Inserm UMR892/CNRS UMR6299/Univ Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Department of Dermato-cancerology of CHU Nantes, Nantes, France
| | - Virginie Vignard
- Inserm UMR892/CNRS UMR6299/Univ Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Department of Dermato-cancerology of CHU Nantes, Nantes, France
| | - Laetitia Florenceau
- Inserm UMR892/CNRS UMR6299/Univ Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Department of Dermato-cancerology of CHU Nantes, Nantes, France
| | - B Dreno
- Inserm UMR892/CNRS UMR6299/Univ Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Department of Dermato-cancerology of CHU Nantes, Nantes, France
| | - A Khammari
- Inserm UMR892/CNRS UMR6299/Univ Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Department of Dermato-cancerology of CHU Nantes, Nantes, France
| | - F Lang
- Inserm UMR892/CNRS UMR6299/Univ Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - N Labarriere
- Inserm UMR892/CNRS UMR6299/Univ Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Department of Dermato-cancerology of CHU Nantes, Nantes, France
| |
Collapse
|
8
|
Perica K, Bieler JG, Schütz C, Varela JC, Douglass J, Skora A, Chiu YL, Oelke M, Kinzler K, Zhou S, Vogelstein B, Schneck JP. Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy. ACS NANO 2015; 9:6861-71. [PMID: 26171764 PMCID: PMC5082131 DOI: 10.1021/acsnano.5b02829] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation. Enrichment + Expansion resulted in greater than 1000-fold expansion of both mouse and human tumor-specific T cells in 1 week, with nano-aAPC based enrichment conferring a proliferation advantage during both in vitro culture and after adoptive transfer in vivo. Robust T cell responses were seen not only for shared tumor antigens, but also for computationally predicted neo-epitopes. Streamlining the rapid generation of large numbers of tumor-specific T cells in a cost-effective fashion through Enrichment + Expansion can be a powerful tool for immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Douglass
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Andrew Skora
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | | | | | - Kenneth Kinzler
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Shibin Zhou
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Bert Vogelstein
- ∥Ludwig Cancer Research Center and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | | |
Collapse
|
9
|
Aranda F, Buqué A, Bloy N, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for oncological indications. Oncoimmunology 2015; 4:e1046673. [PMID: 26451319 DOI: 10.1080/2162402x.2015.1046673] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
One particular paradigm of anticancer immunotherapy relies on the administration of (potentially) tumor-reactive immune effector cells. Generally, these cells are obtained from autologous peripheral blood lymphocytes (PBLs) ex vivo (in the context of appropriate expansion, activation and targeting protocols), and re-infused into lymphodepleted patients along with immunostimulatory agents. In spite of the consistent progress achieved throughout the past two decades in this field, no adoptive cell transfer (ACT)-based immunotherapeutic regimen is currently approved by regulatory agencies for use in cancer patients. Nonetheless, the interest of oncologists in ACT-based immunotherapy continues to increase. Accumulating clinical evidence indicates indeed that specific paradigms of ACT, such as the infusion of chimeric antigen receptor (CAR)-expressing autologous T cells, are associated with elevated rates of durable responses in patients affected by various neoplasms. In line with this notion, clinical trials investigating the safety and therapeutic activity of ACT in cancer patients are being initiated at an ever increasing pace. Here, we review recent preclinical and clinical advances in the development of ACT-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Fernando Aranda
- Group of Immune Receptors of the Innate and Adaptive System; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) ; Barcelona, Spain
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Francesca Castoldi
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; INSERM; U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| |
Collapse
|
10
|
Andersen RS, Andersen SR, Hjortsø MD, Lyngaa R, Idorn M, Køllgård TM, Met O, Thor Straten P, Hadrup SR. High frequency of T cells specific for cryptic epitopes in melanoma patients. Oncoimmunology 2014; 2:e25374. [PMID: 24073381 PMCID: PMC3782131 DOI: 10.4161/onci.25374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/24/2022] Open
Abstract
A number of cytotoxic T-cell epitopes are cryptic epitopes generated from non-conventional sources. These include epitopes that are encoded by alternative open reading frames or in generally non-coding genomic regions, such as introns. We have previously observed a frequent recognition of cryptic epitopes by tumor infiltrating lymphocytes isolated from melanoma patients. Here, we show that such cryptic epitopes are more frequently recognized than antigens of the same class encoded by canonical reading frames. Furthermore, we report the presence of T cells specific for three cryptic epitopes encoded in intronic sequences, as a result of incomplete splicing, in the circulation of melanoma patients. One of these epitopes derives from antigen isolated from immunoselected melanoma 2 (AIM2), while the two others are encoded in an alternative open reading frame of an incompletely spliced form of N-acetylglucosaminyl-transferase V (GNT-V) known as NA17-A. We have detected frequent T-cell responses against AIM2 and NA17-A epitopes in the blood of melanoma patients, both prior and after one round of in vitro peptide stimulation, but not in the circulation of healthy individuals and patients with breast or renal carcinoma. In summary, our findings indicate that the T-cell reactivity against AIM2 and NA17-A in the blood of melanoma patients is extensive, suggesting that—similar to melan A (also known as MART1)—these antigens might be used for immunomonitoring or as model antigens in several clinical and preclinical settings.
Collapse
Affiliation(s)
- Rikke Sick Andersen
- Center for Cancer Immune Therapy; University Hospital Herlev; Herlev, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vaccheli E, Michels J, Hadoux J, Lotz JP. American association for cancer research — AACR congress 2014. ONCOLOGIE 2014. [DOI: 10.1007/s10269-014-2414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Hervé Fridman W, Cremer I, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2014; 3:e28344. [PMID: 25050207 PMCID: PMC4063152 DOI: 10.4161/onci.28344] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022] Open
Abstract
The expression "adoptive cell transfer" (ACT) is commonly employed to indicate an immunotherapeutic regimen involving the isolation of autologous blood-borne or tumor-infiltrating lymphocytes, their selection/expansion/activation ex vivo, and their reinfusion into the patient, most often in the context of lymphodepleting pre-conditioning and in combination with immunostimulatory treatments. Optionally, the cellular material for ACT is genetically manipulated before expansion to (1) target specific tumor-associated antigens; (2) endogenously express immunostimulatory molecules; and/or (3) persist for long periods upon reinfusion. Consistent efforts have been dedicated at the amelioration of this immunotherapeutic regimen throughout the past decade, resulting in the establishment of ever more efficient and safer ACT protocols. Accordingly, the number of clinical trials testing ACT in oncological indications does not cease to increase. In this Trial Watch, we summarize recent developments in this exciting area of research, covering both high-impact studies that have been published during the last 12 months and clinical trials that have been launched in the same period to evaluate the safety and therapeutic potential of ACT in cancer patients.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, UMRS1138; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, UMRS1138; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, UMRS1138; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- INSERM, UMRS1138; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Wolf Hervé Fridman
- INSERM, UMRS1138; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Isabelle Cremer
- INSERM, UMRS1138; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; INSERM, U970; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
13
|
A full GMP process to select and amplify epitope-specific T lymphocytes for adoptive immunotherapy of metastatic melanoma. Clin Dev Immunol 2013; 2013:932318. [PMID: 24194775 PMCID: PMC3806119 DOI: 10.1155/2013/932318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
A number of trials of adoptive transfer of tumor-specific T lymphocytes have been performed in the last 20 years in metastatic melanoma, with increasingly encouraging results as the relevant melanoma antigens were identified and the purity/specificity of injected T cells improved. We have previously described a sorting method of epitope-specific T lymphocytes that uses magnetic beads coated with HLA/peptide complexes and we suggested that this method could be applied to a clinical setting. In the present work, we provide a detailed description of the whole GMP process of sorting and amplification of clinical grade T cells specific for the melanoma antigens Melan-A and MELOE-1. All the reagents used in this process including the sorting reagent were produced in GMP conditions and we document the optimization of the different steps of the process such as peptide stimulation, sorting, and amplification. The optimized procedure, validated in 3 blank runs in a clinical setting, allowed the production of at least 108 pure (>90%) Melan-A- and MELOE-1-specific T cells within 28 days starting with 100 mL of blood from metastatic melanoma patients. This GMP process is thus ready to be used in an upcoming phase I/II clinical trial on metastatic melanoma patients.
Collapse
|
14
|
Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238. [PMID: 23762803 PMCID: PMC3667909 DOI: 10.4161/onci.24238] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell transfer (ACT) represents a prominent form of immunotherapy against malignant diseases. ACT is conceptually distinct from dendritic cell-based approaches (which de facto constitute cellular vaccines) and allogeneic transplantation (which can be employed for the therapy of hematopoietic tumors) as it involves the isolation of autologous lymphocytes exhibiting antitumor activity, their expansion/activation ex vivo and their reintroduction into the patient. Re-infusion is most often performed in the context of lymphodepleting regimens (to minimize immunosuppression by host cells) and combined with immunostimulatory interventions, such as the administration of Toll-like receptor agonists. Autologous cells that are suitable for ACT protocols can be isolated from tumor-infiltrating lymphocytes or generated by engineering their circulating counterparts for the expression of transgenic tumor-specific T-cell receptors. Importantly, lymphocytes can be genetically modified prior to re-infusion for increasing their persistence in vivo, boosting antitumor responses and minimizing side effects. Moreover, recent data indicate that exhausted antitumor T lymphocytes may be rejuvenated in vitro by exposing them to specific cytokine cocktails, a strategy that might considerably improve the clinical success of ACT. Following up the Trial Watch that we published on this topic in the third issue of OncoImmunology (May 2012), here we summarize the latest developments in ACT-related research, covering both high-impact studies that have been published during the last 13 months and clinical trials that have been initiated in the same period to assess the antineoplastic profile of this form of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris France
- INSERM, U848; Villejuif, France
| | | | - Wolf Hervé Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 13; Centre de Recherche des Cordeliers; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
| | - Jérôme Galon
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 15; Centre de Recherche des Cordeliers; Paris, France
- INSERM; U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- INSERM; U970; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris France
- INSERM; U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11; Labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Metabolomics Platform; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Institut Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11; Labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
15
|
Tischer S, Kaireit T, Figueiredo C, Hiller O, Maecker-Kolhoff B, Geyeregger R, Immenschuh S, Blasczyk R, Eiz-Vesper B. Establishment of the reversible peptide-major histocompatibility complex (pMHC) class I Histamer technology: tool for visualization and selection of functionally active antigen-specific CD8(+) T lymphocytes. Int Immunol 2012; 24:561-72. [PMID: 22740564 DOI: 10.1093/intimm/dxs059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multimers of soluble peptide-major histocompatibilty complex (pMHC) molecules are used in both basic and clinical immunology. They allow the specific visualization and isolation of antigen-specific T cells from ex vivo samples. Adoptive transfer of antigen-specific T cells sorted by pMHC multimers is an effective strategy for treatment of patients with malignancies or infectious diseases after transplantation. We developed a new reversible pMHC multimer called 'Histamer' to enable the specific detection and isolation of antiviral T cells from peripheral blood. HLA-A*02:01/CMVpp65 (495-503) Histamer (A02/CMV Histamer) was generated by coupling 6xHis-tagged pMHC molecules onto cobalt-based magnetic beads. The specificity of the Histamer was evaluated by flow cytometry. Sorting of antiviral CD8(+) cytotoxic T lymphocytes (CTLs) was performed by magnetic cell separation, followed by the monomerization of the Histamer after addition of the competitor L-histidine. Sorted T cells were analyzed for phenotype and function. The reversible pMHC Histamer proved to be highly specific and sensitive. CMV-specific T cells of up to 99.6% purity were isolated using the Histamer technology. Rapid and complete disassembly of the T-cell surface-bound A02/CMV Histamer followed by the subsequent dissociation of the pMHC monomers from CD8(+) CTL receptors was achieved using 100 mM L-histidine. The function of CMV-specific T cells enriched by Histamer staining did not differ from CTLs induced by standard T-cell assays. This reversible T-cell staining procedure preserves the functionality of antigen-specific T cells and can be adapted to good manufacturing practice conditions. The pMHC Histamer technology offers full flexibility and fulfills all requirements to generate clinical-grade T lymphocytes.
Collapse
Affiliation(s)
- Sabine Tischer
- Institute for Transfusion Medicine, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306-315. [PMID: 22737606 PMCID: PMC3382856 DOI: 10.4161/onci.19549] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During the last two decades, several approaches for the activation of the immune system against cancer have been developed. These include rather unselective maneuvers such as the systemic administration of immunostimulatory agents (e.g., interleukin-2) as well as targeted interventions, encompassing highly specific monoclonal antibodies, vaccines and cell-based therapies. Among the latter, adoptive cell transfer (ACT) involves the selection of autologous lymphocytes with antitumor activity, their expansion/activation ex vivo, and their reinfusion into the patient, often in the context of lymphodepleting regimens (to minimize endogenous immunosuppression). Such autologous cells can be isolated from tumor-infiltrating lymphocytes or generated by manipulating circulating lymphocytes for the expression of tumor-specific T-cell receptors. In addition, autologous lymphocytes can be genetically engineered to prolong their in vivo persistence, to boost antitumor responses and/or to minimize side effects. ACT has recently been shown to be associated with a consistent rate of durable regressions in melanoma and renal cell carcinoma patients and holds great promises in several other oncological settings. In this Trial Watch, we will briefly review the scientific rationale behind ACT and discuss the progress of recent clinical trials evaluating the safety and effectiveness of adoptive cell transfer as an anticancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM; U848; Villejuif, France
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Erika Vacchelli
- INSERM; U848; Villejuif, France
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | | | - Wolf Herve´ Fridman
- INSERM; U872; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Jerome Galon
- INSERM; U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM; U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes; Sorbonne Paris Cité; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Université Paris Descartes; Sorbonne Paris Cité; Paris, France
- INSERM; U970; Paris, France
| | - Laurence Zitvogel
- Institut Gustave Roussy; Villejuif, France
- INSERM; U1015; Villejuif, France
| | - Guido Kroemer
- INSERM; U848; Villejuif, France
- Institut Gustave Roussy; Villejuif, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Université Paris Descartes; Sorbonne Paris Cité; Paris, France
- Metabolomics Platform; Institut Gustave Roussy; Villejuif, France
| |
Collapse
|
17
|
Jotereau F, Gervois N, Labarrière N. Adoptive transfer with high-affinity TCR to treat human solid tumors: how to improve the feasibility? Target Oncol 2012; 7:3-14. [PMID: 22350487 DOI: 10.1007/s11523-012-0207-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/12/2012] [Indexed: 01/05/2023]
Abstract
The adoptive transfer of tumor antigen-specific T cells recently achieved clinical efficacy for a fraction of melanoma patients refractory to other therapies. Unfortunately, the application of this strategy to the remaining melanoma and most other cancer patients is hampered by the difficulty to generate high-affinity tumor-reactive T cells. Two strategies are currently developed to extend the feasibility of this therapeutic approach: clinical grade tool production for MHC-peptide multimer-driven sorting of antigen-specific T cells from the endogenous peripheral T cell repertoire and de novo engineering of the missing repertoire by genetic transfer of cloned specific T cell receptor (TCR) into T cells. The expected multiplication of adoptive transfer treatments, by these strategies, and their careful evaluation should enable the cure of a number of otherwise compromised cancer patients and to gain insight into the characteristics of transferred T cells best fitted to eradicate tumor cells, in terms of antigen specificities, phenotype, and functions. In particular, identification of tumor-rejection antigens by this approach would improve the design and efficacy of all immunotherapeutic approaches.
Collapse
|
18
|
Labarriere N, Khammari A, Lang F, Dreno B. Is antigen specificity the key to efficient adoptive T-cell therapy? Immunotherapy 2011; 3:495-505. [DOI: 10.2217/imt.11.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adoptive transfer of T cells remains a promising approach in melanoma. Initial clinical trials performed with polyclonal tumor-infiltrating lymphocyte gave limited clinical results. Nonetheless, encouraging results have been reported in adjuvant setting (stage III melanoma), and when tumor-infiltrating lymphocytes were associated with lymphodepleting regimens. Specificity of adoptive cell therapy has been achieved with the infusion of antigen specific cytotoxic T-lymphocyte clones, associated with some clinical responses. Antigen specificity can also be obtained by the allogeneic transfer of high-avidity T-cell receptors into autologous T cells. We propose an alternative strategy based on the selection of antigen-specific T cells with magnetic beads coated with HLA–peptide multimers. Future improvements of adoptive melanoma immunotherapy may be achieved by its association with other therapeutic strategies such as targeted therapy against signaling pathways.
Collapse
Affiliation(s)
- Nathalie Labarriere
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
| | - Amir Khammari
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
- Centre Hospitalo-Universitaire de Nantes, Unit of Skin Cancer, F-44093 Nantes, France
| | - Francois Lang
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
- Université de Nantes, Unite de Formation et de Recherche des Sciences Pharmaceutiques, F-44093 Nantes, France
| | | |
Collapse
|
19
|
Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunol Immunother 2011; 60:953-63. [PMID: 21431917 PMCID: PMC3119331 DOI: 10.1007/s00262-011-1004-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/05/2011] [Indexed: 02/02/2023]
Abstract
A phase I/II study was conducted to test the feasibility and safety of the adoptive transfer of tumor-reactive T cells and daily injections of interferon-alpha (IFNα) in metastatic melanoma patients with progressive disease. Autologous melanoma cell lines were established to generate tumor-specific T cells by autologous mixed lymphocyte tumor cell cultures using peripheral blood lymphocytes. Ten patients were treated with on average 259 (range 38–474) million T cells per infusion to a maximum of six infusions, and clinical response was evaluated according to the response evaluation criteria in solid tumors (RECIST). Five patients showed clinical benefit from this treatment, including one complete regression, one partial response, and three patients with stable disease. No treatment-related serious adverse events were observed, except for the appearance of necrotic-like fingertips in one patient. An IFNα-related transient leucopenia was detected in 6 patients, including all responders. One responding patient displayed vitiligo. The infused T-cell batches consisted of tumor-reactive polyclonal CD8+ and/or CD4+ T cells. Clinical reactivity correlated with the functional properties of the infused tumor-specific T cells, including their in vitro expansion rate and the secretion of mainly Th1 cytokines as opposed to Th2 cytokines. Our study shows that relatively low doses of T cells and low-dose IFNα can lead to successful treatment of metastatic melanoma and reveals a number of parameters potentially associated with this success.
Collapse
|
20
|
Godet Y, Moreau-Aubry A, Mompelat D, Vignard V, Khammari A, Dreno B, Lang F, Jotereau F, Labarriere N. An additional ORF on meloe cDNA encodes a new melanoma antigen, MELOE-2, recognized by melanoma-specific T cells in the HLA-A2 context. Cancer Immunol Immunother 2010; 59:431-9. [PMID: 19730858 PMCID: PMC11029903 DOI: 10.1007/s00262-009-0762-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/20/2009] [Indexed: 11/25/2022]
Abstract
We characterized a new melanoma antigen derived from one of the multiple open reading frames (ORFs) of the meloe transcript. The meloe gene is overexpressed in melanomas as compared to other cancer cell lines and normal tissues. The corresponding transcript is rather unusual, in that it does not contain a long unique ORF but multiple short ORFs. We recently characterized a tumor epitope derived from a polypeptide (MELOE-1) encoded by the ORF(1230-1370) and involved in relapse prevention of melanoma patients treated with autologous tumor infiltrating lymphocytes (TIL). Here we show that the ORF(285-404) encodes a polypeptide called MELOE-2 that also generated a HLA-A2 epitope recognized by a melanoma-specific T cell clone derived from the same TIL population from which we derived the MELOE-1-specific T cell clone. We also showed that HLA-A2 melanoma cells were spontaneously recognized by the MELOE-2-specific T cell clone, and we detected the presence of MELOE-2 reactive T cells in another TIL population infused to a patient who remained relapse-free after TIL treatment. These results demonstrate that translation of meloe transcript in melanoma cells can produce at least two immunogenic polypeptides, MELOE-1 and MELOE-2, from two distinct ORFs that could be relevant target for melanoma immunotherapy.
Collapse
Affiliation(s)
- Yann Godet
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
| | - Agnès Moreau-Aubry
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
- Faculté des Sciences, Université de Nantes, 44322 Nantes, France
| | - Dimitri Mompelat
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
| | - Virginie Vignard
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
| | - Amir Khammari
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
- Unit of Skin Cancer, Centre Hospitalo-Universitaire de Nantes, 44093 Nantes, France
| | - Brigitte Dreno
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
- Unit of Skin Cancer, Centre Hospitalo-Universitaire de Nantes, 44093 Nantes, France
| | - Francois Lang
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
- Université de Nantes, UFR des Sciences Pharmaceutiques, 44322 Nantes, France
| | - Francine Jotereau
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
- Faculté des Sciences, Université de Nantes, 44322 Nantes, France
| | - Nathalie Labarriere
- CRCNA, Institut de Recherche Therapeutique, Université de Nantes, UMR INSERM U892, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
| |
Collapse
|
21
|
Casalegno-Garduño R, Schmitt A, Yao J, Wang X, Xu X, Freund M, Schmitt M. Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer Immunol Immunother 2010; 59:195-202. [PMID: 19847424 PMCID: PMC11030699 DOI: 10.1007/s00262-009-0778-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Identification and purification of antigen-specific T cells without altering their functional status are of high scientific and clinical interest. Staining with major histocompatibility complex (MHC)-peptide multimers constitutes a very powerful method to study antigen-specific T-cell subpopulations, allowing their direct visualization and quantification. MHC-peptide multimers, such as dimers, tetramers, pentamers, streptamers, dextramers and octamers have been used to evaluate the frequency of CD8(+) T cells, specific for tumor/leukemia-associated antigens as well as for viral antigens, e.g., CMVpp65 and EBV-EBNA. Moreover, MHC-peptide multimers have been used for rapid and efficient ex vivo isolation and expansion of T cells. A recent development in the field of MHC-peptide multimers led to the purification of CD8(+) T cells specific for leukemia antigens. This might help to select leukemia-specific donor lymphocyte infusions (DLIs), thus allowing dissection of the noxious graft-versus-host disease (GvHD) from beneficial anti-viral and even anti-leukemic effects. This review covers different types of MHC-peptide multimers and their applications, as well as the impact that multimers might have on further development of DLIs.
Collapse
Affiliation(s)
- Rosaely Casalegno-Garduño
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
| | - Anita Schmitt
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
| | - Junxia Yao
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinchao Wang
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
- Department of Oncology and Hematology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xun Xu
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
- Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Mathias Freund
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
| | - Michael Schmitt
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
| |
Collapse
|