1
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Antigenic Targets for the Immunotherapy of Acute Myeloid Leukaemia. J Clin Med 2019; 8:jcm8020134. [PMID: 30678059 PMCID: PMC6406328 DOI: 10.3390/jcm8020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 12/18/2022] Open
Abstract
One of the most promising approaches to preventing relapse is the stimulation of the body’s own immune system to kill residual cancer cells after conventional therapy has destroyed the bulk of the tumour. In acute myeloid leukaemia (AML), the high frequency with which patients achieve first remission, and the diffuse nature of the disease throughout the periphery, makes immunotherapy particularly appealing following induction and consolidation therapy, using chemotherapy, and where possible stem cell transplantation. Immunotherapy could be used to remove residual disease, including leukaemic stem cells from the farthest recesses of the body, reducing, if not eliminating, the prospect of relapse. The identification of novel antigens that exist at disease presentation and can act as targets for immunotherapy have also proved useful in helping us to gain a better understand of the biology that belies AML. It appears that there is an additional function of leukaemia associated antigens as biomarkers of disease state and survival. Here, we discuss these findings.
Collapse
|
3
|
Abstract
Historically, immune-based therapies have played a leading role in the treatment of hematologic malignancies, with the efficacy of stem cell transplantation largely attributable to donor immunity against malignant cells. As new and more targeted immunotherapies have developed, their role in the treatment of hematologic malignancies is evolving and expanding. Herein, we discuss approaches for antigen discovery and review known and novel tumor antigens in hematologic malignancies. We further explore the role of established and investigational immunotherapies in hematologic malignancies, with a focus on personalization of treatment modalities such as cancer vaccines and adoptive cell therapy. Finally, we identify areas of active investigation and development. Immunotherapy is at an exciting crossroads for the treatment of hematologic malignancies, with further investigation aimed at producing effective, targeted immune therapies that maximize antitumor effects while minimizing toxicity.
Collapse
Affiliation(s)
- David A. Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Krakow EF, Bergeron J, Lachance S, Roy DC, Delisle JS. Harnessing the power of alloreactivity without triggering graft-versus-host disease: how non-engrafting alloreactive cellular therapy might change the landscape of acute myeloid leukemia treatment. Blood Rev 2014; 28:249-61. [PMID: 25228333 DOI: 10.1016/j.blre.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022]
Abstract
Human leukocyte antigen-mismatched leukocyte infusions outside of the context of transplantation are a promising strategy for acute myeloid leukemia. Recent studies using such non-engrafting alloreactive cellular therapy (NEACT) revealed that survival of elderly patients increased from 10% to 39% when NEACT was given following chemotherapy, and that durable complete remissions were achieved in about a third of patients with relapsed or chemorefractory disease. We review the clinical reports of different NEACT approaches to date and describe how although T-cell and NK alloreactivity could generate immediate anti-leukemic effects, long-term disease control may be achieved by stimulating recipient-derived T-cell responses against tumor-associated antigens. Other variables likely impacting NEACT such as the release of pro-inflammatory cytokines from donor-host bidirectional alloreactivity and the choice of chemotherapeutics as well as future avenues for improving NEACT, such as optimizing the cell dose and potential synergies with adjuvant pharmacologic immune checkpoint blockade, are discussed.
Collapse
Affiliation(s)
- Elizabeth F Krakow
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Julie Bergeron
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Silvy Lachance
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Denis-Claude Roy
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| |
Collapse
|
5
|
Lin J, Chen Q, Yang J, Qian J, Deng ZQ, Qian W, Chen XX, Ma JC, Xiong DS, Ma YJ, An C, Tang CY. DDX43 promoter is frequently hypomethylated and may predict a favorable outcome in acute myeloid leukemia. Leuk Res 2014; 38:601-7. [DOI: 10.1016/j.leukres.2014.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/15/2014] [Accepted: 02/24/2014] [Indexed: 12/30/2022]
|
6
|
Wiese M, Pajeva IK. HAGE, the helicase antigen as a biomarker for breast cancer prognosis (WO2013144616). Expert Opin Ther Pat 2014; 24:723-5. [DOI: 10.1517/13543776.2014.913025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Schürch CM, Riether C, Ochsenbein AF. Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 2013; 4:496. [PMID: 24427158 PMCID: PMC3876024 DOI: 10.3389/fimmu.2013.00496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.
Collapse
Affiliation(s)
- Christian M Schürch
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Institute of Pathology, University of Bern , Bern , Switzerland
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Department of Medical Oncology, Inselspital, University Hospital Bern , Bern , Switzerland
| |
Collapse
|
8
|
Langabeer SE, Burke A, McCarron SL, Kelly J, Carroll P, Browne PV, Conneally E. Chronic myeloid leukaemia presenting post-radiotherapy for prostate cancer: further evidence for an immunosurveillance effect. Br J Haematol 2013; 162:708-10. [PMID: 23692259 DOI: 10.1111/bjh.12396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Chen Q, Lin J, Qian J, Deng ZQ, Qian W, Yang J, Li Y, Chen XX, Ma YJ, Ma JC, Liu Q. The methylation status of the DDX43 promoter in Chinese patients with chronic myeloid leukemia. Genet Test Mol Biomarkers 2013; 17:508-11. [PMID: 23495895 DOI: 10.1089/gtmb.2012.0530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aberrant DNA methylation is a common epigenetic alteration and an important feature in human cancers. The DEAD box polypeptide 43 (DDX43) has been found to be overexpressed in various solid tumors and some hematologic malignancies. In the present study, we investigated the methylation status of the DDX43 promoter in 87 Chinese patients with chronic myeloid leukemia (CML) using real-time quantitative methylation-specific polymerase chain reaction and examined the DDX43 transcript in 35 patients using real-time quantitative polymerase chain reaction. DDX43 promoter hypomethylation was observed in 22 (25.3%) CML patients. No significant correlation was found between the hypomethylation of the DDX43 promoter with the age, sex, white blood cell counts, hemoglobin concentration, platelet counts, and chromosomal abnormalities of CML patients (p>0.05). The frequency of DDX43 hypomethylation in patients in the chronic phase, in the accelerated phase, and in blast crisis was 23.4% (15/64), 25.0% (2/8), and 33.3% (5/15), respectively (p>0.05). There was a significant correlation between DDX43 hypomethylation and DDX43 transcript (r=0.469, p=0.004). Our data suggest that hypomethylation of the DDX43 promoter may be an early and frequent molecular event in the development of CML in Chinese patients.
Collapse
Affiliation(s)
- Qin Chen
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zheng YW, Li RM, Zhang XW, Ren XB. Current Adoptive Immunotherapy in Non-Small Cell Lung Cancer and Potential Influence of Therapy Outcome. Cancer Invest 2013; 31:197-205. [DOI: 10.3109/07357907.2013.775294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Linley AJ, Ahmad M, Rees RC. Tumour-associated antigens: considerations for their use in tumour immunotherapy. Int J Hematol 2011; 93:263-273. [DOI: 10.1007/s12185-011-0783-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/01/2011] [Indexed: 12/19/2022]
|
12
|
Vonka V. Immunotherapy of chronic myeloid leukemia: present state and future prospects. Immunotherapy 2010; 2:227-41. [PMID: 20635930 DOI: 10.2217/imt.10.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In spite of the considerable successes that have been achieved in the treatment of chronic myeloid leukemia (CML), cure for the disease can only be obtained by the present means in a rather small minority of patients. During the past decade, considerable progress has been made in the understanding of the immunology of CML, which has raised hopes that this disease may be curable by supplementing the current targeted chemotherapy with immunotherapeutic approaches. More than ten small-scale clinical trials have been carried out with experimental vaccines predominantly based on the p210bcr-abl fusion protein. Their results suggested beneficial effects in some patients. Recent data obtained in human patients as well as in animal models indicate that the p210bcr-abl protein does not carry the immunodominant epitope(s). These observations, combined with the recognition of an ever increasing number of other immunogenic proteins in CML cells, strongly support the concept that gene-modified, cell-based vaccines containing the full spectrum of tumor antigens might be the most effective immunotherapeutic approach. Recently created mathematical models have provided important leads for the timing of the combination of targeted drug therapy with vaccine administration. A strategy of how targeted drug therapy might be combined with vaccination is outlined.
Collapse
Affiliation(s)
- Vladimír Vonka
- Department of Experimental Virology, Institutute of Hematology & Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|